MAS424/MTHM021
Exercise Sheet 1

Introduction to Dynamical Systems
Rainer Klages

1. The harmonic oscillator

Consider the differential equation

$$
\ddot{x}+\omega^{2} x=0, x \in \mathbb{R}, t \geq 0
$$

where $\omega>0$ is a parameter.
(a) Solve this differential equation for the initial conditions $x(0)=0, \dot{x}(0)=v_{0}$.
(b) Depict your solution graphically by drawing trajectories in the phase space of the system for different values of v_{0} (this is called a phase portrait).
(c) Let us assume that 'chaos' is a subset of complicated dynamics. According to the Poincaré-Bendixson theorem, is chaos possible in this dynamical system?
2. The Poincaré-Bendixson theorem again
(a) Is chaos possible in the chain of coupled harmonic oscillators defined by

$$
\begin{aligned}
& m_{1} \ddot{x}_{1}=-k_{12}\left(x_{1}-x_{2}\right) \\
& m_{2} \ddot{x}_{2}=-k_{12}\left(x_{2}-x_{1}\right)-k_{23}\left(x_{2}-x_{3}\right) \\
& m_{3} \ddot{x}_{3}=-k_{23}\left(x_{3}-x_{2}\right)
\end{aligned}
$$

where $x \in \mathbb{R}, t \geq 0$, where $m_{i}, k_{i j}>0, i, j=1,2,3$ are all parameters?
(b) Consider the three maps $T(x)=x / 2(x \in \mathbb{R}), V(x)=2 x \bmod 1$ and $W(x)=4 x$ for $-0.5 \leq x<0.5$ with $W(x+1)=W(x)+1(x \in \mathbb{R})$. Can they exhibit chaos? Draw graphs of these maps, including cobweb plots for initial conditions of your choice, to illustrate your answers.
(c) Let

$$
\begin{aligned}
x_{n+1} & =x_{n}+y_{n} \\
y_{n+1} & =y_{n}+k \sin x_{n+1}, n \in \mathbb{N},\left(x_{n}, y_{n}\right) \in \mathbb{R}^{2}
\end{aligned}
$$

be the (standard) map, where $k>0$ is a parameter. Is this map invertible? Justify your answer. According to the Poincaré-Bendixson theorem, is chaos possible in this dynamical system?
(d) Let us consider a vector field on the unit square in the plane with periodic boundary conditions, where each vector has slope $q \in \mathbb{R}$. According to the PoincaréBendixson theorem, is chaos possible? Let us consider this vector field on a torus, i.e., by gluing together the left and right edges of the square, and likewise the top and bottom ones. Is chaos possible? (hint: in case of trouble with this question the book by Alligood et al. might help)
3. Cobweb plots and periodic orbits
(a) Consider the map $C: \mathbb{R} \rightarrow \mathbb{R}, x_{n+1}=C\left(x_{n}\right), n \in \mathbb{N}$ defined by the function $C(x)=-x^{2}+x+2, x \in \mathbb{R}$. Calculate the set $\operatorname{Per}_{2}(C)$ of all period 2 points for this map. Draw the graph of $C(x)$ and mark the positions of all period 2 points. Include cobweb plots for all period two orbits and illustrate the stability of the fixed points by cobweb plots.
(b) Draw a cobweb plot for a one-dimensional map of your choice showing a prime period three orbit and an eventually periodic orbit.
4. Rotation on the circle

Let S^{1} be the unit circle in the plane. Let denote a point in S^{1} by its angle θ such that a point on the circle is determined by any angle of the form $\theta+2 k \pi$ for an integer k. Now let $R_{\lambda}(\theta)=\theta+2 \pi \lambda$ be a rotation on the circle. Show that if λ is rational then every $\theta \in S^{1}$ is a periodic point. Prove by contradiction that there are no periodic points if λ is irrational.

Model solutions will be on the course webpage starting from Thursday, October 25, 2007.

