

LTCC 2010

Applied Dynamical Systems

Exercise Sheet to Lectures 5 - 10

Rainer Klages

1. Prove Eq. (1.7) in the lecture notes, that is,

$$\frac{\mathrm{d}F^{n}(x)}{\mathrm{d}x}\Big|_{x=x_{0}} = F'(x_{n-1})F'(x_{n-2})\dots F'(x_{0})$$

2. Consider the map defined by the function

$$E(x) = \begin{cases} 2x+1 & , & -1 \le x < -1/2 \\ 2x & , & -1/2 \le x < 1/2 \\ 2x-1 & , & 1/2 \le x \le 1 \end{cases}$$

Draw the graph of this map. Is E ergodic? Prove your answer.

3. Consider the Frobenius-Perron equation

$$\rho_{n+1}(x) = \sum_{x=G(x^i)} \rho_n(x^i) |G'(x^i)|^{-1} =: P\rho_n(x)$$

for a map G defined on the real line, where $\rho_n(x)$ are probability densities at time step $n \in \mathbb{N}_0$ and P defines the Frobenius-Perron operator.

- (a) Show that P is a linear and positive operator.
- (b) Construct P for the map G defined in the figure below and verify that

$$\rho^*(x) = \begin{cases} 4/3 & , & 0 \le x < 1/2 \\ 2/3 & , & 1/2 \le x \le 1 \end{cases}$$

is an invariant density of the above Frobenius-Perron equation.

(c) By assuming that G is ergodic, calculate the Ljapunov exponent λ for this map.

4. Consider the asymmetric tent map

$$S(x) = \begin{cases} ax & , \quad 0 \le x < 1/a \\ b - bx & , \quad 1/a \le x \le 1 \end{cases}$$

with 1/a + 1/b = 1.

- (a) Calculate the Ljapunov exponent λ for this map.
- (b) Show that for the *H*-function defined by Eq. (1.27) in the lecture notes it holds $H(\{J_i^2\}) = 2H(\{J_i^1\})$. By assuming that $\forall n \in \mathbb{N} \ H(\{J_i^n\}) = nH(\{J_i^1\})$ calculate the KS-entropy h_{KS} . Compare your result for h_{KS} with the one obtained for λ .
- 5. Consider the map $H(x) = 5x \mod 1$ on a domain which has "holes" where points escape from the unit interval. Let these escape regions be defined by the two subintervals (0.2, 04) and (0.6, 0.8).
 - (a) Sketch the map and the first two steps in the construction of its fractal repeller \mathcal{R}_H .
 - (b) Calculate the escape rate $\gamma(\mathcal{R}_H)$.
 - (c) Calculate the Ljapunov exponent $\lambda(\mathcal{R}_H)$
 - (d) Calculate the KS-entropy $h_{KS}(\mathcal{R}_H)$.
 - (e) By using these results, verify the escape rate formula for this map.
- 6. Verify Eq. (2.46) in the lecture notes by using Eqs. (2.44), (2.45).

Model solutions will be available on the course webpage after all lectures are over.