

## **MAS424/MTHM021**

Introduction to Dynamical Systems Rainer Klages

Exercise Sheet 1

1. The harmonic oscillator Consider the differential equation

$$\ddot{x} + \omega^2 x = 0 , \ x \in \mathbb{R} , \ t \ge 0 ,$$

where  $\omega > 0$  is a parameter.

- (a) Solve this differential equation for the initial conditions x(0) = 0,  $\dot{x}(0) = v_0$ .
- (b) Depict your solution graphically by drawing trajectories in the phase space of the system for different values of  $v_0$  (this is called a *phase portrait*).
- (c) Let us assume that 'chaos' is a subset of complicated dynamics. According to the Poincaré-Bendixson theorem, is chaos possible in this dynamical system?
- 2. The Poincaré-Bendixson theorem again
  - (a) Is chaos possible in the chain of coupled harmonic oscillators defined by

where  $x \in \mathbb{R}$ ,  $t \ge 0$ , where  $m_i$ ,  $k_{ij} > 0$ , i, j = 1, 2, 3 are all parameters?

- (b) Consider the three maps T(x) = x/2  $(x \in \mathbb{R})$ ,  $V(x) = 2x \mod 1$  and W(x) = 4x for  $-0.5 \le x < 0.5$  with W(x+1) = W(x) + 1  $(x \in \mathbb{R})$ . Can they exhibit chaos? Draw graphs of these maps, including cobweb plots for initial conditions of your choice, to illustrate your answers.
- (c) Let  $x_{n+1} = x_n + y_n$  $y_{n+1} = y_n + k \sin x_{n+1}, n \in \mathbb{N}, (x_n, y_n) \in \mathbb{R}^2,$

be the (standard) map, where k > 0 is a parameter. Is this map invertible? Justify your answer. According to the Poincaré-Bendixson theorem, is chaos possible in this dynamical system?

(d) Let us consider a vector field on the unit square in the plane with periodic boundary conditions, where each vector has slope  $q \in \mathbb{R}$ . According to the Poincaré-Bendixson theorem, is chaos possible? Let us consider this vector field on a torus, i.e., by gluing together the left and right edges of the square, and likewise the top and bottom ones. Is chaos possible? (*hint: in case of trouble with this question the book by Alligood et al. might help*)

- 3. Cobweb plots and periodic orbits
  - (a) Consider the map  $C : \mathbb{R} \to \mathbb{R}$ ,  $x_{n+1} = C(x_n)$ ,  $n \in \mathbb{N}$  defined by the function  $C(x) = -x^2 + x + 2$ ,  $x \in \mathbb{R}$ . Calculate the set  $Per_2(C)$  of all period 2 points for this map. Draw the graph of C(x) and mark the positions of all period 2 points. Include cobweb plots for all period two orbits and illustrate the stability of the fixed points by cobweb plots.
  - (b) Draw a cobweb plot for a one-dimensional map of your choice showing a prime period three orbit and an eventually periodic orbit.
- 4. Rotation on the circle

Let  $S^1$  be the unit circle in the plane. Let denote a point in  $S^1$  by its angle  $\theta$  such that a point on the circle is determined by any angle of the form  $\theta + 2k\pi$  for an integer k. Now let  $R_{\lambda}(\theta) = \theta + 2\pi\lambda$  be a rotation on the circle. Show that if  $\lambda$  is rational then every  $\theta \in S^1$  is a periodic point. Prove by contradiction that there are no periodic points if  $\lambda$  is irrational.

## Model solutions will be on the course webpage starting from Thursday, October 25, 2007.