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Abstract. Let T be the angle-doubling map on the circle T, and consider the 1-
parameter family of piecewise-linear cosine functions fθ : T→ R, defined by fθ(x) =
1 − 4dT(x, θ). We identify the maximizing T -invariant measures for this family: for
each θ the fθ-maximizing measure is unique and Sturmian (i.e. with support contained
in some closed semi-circle). For rational p/q, we give an explicit formula for the set
of functions in the family whose maximizing measure is the Sturmian measure of
rotation number p/q. This allows us to analyse the variation with θ of the maximum
ergodic average for fθ.

1. Introduction

For T : X → X a continuous map on a compact metric space X, let M denote
the (weak-∗ compact) set of T -invariant Borel probability measures on X. Given a
continuous function f : X → R, a measure µ ∈M is said to be maximizing for f if

∫
f dµ = max

m∈M

∫
f dm ,

i.e. if µ attains the largest possible ergodic average for f .
This ergodic optimization problem, concerning the maximizing measure(s) (and

corresponding maximum ergodic average) for a given triple (X, T, f), has been the
focus of considerable recent attention (see e.g. [29] for an overview). Most of this work
has concerned theoretical aspects of the subject, including abstract information on the
nature of maximizing measures [8, 10, 11, 13, 19, 30, 36, 37, 39, 40, 41, 42, 44,
47, 48, 49, 51], approximation of maximizing measures [9, 15, 18], connections with
thermodynamic formalism [12, 17, 27, 28, 33, 35, 38, 46], and connections with
partial orders on M [2, 31, 32, 34].

Comparatively little work has focused on the concrete problem of precisely iden-
tifying the maximizing measure(s) for specific triples (X, T, f). One reason for the
relative lack of progress in this area stems from the intrinsic difficulty of the problem:
for interesting T (e.g. hyperbolic maps) the set M is large (an infinite-dimensional
simplex), and the bona fide maximizing measure(s) can be approximated arbitrarily
well by ‘almost maximizing’ measures, thus complicating the task of identifying (even
conjecturally) the maximizing measure(s).

Nevertheless, much of the initial impetus behind the development of ergodic opti-
mization revolved around specific choices of (X, T ), in particular the archetypal hyper-
bolic map T (x) = 2x (mod 1) on the circle X = T = R/Z. For this choice of (X, T ),
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maximizing measures for various functions f were identified1, notably f(x) = ± cos 2πx
and f(x) = sin 2πx in [20], and the more general cosine family gθ(x) = cos 2π(x − θ)
in [24, 25, 26]. The maximizing measures for the family (gθ)θ∈T turned out (see
[7, 25, 26, 27]) to be a certain 1-parameter family of ×2-invariant measures known
as Sturmian.

One definition of Sturmian measures is that they are precisely the invariant prob-
ability measures whose support is contained in a closed semi-circle (each closed semi-
circle is known to support a unique invariant probability measure, see [16, 22, 50]).
Another characterization is that these supports are precisely the non-empty minimal
compact T -invariant sets on which the dynamics is combinatorially equivalent to a rota-
tion (i.e. the restriction of T to this support can be extended to a monotone continuous
self-map of T). In particular, each Sturmian measure has a well-defined rotation num-
ber % ∈ T, and conversely, for each % ∈ T there is precisely one Sturmian measure,
denoted S%, of rotation number %. The support of S% is a periodic orbit Op/q if % = p/q
is rational, and a Cantor set of zero Hausdorff dimension if % is irrational. For ex-
ample the Sturmian measures of rotation numbers 1/2, 1/3, 2/5, 3/8 and 5/13 are,
respectively, the invariant measures supported by the periodic orbits coded2 by the
strings

01 , 001 , 00101 , 00100101 , 0010010100101 ,

while the Sturmian measure of rotation number (3 − √
5)/2 is the unique invariant

probability measure supported by the orbit closure of the point with base-2 expansion

0010010100100101001010010010100101 . . .

For more details on Sturmian measures, and the related notion of Sturmian sequences,
see e.g. [1, 5, 7, 16, 22, 25, 26, 31, 32, 45, 50].

In this article we return to the setting of these original articles, fixing the dynamical
system to be the angle-doubling map T (x) = 2x (mod 1), and aiming to determine
precisely the maximizing measures for a certain one-parameter family of functions
(fθ)θ∈T. This family, which we call the piecewise-linear cosine family (see Figure 1), is
defined by

fθ(x) = 1− 4dT(x, θ) ,

where dT denotes the usual distance function on the circle T.
Our main result identifies the maximizing measures for all functions in this family:

Theorem 1. Each piecewise-linear cosine function has a unique maximizing mea-
sure, and this measure is Sturmian.

So we see that the phenomenon3 of Sturmian maximizing measures has a certain
robustness: the family (fθ)θ∈T only qualitatively resembles the cosine family gθ(x) =
cos 2π(x− θ), yet the family of maximizing measures is identical4. Theorem 1 will be
proved in Section 2 in a slightly more precise form (see Theorem 7), while in Section 3

1The results in [20, 24, 25, 26] were largely conjectural, and made rigorous in [7].
2The coding is the standard one via base-2 expansions, so for example 001 represents the orbit

{1/7, 2/7, 4/7}.
3Clearly this phenomenon is not universal, and counterexamples are easily constructed: for exam-

ple if O is a non-Sturmian periodic orbit (O = {1/5, 2/5, 3/5, 4/5}, say) then the maximizing measure
for f(x) := −dT(x,O) is obviously non-Sturmian.

4Note, however, that for particular values of θ the fθ-maximizing measure need not coincide with
the gθ-maximizing measure.
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we investigate the variation of the maximum ergodic average maxµ∈M
∫

fθ dµ with the
parameter θ, identifying the intervals on which it is monotone (see Theorem 11).

Figure 1. Piecewise-linear cosine function fθ.

2. Sturmian maximizing measures

Definition 2. For any γ ∈ T, define eγ : T→ Z≥0 ∪ {∞} by

eγ(x) = inf{i ≥ 0 : T i(x) ∈ (γ + 1/2, γ)} . (1)

Since eγ is strictly positive on [γ, γ + 1/2], there is a unique ω(γ) ∈ [γ, γ + 1/2] such
that5 ∫ ω(γ)

γ

eγ = 1/2 . (2)

The map ω : T→ T was analysed in [4], where the following was proved:

Lemma 3. ω : T→ T is a degree-1 homeomorphism, with ω−1(0, 1/8] = (−1/4, 0].

Next recall the following notions from [7]:

Definition 4. Let f : T→ R be Lipschitz, and set β(f) := maxµ∈M
∫

f dµ.
(i) Call a Lipschitz function ϕ : T→ R a maximizing function6 for f if, for all x ∈ T,

β(f) + ϕ(x) = max

(
(f + ϕ)

(x

2

)
, (f + ϕ)

(
x + 1

2

))
. (3)

(ii) Say that f is Sturmian (on the closed semi-circle [γ, γ + 1/2]) if there is a maxi-
mizing function ϕ such that (f + ϕ)(x) > (f + ϕ)(x + 1/2) for all x ∈ (γ, γ + 1/2).
(iii) Say that f is pre-Sturmian on [γ, γ + 1/2] if there exists a Lipschitz function ϕ :
T→ R (not necessarily a maximizing function) such that the restriction of f +ϕ−ϕ◦T
to [γ, γ + 1/2] is a constant function.

Remark 5.
5We shall use

∫
g to denote the Lebesgue integral of a function g on the whole circle T, and

∫
A

g

or
∫ b

a
g for its Lebesgue integral over the set A or interval [a, b].

6Alternative terminology, motivated by notions in Lagrangian dynamics and differential geometry
(see e.g. [21] for usage in this context), is that ϕ is a calibrated sub-action (see e.g. [23]).
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(a) Since T is expanding, every Lipschitz function admits a maximizing function (see
[7, Lem. A]); results of this type can be traced back to the unpublished work of Conze
& Guivarc’h [20].
(b) If f is Sturmian on [γ, γ + 1/2] then, for all x ∈ [γ, γ + 1/2],

(f + ϕ)(x) = max ((f + ϕ)(x), (f + ϕ)(x + 1/2)) = β(f) + ϕ(Tx) ,

so f + ϕ − ϕ ◦ T is equal to the constant β(f) on [γ, γ + 1/2], and is strictly smaller
than β(f) on (γ + 1/2, γ). It follows that the Sturmian measure carried by [γ, γ + 1/2]
is the unique maximizing measure for f + ϕ− ϕ ◦ T , hence also for f .

Lemma 6.
(i) If θ = ω(γ), then fθ is pre-Sturmian on [γ, γ + 1/2]. The corresponding function
ϕ = ϕθ of Definition 4 (iii) is unique up to an additive constant, with (Lebesgue
almost everywhere defined) derivative ϕ′θ(x) =

∑∞
n=1 2−nf ′θ(τ

nx), where τ(x) denotes7

the unique member of T−1(x) lying in C.
(ii) If fθ is pre-Sturmian on some semi-circle [γ, γ +1/2] containing θ, then θ = ω(γ).

Proof. By [7, p. 503], a Lipschitz function f is pre-Sturmian on [γ, γ + 1/2] if
and only if

∫
eγf

′ = 0, where f ′ ∈ L∞(T) denotes the derivative of f , and in this case
the function ϕ of Definition 4 (iii) has derivative ϕ′(x) =

∑∞
n=1 2−nf ′(τnx). Since f ′θ

equals +4 on (θ− 1/2, θ), and −4 on (θ, θ +1/2), the equation
∫

eγf
′
θ = 0 is equivalent

to
∫ θ

γ
eγ =

∫ γ+1/2

θ
eγ, the only solutions to which are θ = ω(γ), and θ = ω(γ) + 1/2. Of

these, only θ = ω(γ) lies in [γ, γ + 1/2]. ¤
We are now able to prove the following more precise version of Theorem 1:

Theorem 7. For each θ ∈ T, the unique fθ-maximizing measure is the Sturmian
measure carried by the unique semi-circle [γ, γ + 1/2] satisfying ω(γ) = θ.

Proof. In view of Lemma 6 (ii), it suffices to show that each function fθ is Stur-
mian on the semi-circle [γ, γ + 1/2] satisfying ω(γ) = θ.

Case 1: θ ∈ [−1
8
, 1

8
].

By symmetry we need only consider θ ∈ [0, 1
8
]. We claim that for each fθ there

exists γ ∈ T, and a maximizing function ϕθ, such that

(fθ + ϕθ)(x) > (fθ + ϕθ)(y) for all x ∈ [γ, γ + 1/2], y ∈ (γ + 1/2, γ) . (4)

In particular, (4) implies that fθ is Sturmian (on [γ, γ + 1/2]).
To prove (4), first note that if θ = 0 then α(0) = 1 and ϕ0 := f0 is a maximizing

function for f0. Clearly (f0 + ϕ0)(x) = 2f0(x) > 2f0(y) for all x ∈ [−1/4, 1/4],
y ∈ (1/4, 3/4), so (4) is satisfied.

Now suppose that θ ∈ (0, 1/8]. By Lemma 3, the map ω : T → T is a homeo-
morphism with ω−1(0, 1/8] = (−1/4, 0], so there exists (a unique) γ ∈ (−1

4
, 0] such

that ω(γ) = θ. By Lemma 6 (i), fθ is pre-Sturmian on [γ, γ + 1/2], i.e. there exists a
Lipschitz function ϕθ such that fθ + ϕθ − ϕθ ◦ T ≡ 1 − 4θ on [γ, γ + 1/2]. Indeed if
x ∈ (2γ, 1 + 2γ), Lemma 6 (i) implies

ϕθ(x) =

( ∞∑
n=1

fθ(x/2n)

)
− (1− 4θ) . (5)

7The map τ is well-defined except at the point 2γ = T (γ) = T (γ +1/2); in particular, each iterate
τn is defined Lebesgue almost everywhere.
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If x ∈ [2γ, 0] and n ≥ 1 then x/2n ∈ [γ, 0] ⊂ [θ − 1
2
, θ], because γ ∈ [−1

4
, 0] and

θ ∈ [0, 1
8
], so fθ(x/2n) = 1 + 4( x

2n − θ), and (5) becomes

ϕθ(x) = 4x for x ∈ [2γ, 0] . (6)

If i denotes the largest non-negative integer such that 2iθ < 1 + 2γ, then

[0, 1 + 2γ) = [0, 2θ) ∪ . . . ∪ [2i−1θ, 2iθ) ∪ [2iθ, 1 + 2γ) .

If x ∈ [0, 2θ) then x/2n ∈ [0, θ) for all n ≥ 1, and a calculation analogous to the one
above gives

ϕθ(x) = 4x for x ∈ [0, 2θ) . (7)

If x ∈ [2jθ, 2j+1θ) for some 1 ≤ j ≤ i, then x/2n ∈ [θ, θ + 1
2
) for 1 ≤ n ≤ j, while

x/2n ∈ [0, θ) for n ≥ j + 1, so

fθ(x/2n)− (1− 4θ) =

{
8θ − 22−nx if 1 ≤ n ≤ j ,

22−nx if n ≥ j + 1 .

It follows that

ϕθ(x) = 8jθ − 4(1− 21−j)x for x ∈ [2jθ, 2j+1θ) . (8)

An analogous calculation yields

ϕθ(x) = 8iθ − 4(1− 21−i)x for x ∈ [2iθ, 1 + 2γ) . (9)

We now have an explicit description of ϕθ on

T = [2γ, 0) ∪ [0, 2θ) ∪ . . . ∪ [2i−1θ, 2iθ) ∪ [2iθ, 1 + 2γ)

by (6), (7), (8), and (9). In particular, ϕθ has strictly positive derivative on [2γ, 2θ], is
constant on [2θ, 4θ], has strictly negative derivative on [4θ, 1 + 2γ), and its derivative
is everywhere strictly larger than −4. Moreover, the derivative ϕ′θ is non-increasing on
[2γ, 1 + 2γ), so ϕθ is concave.

Now fθ has derivative equal to +4 on (2γ, θ), to −4 on (θ, θ + 1
2
), and to +4 on

(θ + 1
2
, 1 + 2γ). It follows that fθ + ϕθ has derivative +8 on (2γ, θ) and derivative

0 on (θ, 2θ). Its derivative is strictly negative on (2θ, θ + 1
2
), and strictly positive on

(θ + 1
2
, 1 + 2γ). So fθ + ϕθ is concave, but not constant, on the semi-circle [γ, γ + 1

2
],

and has precisely one local minimum in [γ +1/2, γ]. It follows that fθ satisfies (4) thus
completing the proof of Case 1.

Case 2: θ /∈ [−1/8, 1/8].
If we can show that fθ is Sturmian on some semi-circle [γ, γ + 1/2], where γ ∈

(θ − 1/2, θ), it follows from Lemma 6 (ii) that θ = ω(γ). Write f = fθ, and set
∆(x) := (f + ϕ)(x) − (f + ϕ)(x + 1/2), where ϕ is any maximizing function for f
(cf. Remark 5 (a)). We wish to show that there exists γ ∈ (θ − 1/2, θ) such that ∆ is
strictly positive on (γ, γ + 1/2) (and therefore strictly negative on (γ + 1/2, γ), since
∆(x − 1/2) = −∆(x) for all x ∈ T). For this it suffices to prove that8 ∆′

+(x) < 0 for
x ∈ (θ, θ + 1/2), which implies that ∆ is strictly decreasing on [θ, θ + 1/2].

8Recall that if g : T→ R is Lipschitz then its derivative g′(x) at the point x ∈ T is defined to be
the closed interval

g′(x) = [g′−(x), g′+(x)] =
⋂
ε>0

{
g(y)− g(z)

y − z
: y, z ∈ (x− ε, x + ε), y 6= z

}
,

which reduces to a singleton (identified with its unique member) when g is differentiable at x.



6 V. ANAGNOSTOPOULOU, K. DÍAZ-ORDAZ, O. JENKINSON & C. RICHARD

For x ∈ T, define H(x) to be the set of sequences x = (xi)i≥0 such that x0 = x and
T (xi+1) = xi for i ≥ 0, and such that there exists a maximizing function ϕ for f such
that

(f + ϕ)(xi) ≥ (f + ϕ)(xi + 1/2) for all i ≥ 1 .

Differentiation and iteration of (3) gives that for each x ∈ T, the interval ϕ′(x) is
contained in the convex hull of the set

⋃

x∈H(x)

∞∑
i=1

2−if ′(xi) =
⋃

x∈H(x)

[ ∞∑
i=1

2−if ′−(xi),
∞∑
i=1

2−if ′+(xi)

]
.

It follows that for all x ∈ T,

∆′
+(x) ≤ sup

x∈H(x)

∞∑
i=0

2−if ′+(xi)− inf
y∈H(x+1/2)

∞∑
i=0

2−if ′−(yi) . (10)

But if x ∈ (θ, θ + 1/2) then f ′−(x0) = f ′(x) = −4 for any x ∈ H(x), and f ′+(y0) =
f ′(x + 1/2) = 4 for any y ∈ H(x + 1/2), so (10) becomes

∆′
+(x) ≤ −8 + sup

x∈H(x)

∞∑
i=1

2−if ′+(xi)− inf
y∈H(x+1/2)

∞∑
i=1

2−if ′−(yi) . (11)

Now maxx∈T(f ′+(x),−f ′−(x)) = 4, so

sup
x∈H(x)

∞∑
i=1

2−if ′+(xi)− inf
y∈H(x+1/2)

∞∑
i=1

2−if ′−(yi) ≤ 8 for all x ∈ T ,

thus (11) implies that ∆′
+(x) ≤ 0 for x ∈ (θ, θ + 1/2), with equality attained if and

only if

sup
x∈H(x)

∞∑
i=1

2−if ′+(xi) = 4 and inf
y∈H(x+1/2)

∞∑
i=1

2−if ′−(yi) = −4 ,

i.e. if and only if

xi ∈ [θ−1/2, θ] and yi ∈ [θ, θ+1/2] for all i ≥ 1 , x ∈ H(x), y ∈ H(x+1/2) . (12)

The set of accumulation points of any sequence in H(x) is a certain compact in-
variant set, carrying at least one invariant probability measure, which is necessarily
fθ-maximizing. So if (12) holds then the Sturmian measure carried by [θ−1/2, θ] is fθ-
maximizing, as is the Sturmian measure carried by [θ, θ + 1/2]. One of these measures
must be the Dirac measure δ0 concentrated at the fixed point 0, so to show that (12)
cannot hold it suffices to prove that δ0 is not fθ-maximizing for θ /∈ [−1/8, 1/8]. For
this, by symmetry it suffices to consider θ ∈ (1

8
, 1

2
], and find an invariant probability

measure whose fθ-average is strictly larger than fθ(0) = 1 − 4θ. Indeed this measure
may be chosen from the family (mn)n≥2 of invariant probability measures supported
by the period-n orbit {1/(2n − 1), . . . , 2n−1/(2n − 1)}, since if θ ∈ U1 := [1

3
, 1

2
] then∫

fθ dm2 = 1
3

> 0 > 1 − 4θ = fθ(0), if θ ∈ U2 := (1
4
, 1

3
] then

∫
fθ dm2 = 4θ − 1 > 0 >

1− 4θ = fθ(0), while if θ ∈ Un :=
(

2n−1+1
4(2n−1)

, 2n−2

2n−1

)
for n ≥ 3, then

∫
fθ dmn = 1− 4(2n−1 + 1)

n(2n − 1)
− 4(n− 4)

n
θ > 1− 4θ = fθ(0) .

Since ∪n≥1Un = (1/8, 1/2], the proof is complete. ¤
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If %(γ) denotes the rotation number of the Sturmian measure supported by the
semi-circle [γ, γ + 1/2], then the map % : T → T is known (see [16]) to be a devil’s
staircase, i.e. a continuous, weakly increasing degree-1 map such that the preimage
of each rational is an interval, and the preimage of each irrational is a single point.
Defining r : T → T by r := % ◦ ω−1, Theorem 7 says that the unique fθ-maximizing
measure is the Sturmian measure S%(ω−1(θ)) = Sr(θ). The properties of % and ω−1 imply
that r : T→ T is itself a devil’s staircase (see Figure 2), so in particular we have:

Corollary 8. Every Sturmian measure is the maximizing measure for at least one
member of the piecewise-linear cosine family (fθ)θ∈T. If % /∈ Q then S% is the maximizing
measure for precisely one member of (fθ)θ∈T. If % ∈ Q then there is a closed interval
Θ(%), with nonempty interior, such that S% is the fθ-maximizing measure for every
θ ∈ Θ(%).
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Figure 2. The function θ 7→ r(θ), where r(θ) denotes the rotation
number of the (Sturmian) maximizing measure for fθ.

For rational % ∈ T, the endpoints of any interval r−1(%) = Θ(%) = [θmin(%), θmax(%)]
can be given explicitly, using explicit information about the functions ω : T → T (see
[4]) and % : T → T (see [16]). Some of the explicit values for θmin(%) and θmax(%) are
listed in Figure 3 below.

Remark 9.
(a) Note that the explicit formulae for the intervals Θ(p/q) means we have precisely
identified the Sturmian maximizing measure for (Lebesgue almost) every parameter
value θ, to an extent which is not possible for the cosine family gθ(x) = cos 2π(x− θ).
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% θmin(%) θmax(%)

0 −1/8 = −0.125 1/8 = 0.125
1/6 263/1764 ≈ 0.149092 295/1764 ≈ 0.167233
1/5 647/3844 ≈ 0.16831 767/3844 ≈ 0.199541
2/9 208583/1044484 ≈ 0.19969 212039/1044484 ≈ 0.203008
1/4 61/300 ≈ 0.20333 77/300 ≈ 0.25666
3/11 4303511/16760836 ≈ 0.25675 4320407/16760836 ≈ 0.257768
2/7 16631/64516 ≈ 0.257781 3317209/12387072 ≈ 0.267796
3/10 1494731/5581488 ≈ 0.267802 90709/337590 ≈ 0.268696
1/3 527/1960 ≈ 0.268878 251/784 ≈ 0.320153
4/11 10736023/33521672 ≈ 0.320271 10757143/33521672 ≈ 0.3209011
3/8 11129/34680 ≈ 0.320905 42371/130050 ≈ 0.325805
5/13 43718531/134184962 ≈ 0.325808 43771779/134184962 ≈ 0.326205
5/12 4112657/11179350 ≈ 0.36788 4120849/11179350 ≈ 0.368613
3/7 11891/32258 ≈ 0.36862 12339/32258 ≈ 0.38251
4/9 199795/522242 ≈ 0.382571 202099/522242 ≈ 0.386983
1/2 7/18 ≈ 0.388888 11/18 ≈ 0.611111

Figure 3. Endpoints of intervals r−1(p/q) = [θmin(p/q), θmax(p/q)] for
certain p/q ∈ [0, 1/2]. Certain other values (for p/q ∈ (1/2, 1)) follow
from the identity r(x + 1/2) = r(x− 1/2).

In [4] we also note that, for sufficiently large q, the interval lengths θmax(p/q)−θmin(p/q)
are equal to Kq2q−1/(2q − 1)2 for one of five explicit constants K; asymptotically this
agrees with the lengths of the corresponding parameter intervals for the family gθ (see
[14, 24]).
(b) As we have seen, the proof of Theorem 7 (and therefore Theorem 1) is informed
by some theoretical concepts introduced by Bousch in [7], notably the Sturmian and
pre-Sturmian conditions. One difference in the approach used here is that the proof
revolves principally around the pre-Sturmian, rather than the Sturmian, condition. A
further difference is that our proof is entirely self-contained, not relying on numerical
approximations such as those required in [7] for the cosine family.

3. The maximum ergodic average

Now we would like to understand the variation with θ of the maximum ergodic
average

α(θ) := max
µ∈M

∫
fθ dµ

of the piecewise-linear cosine function fθ. This function α : T → R turns out to
be countably piecewise affine, with unique global maximum at θ = 0, and global
minimum at θ ∈ [7/18, 11/18] (when S1/2 = (δ1/3 + δ2/3)/2 is fθ-maximizing). It
is piecewise monotone (but not piecewise affine), and turns out to have precisely
23 intervals of monotonicity (see Theorem 11); the endpoints of these intervals of
monotonicity can be identified explicitly, and turn out to be either endpoints of some
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Θ(p/q) = r−1(p/q) (cf. Figure 3), or certain exceptional values9 θ∞(p/q) for p/q =
0,±2/7,±3/10,±1/3,±3/8. The function α is shown in Figure 4, though some of its
intervals of monotonicity are too small to be visible here; the smallest such interval has
length 4096/68736249855 ≈ 6× 10−8.
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Figure 4. Graph of the countably piecewise affine function α(θ) :=
maxµ∈M

∫
fθ dµ. Only 9 of its 23 intervals of monotonicity are visible.

To prove the above facts about α we first require the following result from [3]:

Lemma 10. [3, Cor. 6.6] (cf. also [4, Thm. 2.8]) Suppose %(γ) is the rational p/q
(where q ∈ N and the integer 0 < p < q is coprime to q), and Ji := [si, si+1] for
1 ≤ i ≤ q − 1, where s1 < . . . < sq denotes the Sturmian orbit of rotation number p/q.
Then

ω(γ) ∈





Jq−2p if %(γ) ∈ (0, 2/7)

J4q−12p if %(γ) ∈ (2/7, 3/10)

J2q−5p if %(γ) ∈ (3/10, 1/3)

J2q−4p if %(γ) ∈ (1/3, 3/8)

Jq−p if %(γ) ∈ (3/8, 1/2] .

Theorem 11. The maximum ergodic average function α : T → R, defined by
α(θ) = maxµ∈M

∫
fθ dµ, is even and countably piecewise affine. Its maximum value

is 1, attained uniquely at θ = 0, and its minimum value is 1/3, attained uniquely on
the interval [7/18, 11/18]. The function α is piecewise monotone, with precisely 23
monotonicity intervals10. Those endpoints of monotonicity intervals lying between 0

9These exceptional values θ∞(p/q) are denoted ω∞(p/q) in [3], where the significance of the nine
exceptional rotation numbers 0,±2/7,±3/10,±1/3,±3/8 is described.

10By a monotonicity interval we mean a locally maximal interval on which α is either strictly
increasing, or strictly decreasing, or constant.
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and 1/2 are, in increasing order,

θ1 := θmin(1/4) =
61

300
≈ 0.20333 , θ2 := θmax(1/4) =

77

300
≈ 0.25666 ,

θ3 := θ∞(2/7) =
34

127
≈ 0.26771 , θ4 := θmin(7/24) =

147258372059

549889998840
≈ 0.26779605 ,

θ5 := θmax(7/24) =
147258404827

549889998840
≈ 0.26779611 , θ6 := θ∞(3/10) =

274

1023
≈ 0.26783 ,

θ7 := θmax(3/10) =
90709

337590
≈ 0.26869 , θ8 := θ∞(1/3) = 2/7 ≈ 0.28571 ,

θ9 := θmin(3/8) =
11129

34680
≈ 0.32090 , θ10 := θ∞(3/8) =

82

255
≈ 0.32156 ,

θ11 := θmin(1/2) =
7

18
≈ 0.38888 ,

and α is decreasing on [0, θ1], constant on [θ1, θ2], increasing on [θ2, θ3], decreasing
on [θ3, θ4], constant on [θ4, θ5], increasing on [θ5, θ6], constant on [θ6, θ7], increasing on
[θ7, θ8], decreasing on [θ8, θ9], constant on [θ9, θ10], decreasing on [θ10, θ11], and constant
on [θ11, 1/2].

Proof. Since {θ ∈ T : r(θ) ∈ Q} is dense in T, and α is clearly (4-Lipschitz)
continuous, to prove that α is monotone on any interval it suffices to show that it is
monotone on the intersection of this interval with {θ ∈ T : r(θ) ∈ Q}.

For any x ∈ T, the map θ 7→ fθ(x) is affine (hence monotone) with slope ±4 on
any interval [θ−, θ+] disjoint from {x, x + 1/2}. Thus, if θ is such that fθ has periodic
maximizing measure, supported by the Sturmian periodic orbit s1 < . . . < sq, then the
formula α(θ) = q−1

∑q
i=1 fθ(si) implies that the local monotonicity of α at θ is entirely

determined by whether most points in the periodic orbit lie to the left, or to the right,
of θ. Precisely, α is locally decreasing (respectively increasing) if more than half of the
points lie to the left (respectively the right) of θ, and is locally constant if exactly half
of the points lie on either side of θ (in this last case the orbit is necessarily of even
period).

If θ ∈ (0, θmax(0)] = (0, 1/8] then the fixed point 0 is maximizing, and is to the left
of θ, so α is decreasing on (0, 1/8].

Now suppose that θ is such that the fθ-maximizing measure is Sp/q for 0 < p/q <
2/7. Lemma 10 implies that θ lies in the interior of Jq−2p, so precisely q − 2p of the
q points in Op/q lie to the left of θ. So if 0 < p/q < 1/4 then most points in the
orbit lie to the left of θ, hence α is locally decreasing at θ, if p/q = 1/4 then exactly
two points in the orbit {1/15, 2/15, 4/15, 8/15} lie to either side of θ, so α is locally
constant, while if 1/4 < p/q < 2/7 then most points lie to the right of θ, hence α is
locally increasing at θ. It follows that α is decreasing on [θmax(0), θmin(1/4)], constant
on [θmin(1/4), θmax(1/4)], and increasing on [θmax(1/4), θmin(2/7)].

Now suppose that the fθ-maximizing measure is S2/7. The point θ∞(2/7) = 34/127
is the central point in O2/7 = {9/127, 17/127, 18/127, 34/127, 36/127, 68/127, 72/127}.
Therefore, if θ ∈ [θmin(2/7), θ∞(2/7)) then three points in the orbit lie to the left of θ,
so α is locally increasing at θ, while if θ ∈ (θ∞(2/7), θmax(2/7)] then four points in the
orbit lie to the left of θ, so α is locally decreasing at θ.

Now suppose that θ is such that the fθ-maximizing measure is Sp/q for 2/7 < p/q <
3/10. By Lemma 10, θ lies in the interior of J4q−12p, so precisely 4q − 12p of the q
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points in Op/q lie to the left of θ. Now 4q− 12p > q/2 if and only if p/q < 7/24, so α is
decreasing on [θmax(2/7), θmin(7/24)]; similarly, α is constant on [θmin(7/24), θmax(7/24)]
and increasing on [θmax(7/24), θmin(3/10)].

By now the general argument is clear; to complete the proof we may continue as
above, examining separately the remaining exceptional rotation numbers (3/10, 1/3,
and 3/8), and the rationals between them (for which we use Lemma 10 to locate θ
relative to the partition {Ji}, then argue as above). ¤
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