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1. The purpose of this exercise is to construct a family of groups knovireas
groups

LetX be a set, and leX = {X: x € X} be a set disjoint fronX but in one-to-one
correspondence with it. &ordis defined to be an ordered string of symbols from
the “alphabet’X UX. A word is reducedif it does not contain any consecutive
pair of symbols of the formx or xx, for x € X.

Consider the following process ofncellation which can be applied to any
wordw. Select any consecutive pair of symbgisor xx in w (if such exists) and
remove it. Repeat until the word is reduced.

(a)** Given a word, there may be several different ways to apply the can-
cellation process to it. Show that the same result is obtained no matter how the
cancellation is performed.

Hint: One rather indirect way to prove this is as follows. Construct an (infinite)
treeT (X) whose edges are directed and labelled with elemerXssofch that, for
any vertexv and anyx € X, there is a unique edge with labeleavingv and a
unique edge with labet enteringv. Choose a fixed starting vertexn the tree.
Then any word describes a path starting frereymbolx means “leave the current
vertex on the outgoing edge labellgtd while X means “leave the current vertex
along the incoming edge labelletl Show that the finishing vertex of the path is
not changed by cancellation.

(b) Let F(X) denote the set of all reduced words in the alphapetX, in-
cluding the “empty word”. Define an operation &1{X) as follows: wy ow, is
obtained by concatenating the womdsandw, and then applying cancellation to
the result. Prove thdt(X) is a group, in which the empty string is the identity
and the inverse ot is x.

(c) LetG be any group an@ : X — G an arbitrary function. Show that there
is a unique homomorphis®* : F (X) — G whose restriction tX is 6.

The groupF (X) is called thefree group generated by.X

2. LetG be a group. For subgroup$, K of G, let [H,K] denote the subgroup
generated by all commutatojis k] = h~tk—thk, for h € H andk € K.



Define thelower central series
G=G9>cl>c@>...

by the rule thaG(® = G andGl*Y = [G(), G].
Define thelower central series

{1} =20(G) < Z1(G) < Z(G) < -
by the rule thaZp(G) = {1} andz;11(G)/Z(G) = Z(G/Z(G)), whereZ(H) is
the centre of the groud.

(a) LetH andK be normal subgroups @&, with H < K. Prove thafK,G|] <H
if and only if K/H < Z(G/H).

(b) Prove thaG(™ = {1} if and only if Zn(G) = G.

Remark A group (finite or infinite) satisfying this condition is said to bigpo-
tent its nilpotency classs the smallest value ah for which these equivalent
conditions hold.

(c) Prove that a finite grou® is nilpotent according to this definition if and
only if it satisfies the equivalent conditions of Exercise 7.8 in the book: viz.,

e every proper subgroup @ is properly contained in its normaliser;

e Gis the direct product of its Sylow subgroups.

3. Define thesubgroup lengtli(G) of a finite groupG to be the maximum number
r for which there is a chain of subgroups

G=Gy>G1>-->G ={1}

of G.
(a) Show that, iN is a normal subgroup @, then/(G) = ¢(N) + ¢(G/N).

(b) Deduce that(G) is the sum of the subgroup lengths of the composition
factors ofG, counted with multiplicities.

(c) Deduce that, ifG is soluble, ther?(G) is equal to the number of prime
divisors of|G|, counted with multiplicities.

(d) Find a groups which satisfies the conclusion of (c) but is not soluble.
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4. LetA be a finite abelian group. Thiual of A is the setA* of all homomor-
phisms fromA to the multiplicative group of non-zero complex numbers, with
operation defined pointwise (that is, the product of homomorphisrasd 3 is

given by
Z(ap) = (zor)(zB).

(@) Show that, ifA is cyclic of ordern generated by, thenA” is cyclic of
ordern generated by, whereao = 2",

(b) Show that A x B)* = A* x B*.

(c) Deduce thaf\* == A for any finite abellian group.

(d) LetB be a subgroup oA, and define itannihilator to be the subgroup’
of A* defined by
B'={¢p A" :bp =1forallbe B}.

Show thaB' is a subgroup oA* andA*/B' = B.

(e) Show that, ifp is a non-identity element &&*, then

Z\a(p =0.

(f) Let M be the matrix whose rows are indexed by elemensarid columns
by elements oA*, wiith (a,¢) entrya¢. Prove that

MM =nl,
wheren = |A|, and deduce thatdetM)| = n"/2,

5. Show that the automorphism group@f x C, x C, is a simple group of or-
der 168.

6. Leta,b,c,d be elements of &nite group which satisfy
b~tab=a? c tbc=b?d tcd=c? a lda=d>

Prove tham=b=c=d = 1. [Hint: Let p be the smallest prime divisor of the
order ofa, assumed greater than 1, Show that the orderisflivisible by a prime
divisor of p—1.]



7. LetG be the group of % 2 matrices oveZp with determinant 1, wherp is an
odd prime.

(a) Show that contains a unique elemenbf order 2.

(b) Forp=3andp=>5, show thats/(z) is isomorphic to the alternating group
A4 or Ag respectively.

(c)* Identify the groupG/(z) for p = 7 with the simple group defined in Ques-
tion 5.

8. Let G be a finite group. Lets,...,0r be representatives of the conjugacy
classes o6 (with g1 = 1, and letmy = |Cg(g;i)| fori=1,...,r.

medskip

(a) Show that

r

1

— =1,
i;mi

(b) Show that the displayed equation in (a) has only finitely many solutions in
non-negative integersy, ..., m for fixedr.

with my = |G|.

(c) Deduce that there are only finitely many finite groups with a given number
of conjugacy classes.

(d) Find all finite groups with three or four conjugacy classes.
9. LetG be a group, and € G. Theinner automorphismg induced byg is the
mapx — g~ 1xgof G.

(a) Prove thatg is an automorphism d&.

(b) Prove that the ma@ : G — Aut(G) given bygé = 14 is a homomorphism,
whose image is the set I0@) of all inner automorphisms @ and whose kernel
isZ(G), the centre of5. Deduce that InfG) = G/Z(G).

(c) Prove that InfiG) is a normal subgroup of A(®). (The factor group
Aut(G)/Inn(G) is called theouter automorphism groupf G.)

10. Prove that every group (finite or infinite) except the trivial group and the
cyclic group of order 2 has a non-identity automorphism. [You will need to use
the Axiom of Choice to answer this question!]



11. LetR, denote the Sylow 2-subgroup of the symmetric group of dedtee 2
(a) Show thak,, 1 has a subgroup of index 2 isomorphicRpx R,.

(b) Let pn be the proportion of fixed-point-free elementsRy Prove that
po =0 and
Pnt+1= %(1+ pﬁ)
forn> 0.
(c) Deduce that lim.. pn = 1.

(d) Prove that, in any subgroupof S which is a transitive 2-group, there is
an intransitive subgroup of index 2, and deduce that more than half of the elements
of P are fixed-point-free.

(e)** For everyn > 0, construct a subgroup 8 which is a transitive 2-group
in which fewer than two-thirds of the elements are fixed-point-free.
12. A finite groupG is said to besupersolublef it has a sequence

G=Gy>G1>--->G ={1}

of normal subgroups with the property th& /G;, 1 is cyclic fori =0,...,r — 1.
[Compare this with the property of being soluble: what is the difference?]

(a) Show that the symmetric grody is soluble but not supersoluble.

(b)* Prove that, ifG is supersoluble, then the derived graBpis nilpotent.

13. This exercise asks you to prove the following strengthening of Jordan’s theo-
rem:

Let G be a finite group acting transitively on a getof n elements,
where n> 1. Then the proportion of fixed-point-free elements in G is
at leastl/n.

(a) Let fix(g) be the number of fixed points gfin Q. Show that fixg)? is the
number of fixed points of in its coordinatewise action on the Cartesian product

Q x Q, and deduce that 1
— ¥ fix(g)?>2.
G ggc (9)



(b) By evaluating
(fix(g) — D(fix(g) ~ ),
2
noting that only fixed-point-free elements give a positive contribution to the sum,
prove the theorem stated above.

(c)* What can be concluded about a group which attains the bound? Give an
example of such a group.

14. TheFrattini subgroup®(G) of a groupG is defined to be the intersection of
all the maximal proper subgroups Gf

(a) Prove thatP(G) is a normal subgroup d.

(b) An elementg € G is said to be aaon-generatorof G if, wheneverG is
generated bAU {g}, for some subsek of G, it actually holds thaG is generated
by A. Prove that an elemergtc G belongs to®(G) if and only if it is a non-
generator.

(c) Let G be a finite group. Recall therattini argument(Exercise 7.10 on
p.255 in the book): IH is a normal subgroup @&, andP a Sylow p-subgroup of
H, thenG = HNg(P). Deduce that the Sylow subgroups®fG) are normal in
G, and from this, deduce théi(G) is nilpotent.

(d) Now letG be a finitep-group. Prove tha®(G) = 1 if and only if G is ele-
mentary abelian (a direct product of cyclic groups of onetHence show that, in
generalG/®(G) is elementary abelian, and that if the cose{&)gs, ..., P(G)gr
form a basis folG/®(G) (as vector space ovéfy, thengy, . ..,gr generates.

15. For any grouis, define two parameters as follows:
e d(G) is the minimum number of elements in a generating seGfor
e 1(G) is the maximum number of elements in a minimal generating s& for

(where a generating s8tis minimalif no proper subset dbis a generating
set).

(@) LetG be the symmetric grouf,, wheren > 3. Show thad(G) = 2 and
1(G) >n—1. [Remark:In fact it was proved by Julius Whiston thatG) =n—1,
but the proof is much more complicated.]

(b) Prove thatu(G) < ¢(G), where{(G) is the subgroup length d& (see
Problem 3 above).

(c) Prove that, ifG is a p-group, thenu(G) = d(G). Is the converse true?

6



16. (a)** Let A andB be nilpotent normal subgroups of a gro@pProve thaAB
is a nilpotent normal subgroup.

(b) Deduce thas contains a unique maximal nilpotent normal subgroup.
(This subgroup is called thetting subgroupof G, denoted by (G).)

(c) Show that, ifG is a finite group, the®(G) < F(G). Give an example of a
group where these two subgroups are not equal.

17. A groupG is said to bdinitely generatedf it is generated by a finite set of
elements.

(a) Prove that, ifG is finitely generated an#l is finite, then there are only
finitely many homomorphisms froi@ to H.

(b) Prove that, ifG is finitely generated, then the number of subgroup& of
of indexn is finite, for any natural numbaer. [Hint: A subgroup of index gives
rise to a homomorphism fro@ to S,.]

(c) Prove that, ifG is generated byl elements, thei@ has at mosn(n!)d
subgroups of inder for anyn.

(d) Find a group which is not finitely generated but has only finitely many
subgroups of index for anyn.

18. (a) Show that, iH is a proper subgroup of the finite gro@® then there is a
conjugacy class i which is disjoint fromH.

(b) Show that this is not the case for infinite groups. (You may wish to consider
the groupG = GL(n,F), whereF is an algebraically closed field, witt the group
of upper triangular matrices.)

19. LetG be a permutation group on the $ét..., n} (a subgroup of the symmet-
ric groupS,). Let pi(G) be the proportion of elements Gfwhich have precisely
i fixed points, and leFj(G) be the number of orbits d& on orderedj-tuples of
distinct elements of1,...,n}. Define polynomial$ andQ of degreen by

* P =3 PG,



(a)* By using the Orbit-Counting Lemma, show thagx) = P(x+ 1).
(b) Deduce that the proportion of fixed-point-free element&iis equal to

Q(-1).
(c) In the case thab = S, show that

n Xj

the Taylor series foretruncated to degree Deduce that the proportion of fixed-
point-free elements i, is approximately le.

20. How many groups of order 12 are there (up to isomorphism)?

21. A Steiner triple systens a pair (X,%), whereX is a finite set and% a
collection of 3-element subsets Xf (calledtriples), such that any two distinct
points of X are contained in a unique triple. kksder is the cardinality ofX.

Let (X, %) be a Steiner triple system. Take a new elemeatQ and define a
binary operationt on X U {0} by the rules

e 0+0=0;
e 0+-X=x+0=x,x+x=0forallxe X;
o Xx+y=2zif {x,y,z} € #.

(a) Prove thatX U {0}, +) satisfies the closure, identity, inverse, and commu-
tative laws.

(b) Prove that X U {0}, +) satisfies the associative law if and only(X, %)
has the following property:

for all distinctu,...,ze€ X, if {u,vyw}, {u,x,y}, {v,x,z} are triples,
then{w,y,z} is a triple.

(c) Deduce that a Steiner triple system satisfying the displayed property in part
(b) has order 2— 1 for some natural numbex

(d) Construct such a system for every N.



22. LetG be a group generated by elemexis .., x. LetH be a subgroup o&
of indexn, and letgy, ..., g, be right coset representatives fdin G, with g; = 1.
Fori=1,...,nandj=1,...,r, put

Yij = 0iXjg, * whereHgix; = Hgk.

(a) Show that, ifHgix; = Hgk, theankxj*l = Hg;. Deduce that under this
hypothesis/;* = gex; 'gi .

(b) Show that the elemenyg, fori =1,....nandj=1,...,r, all belong to
H.

(c) Show that the elements in (b) generdte

(d) Deduce that a subgroup of finite index in a finitely generated group is
finitely generated.

(e) By choosing the coset representatives with more care, show tban be
generated byr —n+ 1 elements.

23. LetX = {1,2,3,4,5,6}. Following Sylvester, we define duadto be a 2-
element subset oK; a synthemdo be a partition ofX into three duads; and a
synthematic tota{or total, for short) to be a partition of the set of duads into
synthemes. LeY be the set of totals.

(a) Show that there are 15 duads; there are 15 synthemes, each containing three
duads; there are 6 totals, each containing five synthemes. Show that the symmetric
groupSs acts in a natural way on the sets of duads, synthemes and totals.

(b) WriteY = {y1,...,Ys}. Given a permutatioy € S, let g* be the per-
mutation inSg given by (yi)g = yig- fori =1,...,6, where(y;)g is the image of
y; under the induced action defined in (a). Prove that the snag — g* is an
automorphism o&;.

(c) Show that the stabiliser of a total fixes no poinikinDeduce that is an
outer automorphism d¥ (see Problem 9).

(d) Show that a syntheme lies in exactly two totals (i.e. a “duad of totals”); a
duad lies in three synthemes belonging to disjoint pairs of totals (i.e. a “syntheme
of totals”; and that, given an elemenxtof X, the five sets of three synthemes
corresponding to the duads containingover each pair of totals once (i.e. a
“total of totals”).



(e) Deduce thatr? is an inner automorphism &.
(H* Prove that the outer automorphism groupSgfhas order 2.

(9)** Prove that, forn # 6, the outer automorphism group &fis trivial (that
is, every automorphism is inner).
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