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index of Notation

(a) Miscellaneous

n a cyclic group of order n

p" an elementary abelian group of order p"

p1+2n an extraspecial group of order pl+2n
Do the dihedral group of order 2n

AL the alternating group of degree n

9, the symmetric group of degree n

A X B the direct product of A and B

Ak A X ... X A (k times)

A.B an extension of A by B

A:B a split extension of A by B

A'B a non-split extension of A by B

A wr B the wreath product of A and B
P(X,Y,...) the "subpresentation" involving X,¥,...
G(X,Y,...) the group presented by P(X,Y,...)
ncl(X,Y,...) the normal closure of (X, Yro0-?

/7 end of proof




(b) Simple groups of Lie type

The following symbols always denote simple groups:

Lo+p(a) = A, (q)
U pq(Q) = 2a_(q)
Opn+1(d) = Bp(a)
Son(d) = Ch(q)
Oy (a) = D,(q)
Oyn(a) = 2D (q)
G, (q)
2Eg (q)

(c) Sporadic simple groups

Mogr Moz, Myo, Myo, My the Mathieu groups
Coq,Co,y,Coq the Conway groups

Fijg: Fiz3, Figg the Fischer groups

Jir Jor I3 Jy the Janko groups

Suz the Suzuki group

McL the McLaughlin group

HS | the Higman-Sims group
O'N the O'Nan group
. Ru the Rudvalis group

Ly the Lyons group

M=F, the Fischer-Griess "Monster"
B=F, the "Baby Monster"

Th = Fq the Thompson group

HN = Fg the Harada-Norton group

X
(0]
[

b |
~

the Held group
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CHAPTER I

INTRODUCTION

In this thesis we give new presentations for a large
number of the sporadic simple groups. These presentations,
given by Coxeter graphs together with additional relations,
illustrate a great deal of subgroup structure and give
"pictures" for understanding these groups. Many of the

presentations appear to be very natural.

We give the first published presentations (known to the
author) for the Conway groups 2°Coy, Co,, and Cojz, the
Fischer groups Fi,a and FiZZ' the Suzuki group Suz, the
McLaughlin group McL, and the Higman-Sims group HS. We also
give new presentations for the Mathieu groups Mogr Myg, My,,

Mj,, and M;;, the Janko groups Jo and J;, and the Held group

He.

Also included are presentations for wvarious covering
groups and automorphism groups of these, and for related
finite groups. In fact, if a group G we present has a proper
covering group A.G, where |A| is odd, we usually give a
presentation for A.G; furthermore, our presentation can often
be used to prove that A is the odd part of the Schur
multiplier of G. We have thus verified some results about the

Schur multipliers of various simple groups. (We note that
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comput ing Scimr multipliers is often a delicate business.)

We also investigate generators and relations which hold
in groups for which we are unable to obtain a presentation.
For example, 1in Chapter Y, we investigate generators and
relations for the MONSTER group M, and we obtain
presentations for many dgroups related to M. We also give
conjectured presentations for M, the BABY MONSTER group B,
and 3°Fij;,s. This work uses S.P.Norton's "monogram" for M.
Monograms and “hemigfaﬁs" are described in Chapter S, where

we give a monogram and a hemigram for Co;.

In Chapter O we give a presentation for a group having
the O'Nan group O'N as an image. This is used to prove that
My, 1is a subgroup of O'N, a fact which was previously

unknown.

In an appendix we give two infinite seguences of
presentations for finite groups. One segquence is of
presentations for the alternating groups A, while the other

is of presentations for generalizations of the Weyl group of

Bp,-

The standard collection of presentations for discrete
groups is [9]. Presentations for simple groups of order up to
1,000,000 are given in [3] and [5]. For presentations of some
sporadic groups not covered here, see [1l0] for the Janko
group Jj, [11] for the Lyons group Ly, and [2] for the Janko

group J,. Presentations for simple groups are important tools
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,,,,,

for the identification of simple groups.
1. Fabulous Presentations

The form of our presentations was inspired by Conway's
definition of "fabulous" presentations, and the discovery by
Conway and Parker of the elegant fabulous presentation for J,
given in Proposition O0.1l. Fabulous presentations generalize
the presentations for Coxeter groups, and also the
presentations for complex reflection groups generated by

order 2 reflections (see [8]).

Definition Given a presentation

<ApB, s & a | Rl’_'SlpRZ:SZ’ s e -),
and a subset ({X,Y,...} of {A,B,...}, we define the
subpresentation P(X,Y,...) to be the presentation

those Ri=si such that both Ri and Si
< X,¥,... | >.
are words in X,Y,... only

We define G(X,Y,...) to be the group presented by P(X,Y,...).

Definition We inductively define the notion of a fabulous
presentation.

The presentation <A,B,... | > is fabulous.

Suppose that <A,B,... | Ry=S;/Ry=8,5,...> 1is a fabulous
presentation, and {X,Y¥,...} 1is a subset of {A,B,...}. 1If
G(X,Y,...) has an abelian normal subgroup N such that the

guotient by N is finite, and vw L is a word representing an
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element of N, then
<A,B,... | Rl=Sl,R2=SZ,..Q?V=W>

is a fabulous presentation. In this context, V=W 1is a

fabulous relation.

A group 1is called fabulous if it has a fabulous
presentation. The term fabulous is used because we Factor out
an ABelian group Under a Little (finite) group. Clearly, we
can use this process to factor out a finite soluble group

under a finite group.

Definition A Coxeter group is a group having a

presentation of the form

< X X 1=(%. %13 k.21 )
1reccr4n l "( i J) r ii~ -

Note that a Coxeter group is fabulous. We start with
Xjr...+Xy | >, and adjoin the fabulous relations l=X%, Then

we consider the subpresentations <X;,X, | l=X%=X2> (i#J).

J J
These present the infinite dihedral group, in which the
infinite cyclic group <X1Xj> is a normal subgroup. We may

K. .
therefore adjoin the fabulous relations 1=(X;Xy) 1J.

A zero generator fabulous group is trivial, and a one.
generator fabulous group is cyclic. We now show that a
non-cyclic finite fabulous group must be presented as a

guotient of a Coxeter group. This plainly follows from:
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Proposition I.1 Let G and H be non-trivial groups. Then
the free product G*H has a non-trivial abelian normal

subgroup if and only if |G| = |H| = 2.

Proof Throughout, g's and h's represent non-identity

elements of G and H respectively.

If |G| = |H| = 2, then G*H is the infinite dihedral group,
which has the infinite cyclic group <gh> as a normal

subgroup.

Now suppose (wlog) that |G|>2, and that G*H has an
abelian normal subgroup K, with 1 # k € K. We may take k to
be an element not in G or H, since neither G nor H is normal
in G*H. If k is of the form hg;h;gsh,..., then replace k by
k'. Now k cannot be of the form gihj...gphn0, for then kN =
kkD. Thus, we may assume that k is of the form glhl...gnhn.
Now let (1=#) g*g; (we can do this since |G|>2). Then k9k has
syllable length at most 4n while kkY has syllable length
4n+l, contradicting the assumption that K is an abelian

normal subgroup of G*H. //

Remark Not all groups generated by involutions are
fabulous. Consider G = l/Z(sz X sz) = (p X p):2, where p25
is a prime. Suppose we try to derive a fabulous presentation
for G. We are forced to start by specifying a set of
generating involutions, and the orders of pairwise products
of these involutions. These orders are always p. Thus, any

subpresentation of the presentation so far derived is for the
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trivial group, the cyclic group of order 2, sz, or for a
hyperbolic reflection group. But no hyperbolic reflection
group can be abelian-by-finile. (Such groups have exponential
growth, while abelian-by-finite groups have polynomial

growth.) //

Most of our presentations are fabulous; however, on

occasion we include an interesting non-fabulous presentation.
2. Notation

Our typical presentation is given as a presentation for a
Coxeter group, together with additional relations. The
presentation for the Coxeter group is given in the usual way
by a Coxeter graph: each node represents a generator A and
the relation 1=A2; if two generators A,B are unjoined then
AB=BA (eguivalently l=(AB)2); if they are Jjoined by an
unlabelled edge then l=(AB)3; and if joined by an edge with
label n then 1=(AB)". A presentation for a group G is usually
given with capital letters representing generators. We then
use the corresponding small letters for their images in a
homomorphic image of G. Relations enclosed in square

brackets are redundant.

We also make use of the bar convention for homomorphic
images, so that G is some image of G, and the image of X e G in
C is called X. (An image of a group always means a homomorphic

image of that group.)
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We use ATLAS notation (see [6]) for group names. Single
letter names are used for generically simple groups‘(with,
for example, Ly (4) and O§(3) denoting simple groups). Also:

n denotes the cyclic group of that order;

pl+2n denotes an extraspecial group of that order;

D, is the dihedral group of order 2n;

Ak denotes A X ... X A (k times).

2 group (of shape) A.B is an arbitrary extension of A by B;
that is, A is a normal subgroup and the guotient by A is B.
Furthermore, A:B is a split extension of A by B, and A°B is a

non-split extension of A by B.

As a consequence of this notation, we make statements
such as "the normal 22 = ..." to mean "the normal
four-group = ...". In this way, we often implicitly give a
presentation for G, by giving generators for the normal

- subgroup N of an extension N.G.

We also use ATLAS names for conjugacy classes, in which
elements of order n are labelled nA, nB, nC,... in descending

order of their centralizer orders.

For a group G, nch(X,Y,...) means the normal closure in
G of <X,Y,...>. We omit the subscript when there is no danger

of confusion.
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3. Coxeter groups

For the reader's convenience we list the finite Coxeter
groups. These are Jjust the finite real reflection groups,
which were enumerated by Coxeter in [7]. These groups have
faithful irreducible real representations, so if a finite
Coxeter group has a non-trivial centre, this centre has
order 2. For each finite Coxeter group C with a non-trivial
centre, the central involution is of the form wh/z, where

is the product (in any order) of the generating involutions

of C, and h is the Coxeter number of C.

In the following table, a Coxeter group C is given by its
Coxeter graph, followed by names for C, followed by a
generator of the centre of C if this is non-Lrivial. The
notation is as follows: we assume that a diagram containing
“...”" has n nodes, W(X) denotes the Weyl group of X, and 7 is

the product (in any order) of the nodes (generators) in the

Coxeter graph.
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The Finite Coxeter Groups

Coxeter Graph Group Name(s) Centre

’ N — . ¢ W(An) = Sn+l no centre if n22
—_ e W(B[) = W(C,) = 27:S Al
l ~ on—1. n-1
, —_—- e e - W(D,) = 2 S, T for n even (pn2y)

— 1 . s W(Eg) = U4(2),:2 no centre
. ] — — W(E;) = 2xSg(2) 2
— ] ——o—0 W(Eg) = 2°05(2):2 wid
—_— . W(F,) = 2174 (s5xs5) #®
— Dyr 7t/2 for r even
;_.5__4.———‘ ZXAS TI5
5 ‘ 2 (AgXAg):2 715
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Similarly there are the Euclidean Coxeter groups (see e.g.
[9]) which are of the shape ZM:.C, where C is a finite Coxeter
group having an n node Coxeter graph. These Euclidean Coxeter
groups can be used in fabulous presentations by adjoining a
relation which makes the normal subgroup of translations have
finite order. We have done little to investgate the use of
guotients of Euclidean Coxeter groups in fabulous

presentations, except for our work on the MONSTER monogram.
4. Some remarks on coset enumeration

Throughout this thesis we make use of computer coset
enumeration. Coset enumeration is a fundamental computational
group theory algorithm which is described in [1], [4], and
[9]. Coset enumeration would ultimately determine the index
of a subgroup H of a finitely presented group G when this
index is finite, but there can be no general bound on the time
or space required to do this. Thus, given a fixed amount of
time and space, a coset enumeration may fail to give an
answer, even when G is the trivial group! The design of a
coset enumerator can significantly change the time and space
(computer memory) required for a given enumeration (see [4]).
Coset enumeration is also used to produce permutation

generators of G on the cosets of H.

1 programmed a modified version of the enumerator
described in [4], using the FORTRAN language. One feature of
my enumerator, suggested by R.A.Parker, is to perform a

"lookahead” (see [4]) every time the number of cosets defined
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is twice the number defined after the last lookahead was
completed. The enumerator, together with a PASCAL program to
preprocess the input to the enumerator, and PASCAL programs
to calculate with permutations, were used to perform all the
computations described in this thesis. (Most of these
calculations were done on the Cambridge IBM 308l.) The
interested reader who has access to a coset enumerator (e.g.
through the group theory language CAYLEY) should be able to

verify most of my calculations.

The practical 1limit at present for computer coset
enumeration is in the order of 100,000's of cosets. The
largest number of cosets that I have enumerated is 196,560
(see Chapter L). My coset enumerator appears to work well
with virtual store, which is necessary for very large

enumerations.

5. On determining the group defined by a presentation

Finding a good presentation for a group G can be
difficult, but given a candidate P for a presentation for G,
we often use the following technigques to decide whether P

presents G.

Where possible, we use coset enumeration to determine an
upper bound n on the order of the group presented by P. Then
we try to'prove that the known group G, of order n, has

generators satisfying P.
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For the alternating groups and Mathieu groups we give
explicit permutation generators satisfying the appropriate
presentation. For many other groups we use theoretical
arguments, based on subgroup structure, to find generators

satisfying a given presentation.

For some groups we use the permutations resulting from a
coset enumeration to prove that the group presented is simple
of a given order, and then we can appeal to the
classification of finite simple groups. (For example, the
sporadic simple groups are characterized by their orders.) We

use the following standard technigue to show that some given

permutation group G is simple.

Suppose that G acts transitively and faithfully on O =
{1,...,n}, and let H = stabs(l). If G acts imprimitively on
1, then a union of orbits of H on N, including the orbit
{1}, is a non-trivial proper imprimitivity block. In the
cases we deal with, the orbit—lengthé of H on N will imply
that G is primitive. Thus, suppose that G is primitive on n,
and that N is a proper normal subgroup of G. Suppose N is
non-trivial. Then N is transiiive, and if H has trivial
intersection with N (e.g. if H is simple), then N is a regular
minimal normal subgroup of G. But if n is not the order of a
characterically simple group, we must conclude that N is

trivial, and so G is simple.
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6. On presentations of covering groups

The following propositions give some sufficient
conditions for N.G to be a guotient of a presented group,

when G is already known to be a gquotient of that group.

Proposition 1.2 Let C be the Coxeter group with

presentation
kij
< Xlr---rxn | l=(XlXj) ’ kll=l >,

and let G be a group generated by involutions Xyre--rXp.
Suppose that N is an odd order normal subgroup of G, and that

all but at most one of XyreoorX centralize N.

n

If G/N is an image of C by a homomorphism taking X; to
Nx,, then G is an image of C by a homomorphism taking X; to Xy

(i=1l,...,n).

Proof We show that the relations of C are satisfied by

the involutions XqyreoerXpy- Suppose not. Then for some i,7,
ki, Ky,

l=(Xin) J, pbut t=(xixj) J, 1#t € N. In the dihedral group

generated by involutions X;rXs, €t is inverted by both x; and

xj. Since t is of odd order, t # t_l, contradicting the

assumption that one of xi,xj must centralize N. //
Proposition 1.3 Let K be the group having the

presentation

< Xl,...,Xn | Rl'—‘sl,Rz'_-Sz,... >’

Page 13




and let K be an image of K, obtained by adjoining an

additional relation 1=W(§l,,m“,§n) to the presentation for K,
where l=W(Xl,...,Xn)p holds in K (p prime). Let G be a group
generated by elements Xir---1Xp which satisfy the

presentation for K, and let N be a normal subgroup of G, such

that p does not divide |N].

If G/N is an image of K by a homomorphism taking ii to

Nx;, then G is an image of K by a homomorphism taking ii to x,

1

(i=1l,...,n).

Proof Suppose not. Then t = W(Xqyr.-urxn), where 1l#t € N.
But then t would have order p, contradicting the assumption

that p does not divide |N|. //

We often apply Proposition 1.2, and then repeatedly apply
Proposition I.3 with p=2, to be able to assert that a group
"odd.G" is an image of some group X, given that G is an image

of X.

Now suppose that G has a proper covering group A.G (i.e.
A is central in A.G, and A is contained in (A.G)'); where |A]|
is odd. If G is a quotient of a group X presented by a Coxeter
graph together with additional relations which successively
kill elements of order 2, then A.G is an image of X. Moreover,
if the above X is a group of shape B.G, where B is central in
B.G, and |B| is odd, then B is the odd part of the Schur
multiplier of G. (Since X is generated by involutions, and so

has a commutator guotient of shape Zk, B is contained in X'.)
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CHAPTER M

THE MATHIEU GROUPS

1. Introduction and preliminaries

In this chapter we give presentations for M;;, 2°M;,,
2.M12:2 = Z.Aut(Mlz), 3'M22' 3°M22:2 = 3.Aut(M22), M23, and
M;,. The only other presentation of M,, of which the author
is aware is due to Todd [3]. Todd derives presentations for
Mll’ M12' and MZZ' M23, M24 by working up stabilizer chains,
and he uses many short relations. Our presentations use fewer
relations than Todd's do. The presentation for M,;, in
Proposition M.3 illustrates the maximal subgroups 24:A8,
M;,:2, and M,5, while the presentation for M,, in Proposition
M.4 is based on the maximal subgroup M;,:2. The reader who is

not familiar with the maximal subgroups of My, is referred to

[27.

We start with presentations for 24:3'A6 and 21+8:3'A7,
These presentations illustrate many relations wused in
defining 3°M,,, M;,, and My,3, and in Chapter L, 3°McL and

McL.
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Proposition M.1
(i) 2%:3°a; = (3 x 2%). 8¢ =

D
/\
< . , 1=(DAB)3=(ABC)°=(BCD)® »>.

A B 5 C

The central 3 = <(ABCD)8>; 2% = nci((cpa)d).

(ii) 23%8.3:a = 3. 00" oM A %

A B 5 C

A=(CE)2, B=(DE)3, 1=(DAB)3=(BCD)®, [1=(ABC)°] >.

The central 3 = <(ABCD)8> = <(BCDE)®> = <(CDE)1%>;
2% = nc1((BCDE)L12) # nc1((cDE)2l) = 25;

218 & neic(con)3).

Proof The following permutations satisfy the presentation

in (ii):

a = (12)(45)
b = (12)(34)
c = (14)(25)
d = (34)(56)
e = (12)(67).

n

We observe that <(a,b,c,d> A6, and <a,b,c,d,e> = Aq.
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The results of this proposition now follow from wvarious
coset enumerations, and computer calculations using the

resulting permutations. We omit the details. //
2. Presentations for the Mathieu groups
We start with presentations for Lo(ll), My, and 2°M;,.

Proposition M.2
(i) Lz(ll) =

< 5 . — , 1=(ABC)®, [1=(BCD)®] >.
A B c D :
(ii) My =
E
, 4
< 5 ,
A B C D

A=(CE)2, [1=(ABC)°=(BCD)®] >

(iii) (Ryba and Soicher) Z’Mlz =

' (1)

A=(CE)2, D=(BF)2, 1=(AFED)3 ».

The central 2 = <(BCEF)®>.

Proof The following permutations on

{m,O,l,2,3,4,5,6,7,8,9,X} satisfy the presentation in (iii):
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a = (08)(2X)(56)(79)
b= (08)(12)(37)(45)
c = (07)(14)(56)(89)
a = (68)(34)(57)(69)
e = (08)(14)(25) (6X)

f = («X)(06)(57)(89).

The containment of these permutations in M;, can be checked
on the MINIMOG (see [1l]) using the "modulo 11" labelling

given below:

0 3 = 2
5 9 8 X
4 1 6 7

It is easy to check that a,b,c,d,e (fixing «) generate M,,,

and a,b,c,d,e,f generate My,.

We consider the presentation in (i), and enumerate 11l
cosets of <(A,B,C> (= AS) in <A,B,C,D>. Then we consider the
presentation in (ii), and enumerate 12 cosets of <A,B,C,D> in
{A,B,C,D,E>. We remark that P(A,B,C,E) presents S, where
l=(ABC)5 is an implied relation. Results (i) and (ii) follow.
For (iii), we enumerate 24 cosets of <A,B,C,D,E> in
{A,B,C,D,E,F>, and calculate that BCEF has order 12, while

bcef has order 6. //

Remarks The triad {1,3,4} is fixed by <a,c,d,e,f>, and in
fact, <(a,c,d,e,f> = M9:S3, the triad stabilizer in MlZ'

Furthermore, P(A,C,D,E,F) in (1) is found to present Mg:S3.
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We can extend (1) to a presentation for 2“M12:2, by
adjoining an involution which preserves the symmetry of (1),
i.e. adjoin the generator T such that l=T2, AT=D, BT=C, and
ET=F. Note that T interchanges two M;;'s not conjugate in

{A,...,F)>, and similarly interchanges two Mg:S3's.
Now we give presentations for the large Mathieu groups.

Proposition M.3
(i) 3'M22 =

E
/\
< o g
A B 5 C

1=(EAB)3=(ABC)°=(BCE)5=(aECD)4, [1=(BCD)®] >.

r

D

The central 3 = <(ABCE)S>.
(ii) 3°M22:2 =
E
‘/5///\\\\\\
< . . :
A B 5C D

4
G

E=(BG)2, 1=(ABC)°=(AECD)%, [1=(EAB)3=(BCE)®] >.

The normal 3 = <(ABCE)S>.
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A B 5 C D

(iv) My, =

A=(CF)2, B=(EF)3, E=(BG)2, 1=(AECD)%*=(RCEF)%=(BAEFG)3 »>.

Proof Consider the following permutations in M;, (these
are given in MOG notation (see [l]): this MOG differs from

Curtis's original MOG by a left-right reflection).
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Now a,...,g satisfy the presentation in (iv).
The duad
X X . . . .
e v e e e (2)
is fixed pointwise by (a,b,c,d,e>, and setwise Dby

{a,b,c,d,e,g>. It follows that <a,b,c,d,e> = My,,, and
{a,b,c,d,e,g> = M22:2 (note the maximal Lz(ll) = {a,b,c,d> in
(a,b,c,d,e>). The results of Section I.6 show that 3°M,, is
an image of the group presented in (i), and 3°M;5,:2 is an
image of the group presented in (ii). Result (i) now follows
by enumerating 77 cosets of <A,B,C,E> '(s 3.24.A6) in

{A,B,C,D,E>. In (ii), the relation E=(BG)2 shows that BC=EB.

Thus G normalizes <A,B,C,D,E>, and result (ii) follows.
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Now ¢a,...,f> fixes just one point of the duad (2), and

thus <(a,...,f> = M23, To establish (iii), we enumerate 23
cosets of <A, ...,E> in <A,...,F> (the relation 1=(ABCE)® is
implied).

The group <a,...,g> is transitive, and so must be M,,.

Result (iv) follows easily by coset enumeration. //

Remark The octad

X X . . . .
X X . . . .
X X . . . .
X X . . .
is fixed by <a,b,c,e,f,g>, and it follows easily that

(a,b,c,e,f,g> = 24:A8, the octad stabilizer in M,,. Coset

enumeration shows that (in (iv)), G(A,B,C,E,F,G) = 24:A8.

We now give a concise presentation for Mj,, based on the

maximal subgroup M;,:2.

Proposition M.4

n

(i) In the presentation just below, G(A,B,C,D)
(3 x Lz(ll)):z, and G(A,B,C,D,E) = (3 X Mlz):z (in both of

these groups, the normal 3 = <(BCD)ll>).

. . . , A=(CD)°=(CDE)° >
A B C D E
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A=(cD)5=(cDE)®, F=(cDG)5, E=(BCF)3, 1=(aBF)3, [1=(BcD)L1] >.

Proof The following permutations (in MOG notation) generate

M,,, and satisfy the presentation in (ii):

X X X
IEREER
. RN
= e
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Moreover, a,b,c,d,e generate Mlzzz, stabilizing the

dodecad-pair:

It is now routine to prove (i) and (ii). We use coset

enumeration, and the facts that any subgroup of MlZ:Z of

index 144 is isomorphic to L2(ll):2 and that Moy cannot be
properly triply covered. //
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CHAPTER L

LEECH LATTICE GROUPS

1. Introduction

We now investigate various sublattice stabilizers in the
automorphism group of the Leech léttice. In particular, we
give presentations for:

the Conway groups 2°Co;, Co, and Cog,

the McLaughlin group McL (via its triple cover 3°McL),

the Higman-Sims group HS, and Aut(HS) = HS:2.

The Conway groups, McL, and HS are best described in
terms of the Leech lattice (see [1l] and [3]). The Leech
lattice is the unique 24-dimensional even unimodular lattice
which has no norm 2 vectors (see [2]). The automorphism group
of the Leech lattice is 2°Coq, which has order
8,315,553,613,086,720,000 = 222,32 5% 72.11.13.23. In this
group, the stabilizer of a norm 4 vector is Co,, of order

42,305,421,312,000 = 218 .36 53 7.11.23, and the stabilizer of

a norm 6 vector 1is Cog, of order 495,766,656,000
210 37 53 7.11.23 (by vector we mean Leech lattice vector).
The pointwise stabilizer of two norm 4 vectors which sum to a

norm 6 vector is McL, which has order 898,128,000

27.36.53.7.11, and the pointwise stabilizer of two norm 6

vectors which sum to a norm 4 vector is HS, which has order
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44,352,000 = 2°2.32.53 .7.11.
2. Presentations for HS and HS:2

Like M5, HS and McL can be constructed by extending an
Lz(ll) in MZZ to an Mll“ This is illustrated in the

presentations which follow.

Propostition L,.1 HS =

< v (1)

D=(BF)2=(FAE)3, 1=(EAB)3=(BCE)?,

[1=(ABC)=(BCD) =(AECD)%=(aBCE)8] ».
Proof We first remark that

W(Fg)/2 = <, . . .
F A E c D

D=(FAE)3, [1=(FAEC)®=(aECD)%] >

The other implied relation that is not immediately clear is
l=(ABCE)8. Let G be the group presented in (1), and let G =

G/ncl((ABCE)S). We enumerate 100 cosets of <A,B,C,D,E>
( = MZZ) in E, and calculate that <X,§,E,B,E> has
orbit-lengths 1,22,77 on these 100 points. The Higman-Sims
group is defined as the rank 3 group on 100 points, with pbint

stabilizer M22, and suborbit-lengths 1,22,77; therefore C =

HS. We then consider ¢, and enumerate 100 cosets of
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{A,B,C,D,E> in G. Since HS cannot be properly triply covered,
this means that (A,B,C,D,E) = M22’ not 3°M22. Therefore, G =

G = HS, and the proof of the propositibn is complete. //

A presentation for HS:2 is obtained by adjoining an
involution T to the presentation (1) above, such that T
centralizes <A,C,D,E,F>, and the relation E=(BT)2 holds. We
enumerate 100 cosets of <A,B,C,D,E,T> ( = M22:2) in
{A,B,C,D,E,F,T> to ensure that these relations do not imply a
collapse to the group of order 2. We remark that the
relations l=(EAB)3 and l=(BCE)5 are redundant in this

presentation for HS:2.

3. Presentations for 3°McL. and McL

It is remarkable that we find a presentation for 3°McL by
changing just one relation in our presentation for M,53 given

in Proposition M.3 (note also Proposition M.1).

Proposition L..2 3-McL =

E 6 F
/jy//m\\\\:>//\\x
{ & o ' (2)
A B 5 C D

A=(CF)2, B=(EF)3, 1=(EAB)3=(BCE)°=(AECD)%=(CcEF)?%1l,

[1=(ABC)°=(BCD)°>] »>.
The central 3 = <(CEF)7>.

Proof Let G be the group presented in (2), and let G =

G/ncl((CEF)7). We enumerate 2025 cosets of <A,B,C,D,E>
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( = M22) in G, and calculate that <{A,B,C,D,E> has
orbit-lengths 1,330,462,1232 on these 2025 points. It follows
“that G acts primitively on these pbints, and sinée 2025 1is
not the order of a characteristically simple group, G is

simple. Since McL is the unigue simple group of order

2025.IM22|, we conclude that G = McL.

Thus, McL is a guotient of G, and by applying the results
of Section 1.6, we see that 3°McL is a quotient of G. We
enumerate 2025 cosets of <A,B,C,D,E> in G to complete the

proof. //

Remark The only difference between our presentations for
Msyg and McL is that the relation l=(BCEF)4 of Proposition
M.3(iii) is replaced by l=(CEF)7. Moreover, in both of these

presentations, <A,B,C,E,F) = 24:A7.

4. A presentation for Co,

It is equally remarkable that a presentation for Co, can
be found simply by changing one relation in the presentation
for My, given in Proposition M.3(iv). We change l=(BCEF)4 to
l=(CEF)7, so that A,...,F now generate McL instead of M23. We

have:
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Proposition L..3 Coz =

A=(CF)2, B=(EF)3, E=(BG)2, 1=(AECD)%=(cEF)’=(BAEFG)® >.

Proof We ehumerate 47,104 cosets of <A,...,F> ( = McL) in
{A,...,G>, and calculate the orbit-lengths 1, 275, 2025,

7128, 15400, 22275 of <A,...,F> on these points. //

5. A presentation for Coj,

We construct Cogz by extending an M;; in a HS to M;, (see
Proposition M.2). The extending involution extends an Mj,, in

HS to McL, as illustrated below.

Proposition L..4 003 =

A=(CF)2, B=(EF)3, D=(BH)%=(HAE)3,

1=(EAB)3=(CBE) 5= (AHFD)3=(CEF)”’, [1=(BCFH)®] >.

Proof We enumerate 11,178 cosets of <A,B,C,D,E,H> ( = HS) in

(A,B,C,D,E,F,H>, and calculate the orbit-lengths 1, 352,
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1100, 4125, 5600 of <A,B,C,D,E,H> on these points. //

6. A presentation for 2°Coy

Theorem L..5 2‘Col =

(3)

A=(CF)2, B=(EF)3, D=(BH)2=(HAE)3, E=(BG)?,

1=(AHFD) 3= (CEF) '=(BAEFG)3 »>.

Proof We can construct 2-Coj; by extending a McL in Co, to a
Coz. Since Co,y and Coq contain just one class of McL each, and

Aut (McL) = McL:2 is a subgroup of C03, there must exist

involutions a,...,h generating 2‘Col, such that a,...:g
satisfy P(A,...,G), and a,b,c,d,e,f,h satisfy
P(A,B,C,D,E,F,H) (Coz = {a,...,g> and Cog = {a,b,c,d,e,f, hd>).

We now show that gh=hg, to prove that 2-Co; is an image of

the group presented in (3).

Let x be an involution in 2°Co; such that x centralizes
{a,e,c,d>, and e=(xb)2 holds (g and zg are such involutions,
where <(z)> = Z(2‘Col)). Now x extends <a,b,c,d,e> = My, to

My,:2. Since any My, in Coj; has trivial centralizer, we
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conclude that Nz.Col(a,b,c,d,e) = 2 X M22:2. Therefore x 1is
in M (say), one of the two M22:2's normalizing <a,b,c,d,e>.
We show that x is a uniquely determined‘element of M. Now x
normalizes <b,c,e> = Ag, and since any Ag in M22:2 has
trivial centralizer, we conclude that x is in a uniquely
determined 85 in M. In this SS' x centralizes <c,e> = S3; this
specifies x uniqguely in this Sg, and thus in M. We conclude

that x is one of g¢,zg.

Now <a,b,c,d,e,h> = HS has normalizer 2 X HS:2 in 2‘001,
and we conclude that g,zg are precisely the elements x in
2°Co, centralizing {a,e,c,d,h>, and satisfying e=(xb)2. (Note
that in (3), G(A,B,C,D,E,G,H) = HS:2.) This implies that g

commutes with h.

I used a VAX computer to enumerate 196,560 cosets of
<A,...,G> in <A,...,H>, to complete the proof. (This
enumeration took approximately 9 megabytes of (virtual) store
and 6 hours of CPU time. We note that the VAX is slower than

the IBM 3081 by a factor of about 10.) //
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CHAPTER S

THE SUZUKI SEQUENCE GROUPS, AND A

MONOGRAM AND A HEMIGRAM FOR Coy

l. Introduction

The remarkable Suzuki sequence of normalizers

inside

Conway's largest sporadic simple group Co; was discovered by

J.G.Thompson (see [1l]). The centralizer of a 3D-element in

Co, has shape Ag X 3. If we normalize a descending chain of

An's embedded naturally in this Ag, we obtain the Suzuki

sequence of normalizers:

NA- = (A,
NAg = (A
NAg = (Ag

NA, = (B,

X

X

JZ):Z

Go(4)):2

NA3 = 3-Suz:2

NAZ = Col.

(The NAk notation is due to R.A.Wilson.)

The main result of this chapter

is a very simple and

natural sequence of presentations which illustrates the

Suzuki sequence inside Coj -

The groups presented

in this
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sequence are: Sg, Sqr L3(2):2, U3(3):2, J2:2, 62(4):2,
3:Suz:2, a group having Co X2 as image, and then two groups

having Co; wr 2 as image.

Let P be a presentation for a group C; then P is called a
diagram for a group G, if G is an image of C. If C is of shape
H:2, and ¢ is an image of H, then P is called a monogram for
G. The term monogram was invented by S.P.Norton, and is used
because "a monogram is half a diagram". Our diagrams for
Co; wr 2 are monograms for Co;. In Chapter Y we investigate
relations that hold in the MONSTER by using Norton's monogram

for the MONSTER.

Also in this chapter, we derive another configuration of
Coj-involutions, and in the process obtain new presentations
for J2, G2(4), 3°Suz:2, and 32‘04(3):22. The diagrams for
these groups embed in a hemigram for Co; (a hemigram for G
presents a group of shape H:22, where G is an image of H).
Also embedded in this hemigram are monograms for J,, G,(4),
3°Suz:2, and Co;. At the end of this chapter, we give a

presentation for 3-Suz.

We make use of published information on the subgroup

structure of J, (see [2]), G,(4) (see [3]), Suz (see [4]),

and Co;y (see [5]).

Monograms and hemigrams often display more group
structure than an associated diagram; this will be

illustrated later in the chapter.
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Remark Any semi-direct product A:B of groups A and B
embeds naturally in A wr B by using the map ¢ defined below

(we assume that B is finite to avoid problems of definition).

In A:B, fix a normal A, and a complement B =
{by=1,b,,...,b,}. For aehA define ¢(a) € A" to be
'(abl,...,abn), and for b eB define ¢(b) to be the permutation
which takes (al,...,an) e A" to (aﬁ(l)"""aw(n))' where the
permutation 7 is defined by bb; = bn(i)' It is easy to check

that ¢ extends to an isomorphism of A:B into A wr B.

Now suppose that G is an image of A, with kernel K. Then
there is a natural homomorphic image of A:B in G wr B, i.e.

#(A:B) /(¢ (AINKY), where KD embeds in the obvious way in ah,

Thus, if P is a monogram for G, then it is a diagram for a
subgroup of ¢ wr 2, and if P is a hemigram for G, then P is a

diagram for a subgroup of G wr 22,
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2. A monogram for Cojy

Consider the presentation:

< 8

e PN & 8 Y

X10 X9 Xg X7 X5 X5 X4 X3 X X X

(1)

= 4 - 8
Xlo—(X7X8) ’ l—(X6X7X8X9) >
and let Gk = G(Xk,...,xlo). We now prove:

Theorem S.1

(1) Gg = Sg3
(ii) Gg = Sy
(iii) Gy = La(2):2

(iv) Gg = Ugz(3):2
(omitting the relation l=(X6X7X8X9)8 gives (3 X U3(3)):2)
(Vj Gg = Jy:2
(vi) G,y = G2(4):2
(vii) G3 = 3°Suz:2
the normal 3 = {(X3X,XXgX;XgX;XgXg) 13>

(viii) Coy X 2 is an image of G,

(ix) Col wr 2 is an image of Gl and of Gqg
Proof We first find involutions Xgr---1Xjg in Col which
SatleY P(X2, o e ,Xlo) .

Fix a 3D-element in Col, and let A be the Ag centralizing
this element. Now fix a labelling of the points {1,...,9} on

which A acts naturally, and define
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X = (1 2)(k+1 k+2) (2€k<7) .

Then xz,;.;yxk generate an Sk in A, and they satisfy

P(Xgy ... Xy) (2<k<7) .

Let NA, denote the Co;-normalizer of the Ay in A which
fixes all the points not in {1,...,k} (2€k<9). Let Xgr¥Xjg be
involutions in Coj; which generate the Sj, centralizing‘A, and
let xg be the involution which extends <(xg,X;5> to the S,
centralizing the Ag in NAg, such that xé'XQ'xlO satisfy

P(XS'XQ'XlD)‘ Now, for k=2,...,9, let
Hk = (Xk,...,x10>.

Observe that Hyp centralizes <x2,...,xk_2> = Sp_» (k24), and
Hy normalizes (123) if k=23; therefore Hy 1is contained in

NAk'NAk—l"“'NAZ' We have:

Hy € Lg(2):2
Hg € U3(3):2
Hg € J5:2

Hy < G2(4):2
Hg < 3°Suz:2

Hz < Col.

We will prove equality in all these cases by using the fact

that Hk is not contained in NAy 41 (k<8).

We now consider H- < L3(2):2. An element x of Hy is in the
outer half of this L3(2):2 if and only if x inverts (123),

which indeed Xq = (12)(89) does. In L3(2) there are two
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classes of maximal S,'s which are interchanged by the outer
automorphism. We conclude that Hy = <x7,x8,x9,xlo> = L3(2):2ﬂ,
‘Now X9Xg is in the outer half of H7, and so has order 2, 6, or
8. Since CH7(x7) ? Dy, and CH7(x10) = Dygr it follows that

l=(x'7x8)8, Xlo=(X7x8)4.

Now (i) and (ii) are well known results, and (iii) is

proved by coset enumeration.

Since L3(2):2 is maximal in 03(3):2, Hg = U3(3):2. Coset
enumeration is now used to prove (iv). Note that
l=(x6x7x8x9)8 must hold, for otherwise Hg would have a normal
subgroup of order 3. We have now shown that x,,...,Xjg

satisfy P(XZ""'XlO)‘

Since U3(3):2 is maximal in JZ:Z, and J2:2 is makimal in
G2(4):2, we have that He = J2:2 and Hg = 62(4):2. Since
G2(4):2 is maximal in Suz:2, and H3 is not (3 X 02(4)):2 (for
then Hq would be contained in NA,), we have that Hj = 3°Suz:2.
Results (v), (vi), and (vii) now follow by using coset

enumeration.

Since 3°-Suz:2 is maximal in Col, HZ = Col. Result (viii)

follows since the commutator quotient of G, has order 2.

We now give generators <§0,...,§10 of Col wr 2 which

satisfy P(XO,...,XlO). We take Co; wr 2 to be

2

<((x,y) € CoyxCoy, 7 | 1=7%, (x,y) =(¥,x)>.

Def ine
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(xi,xi) (102128)

(x;,%x;)7  (72i32)

»l
[
|

= ((123),(132))7

XO=T

The relations of (1) are easily checked, and so Coj wr 2 is
an image of G; and of Gg. Note that io = T is contained in

Kp,... X99>. //

Remark Since the central product of two 2°Coj;'s has a
diagonal subgroup isomorphic to Co;, it is easy to see that,

in fact, 2°(CoyxCoy):2 is an image of G, and of Gg.

Now Co, is an image of the commutator subgropp of Gy, and
we can clearly see the Suzuki sequence of normalizers by
looking at the intersections with Gj§ of certain subgroups of

GO. Let

Cx = G(XO,...,Xk_z,Xk,..,,Xlo)(1G6 (k>0)

Then Ck = NAk for k=4,5,...,9, and C3

i

(3 X 3-Suz):2.

Conjecture We conjecture that G,

n

Co;X2. We have checked
that G,/ncl((X3X,XsXgX,XgX,XgXg)!3) has order 2, which it
must have for this conjecture to be true. jje also remark that

if G, g Co,x2, then the central involution would be

13 3
((X3X4X5X6X7X8X7X8X9) XZ) .
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3. A hemigram for Coy

We start with a presentation which is only slightly

different from P(XG""'XlO) in (1).
Proposition S.2 2°(Sq x Jy) =

< 8 . , A=(cD)%, [1=(aBC)®] >. (2)
A B C , D E

The normal 6 = <(BCDE)10>; 2-8; = ncl(((BCDCD)E)3).

Proof We first show that J, is an 1image of G =

G¢(a,B,C,D,E) in (2).

It is easy to show that P(A,B,C,D) presents 3‘PGL2(9),
where l=(ABC)5 is an implied relation. We thus start with
involutions a,b,c,d in J2, generating N(3A) = 3‘PGL2(9), and
satifying P(A,B,C,D) in (2). There is a unique class of Ag in
3‘PGL2(9), and this Ag has Jz—centralizer By . Thus there
exists a 22 in J2 centralizing <a,b,c> = AS' We now remark
that C(a,b) = Ag; this Ag contains the 22 above and the
involution d. In any Ag, given a 22 subgroup V, and an
involution z not in V, then the product of z with precisely
one of the involutions in V has order 3. Thus there exists an
involution e in J,, such that e centralizes (a,b,c>, and
l=(de)3 holds. Since 3'PGL2(9) is maximal in Jj, and no
involution in 3'PGL2(9) centralizes an Ag therein, we

conclude that <(a,b,c,d,e> = J2, and that JZ is an image of G.
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Note that G/ncl(A,B,C) = 83; thus SSXJZ is an image of G.
Coset enumeration shows that |G| = lZ.IJZI, and we conclude
that G = 2'(S3xJ2) (the extension is non-split, for otherwise
¢ would have a 22 as a quotient). The other statements of this

proposition follow easily by calculation. //
Proposition S.3 Let G =

|
< 5 | 8

A B C D E

A=(cD)4, 1=(aBF)°=(aBCF)>, [1=(ABC)°] >,

= 513
and let H = ncl<A'B'C'D,E>(((BCDCD) E)Y).

Then H is normal in G, and G/H = G2(4),

Proof We enumerate 416 cosets of <A,B,C,D,E> in G, and
denote by G the permutation group image of G acting on these

416 points. We calculate that 1 = ((§€565)5§ % and that

{A,B,C,D,E> = J, has orbit-lengths 1,100,315 on the 416

points. The result follows. //

By continuing in an essentially routine manner, we can

prove:
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Theorem S.4 Let Cnm be the the group

G(A,B,Xl,...,xn,Yl,...,Ym) in the presentation below:

A

5
¢ ) 8 8

Ye Y, Yq Y, Y, B Xy Xy X3 Xq Xg

A=(X,X,)%=(¥,¥,)%, 1=(BX;X,%X5)10=(BY,¥,¥5)10,

1=(ABX,Y,)°=(ABX,) =(ABY)> >.

Also, let a = (BX,X,X1X,)°, 8 = (BY,Y,¥,¥,)°, o = (aX3)3, and

T = (BY3)3. Then:

Goo ® D1g
G20 &= 3'PGL2(9); normal 3

[l

<a>

G30 = J2 X 2; central 2 = (o>

Jy wr 2 is an image of G,q. Ggg

611 = 2%:2g = Myg

G21 = 3’L3(4):2; normal 3 = <{a>

G31 = G2(4) X 2; central 2 = (o>

02(4) wr 2 is an image of Ggyr Gg1

Gy, = 32-U,(3):2%; normal 32 = (e, 8>

Ggp = 3°8Suz:2 X 2; normal 6 = (8,07

((3°Suz x 3°Suz):2):2 is an image of G42, Ggoy
Col X 22 is an image of G33; central 22 = {0, T>
(Col wr 2) X 2 is an image of Gg3r Gg3i central 2 = {1

Coy wr 22 is an image of Ggqr CGgqr Cgg- //
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Finally, from Theorem $.4 it follows that 3°Suz =

F

< 4 “ 7
B C D E

G

A=(FG)2=(cD)4, 1=(aBCF)°®=(aBcc)>=((BCcDCD)’E)3 »,

in which the central 3 = <(BFG)>>.
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CHAPTER Y

ON NORTON'S MONSTROUS MONOGRAM

Recall the discussion of monograms in Chapter S: a
monogram for a group G is a presentation for a group H:2 such

that G is an image of H.

Several years ago, S.P.Norton discovered a monogram for
the MONSTER group M, of order

808017424794512875886459904961710757005754368000000000

= 246 320 59 96 332 133 17.19.23.29.31.41.47.59.71,
but this result has not yet been published. It is hoped that
details of this work will appear in a forthcoming article by

Conway, Norton, and me.

Norton proved that M wr 2 is a homomorphic image of the

Coxeter group defined on the next page.
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Fa

In this Coxeter group, define cpqr to be the group generated
by A and

the first p terms of By, Cy, Dy, Eq, Fy

the first g terms of B,, Cy, Dy, Ey, Fy

the first r terms of By, Cg, Dy, Eg, Fg3.
As is the usual practice, we shall use corresponding small
letters to denote the M wr 2-images of elements of Cggg. In
addition, we denote the M wr 2-image of C

r PY ¥ . Norton,

pPgq pgr
Conway and I have determined the structure of the qur' as
shown in the table of Section 3. (As will be seen later, Y4qr

= YSqr if g>1 and r>0.)

Page 49




1. Relations that hold in M wr 2

We are interested in determining relations which hold in
Yggg & M wr 2 in addition to the Coxeter relations of Cggg:

and in the implications of these relations.

Consider Y 5, = OE(Z):Z. In this group there is a unigue

involution centralizing 2 X 07(2) = Yg97- We conclude that
fl = central involution of Y321 = (ablb2b3clczdl)9.
Similarly, we have the six relations:

£; = (abjbsbycicyd;)? = £55 (say)  ({i,3,k}=(1,2,3})

ibj i¥3-i i

In particular, fij

=fik' which implies that l=[fij'ck]'
In C555 define the six involutions

ij Bkcichi)g ({i,3,k}={1,2,3}).

iBy
Coset enumeration shows that

where the central 3 is the image of <(ABlClABZCZAB3C3)lO>. in

0555 def ine
= 10
S (ABlClABZCZAB3C3) .

Now in Yg,, = 2 X 07(3), the image of 8 is the identity. Coset

enumeration proves that
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Further coset enumeration shows that

o .AT e D
= 2:05(3):2 = 2.Y,,,

(The central involution is the image of (F12E1)3.)

Let

Cqg = 0444/ncl(S), and

(In CF' the relation F;=F;.

4 is equivalent to F =F;y.)

The discussion so far shows that M wr 2 is an image of
both C; and Cg, and that Cr is an image of Cg. We now show
that Cg is an image of Cpr and so Cg = Cp. This gives some

evidence for our conjecture that Cqg =M wr 2.

In CS = -6444 (say) ., -F—ij?-Fik‘ Def ine

Fi =Fj45 (5Fix)-

Now F; commutes with all the generators of Cg commuting with

Fij or Fik' and so Fi commutes with all the images of the

(Coxeter graph) generators of Cghu,. except for Ei' Also, Fi

commutes with F., since Fj - Fji is a word in elements which

commute with F&.

We now show that 1 = (Elfl)3, and then by symmetry

1l = (EZFZ)B = (E3F3)3. Coset enumeration shows that
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wherein the image of (F12E1)3 is the identity. We conclude

that 1 = (E;F;)%, from which follows the result that Cg = Cp.

2. The table of qur

We have performed further coset enumerations to determine

presentations for many of the Y and for certain covering

pgr
groups of them. In the table which follows, the "relations”
column gives relations that complete (or conjecturally
complete (indicated by "?")) the Coxeter relations of the
relevant Cpqr to a presentation for the appropriate group.
The. "centre"™ column gives generators for the centre of the

group, and we name elements by their preimages in Cpqr° This

table also appears in the ATLAS of Finite Groups [1].

First, define the words

P = (AB{B,B3C;D{E F;)’
Q = (Fy,E;)% or (ABB,B,C;C,DE;)1®
R = [Fy5,Dy] or [Fyy:Dq]
S = (AB;C1AB,C,AB,C;y) 0
’ T = (AB;C;B,C,B3C3) 18
U

i = FljFlk or [Flj,Ck] or [Flk,Cj] N

Then:

Page 52




Group Structure Relations Centre

Yrno Smen+2 none

Y91 23:54 none (ABlB2B3)3
Yo11 24:85 none

Yaq1 2%:s, none (AB{B,B3C;D;)°>
Yaq11 26:87 none

Yeq: 285, p=1

Y501 05(2):2 = 0g(3):2 none

Yg,1 0,(2) x 2 none Fi,

Y451 0g(2):2 Q=1

Y331 22.20.0,(2) R=1 Fipr Fpq
Yya1 0g(2) x 2 =1 Foq

Yaa1 010(2):2 =1

Yy,5 3%:0¢(3):2 s=1

Y3,, 04(3) x 2 s=1 Fi,

Y00 0g(3):2 Q=8=1

Y332 22.Figy S=1 - Fiar Fpy
Yyao 2 X Fiyg s=1 Fyq

Yaao 3'Fip, = 3-Fij,:2  S=1 2

Y333 23.2E;(2) s=1 ? Fi,r Fpgr Fgq
Y433 22.B s=1 2 Fyyr Fgq
Yg43 2 x M s=1 2 F31

Yaaq Mwr 2 S=17?

(continued on next page)
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Group Structure
2.¥51) 2':8g

2.Y,,7 2°0§(2):2
3.Y¥,,, 3%:05(3):2
3.¥355, 3°04(3) x 2
2.¥4,, 2°0g(3):2
3.¥35, (2% x 3).Fi,,
3.¥5353 (23 x 3).%E.(2)

3. The projective plane

Relations Centre
none P

none Q

T=1 S

U;=1 Fio¢ 8

S=1 Q

U1=U2=l FlZ' FZl' S

Fi2r Fp3r F33. 3

Norton showed that redundant generators can be added to

Yggg to obtain a Coxeter graph of 26 nodes a, z;, a;. bij, ¢y
d;., e;r £y, g3, £ (i = 1,2,3) in which the joins are from

a to by, bj, bk,’f z; to aj, Cyr Cxr €

aj to Zi bi' fj, fk bi to a , ajr Cjr 9y

cy to zj, Zyr bi' di di to Cir €5 gj, 9k

ey to Zi di' fi' £ fi to aj, ay: €jr 94

g; to by, dj, Ay, £ £ toa, ey, ej, ey
where {i,j,k} = {1,2,3}. Abstractly, this is the incidence
graph of the 13 ©points (Zi'bi'di'fi'f) and 13 lines
(a,ai,ci,ei,gi) of the projective plane of order 3. (The
notation for the 26 nodes 1is due to Conway.) Norton's
construction of the 26 node graph shows that all

automorphisms of the graph (i.e.

actually in M wr 2.

elements of L3(3):2) are
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The ATLAS [1,pp.232-233] reports on further work by
Conway, Norton, and me to determine groups generated by
‘subsets of the 26 nodes, and also to find presentations for

these groups.

- For example, we have shown that 2 X 22‘U6(2) =

where the central 23 = ((AjA,A3B{B,F F3)°, (A;A,BF F,F3)°,

5
(A1A;B,FF,Fg) ">,
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CHAPTER O

THE O'NAN GROUP

l. Introduction

The O'Nan sporadic simple group O'N of order
460,815,505,920 = 22.3%.5.73.11.19.31 has, until recently,
been a relatively unknown group. In this chapter we derive a
concise presentation of a group having the triple cover 3°0'N
as a homomorphic image. This presentation illuminateé the
internal structure of O'N, and in particular provides a proof
that M;; is a subgroup. We then expand this presentation so
that an outer automorphism of 3°0O'N is a symmetry of the
presentation, and we find an expression for a generator of
the centre of 3°0'N. We then obtain a presentation for a
group having 3°0'N:2 as an image, and from that we derive a

presentation for a group of shape 12°Ly(4):2.

Since this work was done it has been proved [3] that 3°0'N
has a 45-dimensional F7—tepresentation. This representation
is built in terms of "My, coordinates", and our presentation

(2) is used as a conceptual tool in this construction.

2. A Presentation for Jl
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Given that O'N contains a J; centralizing an outer
involution (see [1] and [2]), it can be shown by hand that
there is a unigue class of J; in O'N, and that J; is a maximal

subgroup of O'N (see [4]). We now give a presentation for J;.
Proposition 0.1 (Conway and Parker) J =

< o 5 ., (1)
A B C . D E

A=(CDE)®, 1=(aBC)5, [1=(BCD)®] >

Proof J, can be constructed by extending an Ag in L, (11)
to 2xA5. Thus there exist involutions a,b,c,d,e generating Jl
such that a,b,c,d satisfy P(A,B,C,D), and a,b,c,e satisfy
P(A,B,C,E). Thus, to show that Jq is a homomorphic image of
the group presented in (1), we need to show that l=(de)5 and
a=(cde)5. There is one class of 3-elements in Jqr and CJl(3)
= 3XD10. Thus involutions d and e (centralizing ab) are in a
Dyg and so l=(de)5. From the Coxeter graph relations
satisfied by c,d,e, it follows that <c,d,e> is a quotient of

2XA5. Furthermore, since DlO € <c,d,e>, we see that (c,d,e> =

n

Ag or 2xA5. If <{c,d,e> 2xA5 then its central involution is
(cde)5. If <c,d,e> = Ag then l=(cde)5; but then a coset
enumeration would show that <a,b,c,d,e> = 1, a contradiction.
Now the centralizer of an involution in J; is 2XAg, and
{c,d,e> centralizes a; therefore a=(cde)5. The result now

follows by enumerating the 266 cosets of <A,B,C,D> in

<A,B,C,D,E>. //
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3. The main results
We first prove a little lemma about Ag.

Lemma 0.2 Let V = <x,y> be a four-group, and z be an
involution, both contained in an’AS. If {x,2> = DlO then

V,2) = AS‘

Proof Ag contains just two classes of four-groups, and
these classes are interchanged by an automorphism ex-
tending Ag to PGL2(9). Thus, we may assume that V fixes two
points in a degree 6 permutation representation of the Ag.
But <{x,z> = DlO must fix one of these two points, and so (V,Z>

4 Ag. //

We now prove:

Theorem 0.3 3°0O'N is a homomorphic image of

F
4/\
< e — > .. (2)

A B Cc D E

A=(CF)2=(CDE)®, 1=(DEF)®, [1=(ABC)®=(BCD)°] >.

Proof We show that O'N is an image. It then follows from

Section I.6 that 3°0O'N is an image.

In (2), A,B,C,D,E satisfy a presentation for Jl' Now Jl is
a maximal subgroup of O'N, so we may assume there are

involutions a,b,c,d,e in O'N satisfying P(A,B,C,D,E). From
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Wilson's analysis of Ag's in O'N (see [4]) it follows that a
2XAg in a J; may be extended to a 2XSg in O'N. Thus <a,b,c>
extends to an 85 commuting with e, and so (as Aut(As) = SS)
there must exist an involution f in O'N having the required
relations with a,b,c,e (P(A,B,C,F) presents Sg, wWhere the

relation 1=(ABC)® is implied).

In O'N there is one class of 3-elements, and Con(3) =
32xA6. Since all involutions in 32xA6 are in the Ag, we
conclude that d,e,f (centralizing ab) are in an Aﬁ. From
Lemma 0.2 we see that, in fact, <d,e,f) = AS' It follows that

df has order n = 3 or 5. The order n=3 is the desired
result, and in this case, since {d,e,f> = A5, we must have
l=(def)5. If n=5 we replace £ by f' = ef which satisfies the

equivalent relations that f does with a,b,c,e. But in <d,e,f>

= A5, if df has order 5, then Af' has order 3. //

Corollary 0.4 Mll € O'N.

Proof We have exhibited involutions a,b,c,d,f in O'N

satisfying a presentation for Myq. //

This result has been used in Wilson's enumeration [4] of
the maximal subgroups of O'N. In fact, Wilson deduces that
there are two classes of (maximal) Mll in O'N, and that these
are interchanged by the outer automorphism. Note that we have
used Wilson's analysis of Jl's and A5's in O'N. This analy-

sis 1s independent of our results, and also independent

of the results of [3].
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Now let a,b,c,d,e,f be involutions in 3°0'N satisfying the
presentation (2), and let h be an outer involution in 3°0'N:2
centralizing <a,b,c,d,e> = J;. We are interested in
determining relations involving g = fN. since h is an
automorphism of <a,...,f>, and h fixes <(a,...,e>, the
relations of fh with a,b,c,d,e must be equivalent to those of
f; in particular fh centralizes <a,b,e>. Now the centralizer
of a non-central 3-element in 3°O'N is 3 X 3'A6 (see [2]). It
follows that <d,e,f,fh> = 3‘A6. There is one class of
involutions in 3'Ag and the centralizer of an involution
therein is 3xDg. It follows that 1=(f££fP)% and e=(££P)?. The
central 3 in the 3‘A6 and hence in the 3°0'N is (dffh)s° We

have thus proved the following:

Theorem 0.5 3°0O'N is a image of

' (3)

A= (CF)?=(Cce)?=(CcDE)°, E=(FG&)2, 1=[C,(DF8)°1],

[1=(DEF)°=(DEG)°1 ).

Page 61




Equivalently, 3°0'N:2 is an image of

4

< > > ' (4)
A B c D E

A=(CF)2=(CDE)®, E=(FH)%, 1=[C, (DFHFH)®],

[1=(DEF)°] >. //

Let X be the group presented in (3). A coset enumeration
shows that <A,...,F> has index 1 in X; therefore X is a

guotient of the group presented in (2).

Now let X = X/((DFG)5> ((DFG)5 is clearly central in X).

We have that X = 3°O0'N if and only if X = O'N. I have
recently made an attempt to prove that X = O'N. Using the

representation of 3°0O'N described in [3], I verified that if

X = O'N, then Lg(7):2 = L = <A,B,E,F,G, EDEFDEDE,

CFDEDEDGDC>. However, an attempted coset enumeration of L in
X, in which space was allowed for 300,000 cosets to be
defined, ran out of space instead of giving the hoped-for

index of 122,760.

4. A presentation for 12‘L3(4):2

As a bonus we have the following:
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Proposition 0.6 12“L3(4):2 (€ 3°0'N:2) is isomorphic to

AN
8 L N 5 ., (5)

(CF)2=(CDE)®, E=(FH)%, 1=[C, (DFHFH)®], [1=(DEF)°] >.

The normal 12 = <(DFHFH)5(CDEF)5>. The quotient group of
shape L3(4):2 is L3(4) extended by the transpose-inverse
automorphism. (This is the automorphism 23 in the ATLAS

notation.)

Proof Let a,c,d,e,f,h be involutions in 3°0'N:2 satisfying
P(A,C,D,E,F,H) in (4). Then <c,d,e,f,hd < Ci.gn:2(a) =
12°Ly(4).22.

Let g = £h, By abelianizing the relations in (8) satisfied
by c,d,e,f,g, we see that <(c,d,e,f,g> is perfect, and hence a
subgroup of 12°L3(4). Since (d,e,f,g> = 3°Ag, and any Ag in
L3(4) is maximal, we have that <{c,d,e,f,g> = 12‘L3(4). Now h
extends <(d,e,f,g> to 3°PGL,(9), and h commutes with c¢. It

follows that <c,d,e,f,h> = 12°L,(4):2.

Let X be the group defined by (5). Coset enumerations show
that [X| < 12.|L3(4)|.2 and that <(CDEF)5> is a normal

subgroup of X of order 4. The result follows. //
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CHAPTER H

THE HELD GROUP

1. Introduction

The Held sporadic simple group, He, of order
4,030,387,200 = 210 .33 52 73 17, was first constructed by
G.Higman and J.McKay. To accomplish this, Higman derived a
presentation for Aut(He) = He:2, based on the (then
conjectured) subgroup S4(4):4 of index 2058 (see [3]). Cannon
and Havas [2] used the Reidemeister-Schreier process to
obtain a presentation for He from Higman's presentation for

He:2.

In this chapter we give a new concise presentation for
He:2. This presentation illustrates the subgroups C(2A) =
22°L3(4):2% and N(3A) = C(2C) = 2 x 3°S,. (Throughout this
chapter, C(X) and N(X) mean cHe:Z(X) and NHe:z(X),
respectively.) We then immediately derive a presentation for

He from our presentation for He:2.

We make use of the information on the subgroup structure

of He given in [1].

2. A presentation for 22°L3(4):23
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Up to isomorphism, there is a unigue group T (say) of
shape 22‘L3(4):23, where the subgroup of shape 22‘L3(4) is
perfect (L3(4):23 is the ATLAS notation for L3(4) extended by
the transpose-inverse automorphism). We now derive a

presentation for T € C(2A).
It follows from Proposition 0.6 that 3-L,;(4):25 =
E

<2 | 8 ., a=(cD)%4, 1=(aBE)5=(aBCE)S 3.
A c D

2
By substituting g(BA) for B, ACE for C, and leaving A, D, and

E as above, it follows straightforwardly that 3‘L3(4):23 =

E
5

®

. , A=(cD)%4, 1=(aBE)%=(BCE)® >,
c D | |

in which the normal 3 = <(EBCDCD)4>, It is then easy to show
that T = 22°Ly(4):25 =

E
10

8

< . o 4 ’
Z A B C D

2=(BE)°, A=(cD)%, 1=(aBE)S=(EBCDCD)4 .

The normal 22 = <Z,(BCE)5>.
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3. Pregentations for He:2 and He

We now derive a presentation for He:Z2.

Proposition H.1 He:2 =

< . 4 10 ' R 8 . s (1)

A B C D F G

a=(cD)5, E=(aBC)3=(Fc)4, 1=(cDFeFe)?, [1=(CDE)°] >.

Proof We start with involutions a,¢,d,e,f,g in He:2,
generating 22'L3(4):23, and satisfying P(A,C,D,E,F,G) in (1).
We shall show that C(d,e,f,g) = D8' in which a is not

central, and then we will extend <(a) to this D8.

Now PGL2(7) & <d,e,f,g> = P (say), and let L be the
subgroup L2(7) of P. Then P € N(L.) = SXPy, where S, = S € He,
and Pl & PGL2(7). It follows that S contains 'C(P) = Sy Dg, or
22. Let V be the unigue non-normal 22 in s containing a. From
the 2-local structure of He, we see that V = OZ(C(a)). If C(P)
= S, or 22, then C(P) contains V; but since g is a
23-involution in C(a), g interchanges the two involutions
other than a in V. Therefore V is not contained in C(P), and

so C(P) = Dg in which a is not central.

Thus there exists an involution b in He such that ab
has order 4, and b centralizes <d,e,f,g>. Now a,b,c,d,e are
in the 3°S-5 in He centralizing g. By simple calculations in

S+, we see that the relations 1=(bc)3 and e=(abc)3 are forced
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to hold in the 3°84, and that a,b,c,d,e must generate 3:54.
Since 3‘S7 is maximal in He, it follows that <a,...,f> = He,
and <a,...,g> = He:2. Since we have shown that &ypeearg
satisfy the presentation (1), He:2 is an image of the group

presented in (1).

By coset enumeration, we see that P(A,B,C,D,E) in (1)
presents 3°S-, and that the relations l=(CDE)5 and C(AB)2=AEC
are implied. We conclude that (AB)2 normalizes <A,C,D,E,F,G>,
and that <A,C,D,E,F,G,(AB)%> = 22-L,(4):22. The proposition
follows by enumerating 24,990 cosets of <A,C,D,E,F,G,(AB)2>
in <A,...,G>. //

Corollary H.2 He =

A B c D

< 4 10 4, (2)

G

a=(cD)®, E=(aBC)3=(re)2, 1=(cDFe)4, [1=(CDE)®] >.

Proof Let X be the group presented in (2). It follows
that the group presented in (1) is of shape X:2. But the group

presented in (1) is He:2. //

We remark that the proof of Proposition H.1 could be used
to derive a new proof of the existence and uniqueness of He,
and that this proof would not depend on the existence of a

subgroup sq(u> of He.
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APPENDIX

SOME INFINITE SEQUENCES OF PRESENTATIONS

FOR FINITE GROUPS

1. Introduction

In this appendix we give three infinite sequences of

presentations.
The first is a sequence of presentations for:
AS' 3.A6' 3.A7, AB’ Ag, e o o p Ar]' @ o e -

These are the first presentations (known to the author) which
present A, in terms of generating involutions. By applying
the results of Section 1.6, these presentations yield a new
proof that the odd part of the Schur multiplier of A, (n25) is
trivial, wunless n =6 or 7, in which case it is 3. A
presentation for A, in terms of generating 3-cycles can be

found in [1].

The second sequence of presentations gives a
generalization of the Weyl group of B,- Usually, the Weyl
group of By, W(B,), is thought of in terms of its shape 2M:S_.
Instead, we consider its shape to be Zn'l;(gn x 7). We then
extend W(B,,;) in a natural way to give presentations for

groups of shape 2™™.(8,,7 X S;,7)-

Page 70




We conjecture that the third sequence of presentations is

for the groups Zn:Ln(Z) (nz2). This has been verified for n

up to 7.

2. Presentations for the alternating groups

It is well-known that

Ag = < N , 1=(ABC)® ».

(o

A B Cc

It is easy to show that

A=(CE)2, B=(DE)3, 1=(cDa)3=(DaB)> »>.
(In both cases the central 3 = <(ABCD)4>.)

We now prove:

Theorem A.l Let n > 8, and let G, be G(Xqy,...,X._5) 1in
e e n 1 n-2

the presentation below.
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4 4a_-%_ 4 ..
< s
X1 X5 X3 | (1)
- 3 g o 2_ 2_ 2.
XZ—(X4X5) I3 Xl—(X3X5) —(X3X6) —(X3X7) =.... .

Then G, = A,. (The relations 1 = (X3%,X;)3 = (X,%;X,)3 =

(X1X2X3X4)4 are implied.)

Proof The following permutations generate A, and satisfy

P(Xlro--rxn_z) (n>8):

X3 = (1 2)(4 5)
X, = (1 2)(3 4)
x3 = (1 4)(2 5)

(3 4)(5 6)

= (1 2)(k+1 k+2) (k=5,6,...,n-2).

"
k)
I

A coset enumeration shows that <Xl,X2,X3,X5> (= SS) has

index 168 in G8, and so G8 =] A8.

Now consider the following elements C; of G.:

c, =1

Ck = Cx41¥k-1  (k=n-1,n-2,...,5)
Cq = CgXq

C3 = CgX1X,

C, = CgXj

Cy = CgXgX;.

(In the image A, of G,, h ' = i.) Define the coset H; to be
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<Xl'°“'Xn—3>Cif We assume inductively that Gn—l = An—l' and
show that G, acts on {H;,...,Hy} by right multiplication

(n>9).

It is easy to see that Xn»Z interchanges Hn and Hn—l'

fixes Hn-Z’Hn—B""'HS' and interchanges Hz and Hl.

Now let X be in {Xy,...+X 3}, and 1¢1 {n-1.

Then X fixes H_, and from the inductive hypothesis

nl
CiX = Xn_p T Xn_2Cy

for some T in <Xl"°"xn-4>' and 1<j<n-1l. But Xn—z normalizes

<Xl,...,Xn_4>, and so

1. A generalization of the Weyl group of B,

Let Bym (n,m 2 1) be G(Xl’°°”Xn'Yl'°“'Ym) in the

presentation below:

e & o o ye & i e o o o

Xg X3 Xy Xy Yy Y, Y3 Yy

. (2)

and BZZ = W(F4)/centre.

Note that Bnm = B __, Bn—l,l = W(Bn),

nm
Theorem A.2 Bnm has shape 2 ‘(Sn+l X Sm+l)‘

Outline of Proof We first define a permutation group P,

whose generators satisfy (2), and show that anml z
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2MM(n+1)t (m+l)!. Next, we show that nelp  ((X,¥7)?%) is
nm
a subgroup of 2 This completes the proof as it is clear

x S

_ 2. ~ .
from (2) that Bnm/lncl((Xin) ) = bn+l

m+1l°’

Proof Consider the set

n={(s,3) | 8&{1,2,...,n+l}, 1<j<m+l, |S| odd iff j=1},

and let P, acting on 0 (by .) be generated by involutions

Xyr---1Xpr Yir---+¥q defined by:

(s,3).x; = (s(1 1) 4
(the action on sets is the natural one);
(8:3).y; = (5,302 YD)y if 31 or j#1,2,
(S+{l},j(l 2)) otherwise

(+ is symmetric difference).

It is straightforward to show that these generators satisfy

(2).

2n+l:S

Now P,y 1s of the shape nt+lr @and we assume

inductively that

|P > 2n(Mm=1) (ni1yimr (myl).

n,m—-—ll

In Pour H = <Xy,...0Xg:¥Yyr---1¥p-1> 18 a subgroup of
stab( ({}/,m+l) ), and H acts on {(S,j) € 0 | j<mtl} as

P

n,m-1° Since Pnm is transitive on N, it follows that
1Ph ! 2 1P qopl20(mel) > 2P (n+l) 1 (med) .
In Bnm let
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<o X5¥5. .

X Y.
24 = ((X,¥7)2)72 I (i=1,...,n, 3=1,....m),

1]

where a product of the form A,...Ay is to be interpreted as
the identity. From properties of W(B,), and since X; commutes

with Y, unless i=j=1, we see that <Xl,...,Xn> normalizes

J
<le,...,2nj> (3=1,...,m),
and <¥y,...,¥ > normalizes
Ziqr---r24y (i=1,...,n).

2
Thus ncl X.Y =
B ((X7Y7)%)

<zij | 1<ign, 1Ljsmd> = T (say).

We show that Tnm is abelian, and since Tnm is generated by nm
involutions, it is a subgroup of 2™. We may assume that

n,m22.

A simple calculation in Byy = W(F4)/centre = Pyoy shows
that T22 is abelian. We assume that Tn,m-l is abelian for a
fixed n, and m23, and show that Thm is abelian. This proves
that T2 m = Tm 2 (m22) is abelian, and then this shows that

T is abelian for n,m22.

nm
Thus consider Bnm (m23), and assume that Tn,m—l is
abelian. Then
{Z;, | 1€i<n, 1<j<m-1>

1]

is abelian, and it is also easy to see that
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<Zij | 1<€i<n, l<j<m, j#m-1>

is abelian. Now let U,V be in ‘{Zi,m~2 | 1l<ig<n}, and let
A=Ym_l and B=Ym. We need only to show that UA commutes with

vAB to complete the proof. We have:

AUABAVAB = AUBABVAB = ABUAVBAB = ABU(AVA)BA

AB (AVA)UBA (by inductive hypothesis)

BABVAUBA = BAVBABUA = BAVABAUA . //

4. Presentations for Zn:Ln(Z) ?

Let G, be G(X;,...,X,41) in the presentation below:

X

1=(X1X2X,) = (X, X2X,Xc)® >
1X3¥y 2X3%,X5

Conjecture We conjecture that for n 2 2, G

n

n,
n 2":L,(2),
and L,(2) is obtained by adjoining the relation l=(XlX3X2)2

if n=2, 1=(XX3X,X,Xe. .. X, 1)" if n > 2. We have performed

coset enumerations which verify this for n € 7.
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