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1. The purpose of this exercise is to construct a family of groups known asfree
groups.

Let X be a set, and letX = {x : x∈X} be a set disjoint fromX but in one-to-one
correspondence with it. Aword is defined to be an ordered string of symbols from
the “alphabet”X ∪X. A word is reducedif it does not contain any consecutive
pair of symbols of the formxx or xx, for x∈ X.

Consider the following process ofcancellation, which can be applied to any
word w. Select any consecutive pair of symbolsxx or xx in w (if such exists) and
remove it. Repeat until the word is reduced.

(a)** Given a word, there may be several different ways to apply the can-
cellation process to it. Show that the same result is obtained no matter how the
cancellation is performed.

Hint: One rather indirect way to prove this is as follows. Construct an (infinite)
treeT(X) whose edges are directed and labelled with elements ofX such that, for
any vertexv and anyx ∈ X, there is a unique edge with labelx leavingv and a
unique edge with labelx enteringv. Choose a fixed starting vertexs in the tree.
Then any word describes a path starting froms: symbolx means “leave the current
vertex on the outgoing edge labelledx”, while x means “leave the current vertex
along the incoming edge labelledx”. Show that the finishing vertex of the path is
not changed by cancellation.

(b) Let F(X) denote the set of all reduced words in the alphabetX ∪X, in-
cluding the “empty word”. Define an operation onF(X) as follows: w1 ◦w2 is
obtained by concatenating the wordsw1 andw2 and then applying cancellation to
the result. Prove thatF(X) is a group, in which the empty string is the identity
and the inverse ofx is x.

(c) Let G be any group andθ : X → G an arbitrary function. Show that there
is a unique homomorphismθ ∗ : F(X)→ G whose restriction toX is θ .

The groupF(X) is called thefree group generated by X.

2. Let G be a group. For subgroupsH,K of G, let [H,K] denote the subgroup
generated by all commutators[h,k] = h−1k−1hk, for h∈ H andk∈ K.
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Define thelower central series

G = G(0) ≥ G(1) ≥ G(2) ≥ ·· ·

by the rule thatG(0) = G andG(i+1) = [G(i),G].
Define thelower central series

{1}= Z0(G)≤ Z1(G)≤ Z2(G)≤ ·· ·

by the rule thatZ0(G) = {1} andZi+1(G)/Zi(G) = Z(G/Zi(G)), whereZ(H) is
the centre of the groupH.

(a) LetH andK be normal subgroups ofG, with H ≤K. Prove that[K,G]≤H
if and only if K/H ≤ Z(G/H).

(b) Prove thatG(m) = {1} if and only if Zm(G) = G.

Remark A group (finite or infinite) satisfying this condition is said to benilpo-
tent: its nilpotency classis the smallest value ofm for which these equivalent
conditions hold.

(c) Prove that a finite groupG is nilpotent according to this definition if and
only if it satisfies the equivalent conditions of Exercise 7.8 in the book: viz.,

• every proper subgroup ofG is properly contained in its normaliser;

• G is the direct product of its Sylow subgroups.

3. Define thesubgroup length̀(G) of a finite groupG to be the maximum number
r for which there is a chain of subgroups

G = G0 > G1 > · · ·> Gr = {1}

of G.

(a) Show that, ifN is a normal subgroup ofG, then`(G) = `(N)+ `(G/N).

(b) Deduce that̀ (G) is the sum of the subgroup lengths of the composition
factors ofG, counted with multiplicities.

(c) Deduce that, ifG is soluble, theǹ (G) is equal to the number of prime
divisors of|G|, counted with multiplicities.

(d) Find a groupG which satisfies the conclusion of (c) but is not soluble.
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4. Let A be a finite abelian group. Thedual of A is the setA∗ of all homomor-
phisms fromA to the multiplicative group of non-zero complex numbers, with
operation defined pointwise (that is, the product of homomorphismsα andβ is
given by

z(αβ ) = (zα)(zβ ).

(a) Show that, ifA is cyclic of ordern generated bya, thenA∗ is cyclic of
ordern generated byα, whereaα = e2π i,n.

(b) Show that(A×B)∗ ∼= A∗×B∗.

(c) Deduce thatA∗ ∼= A for any finite abellian groupA.

(d) Let B be a subgroup ofA, and define itsannihilator to be the subgroupB†

of A∗ defined by
B† = {φ ∈ A∗ : bφ = 1 for all b∈ B}.

Show thatB† is a subgroup ofA∗ andA∗/B† ∼= B.

(e) Show that, ifφ is a non-identity element ofA∗, then

∑
a∈A

aφ = 0.

(f) Let M be the matrix whose rows are indexed by elements ofA and columns
by elements ofA∗, wiith (a,φ) entryaφ . Prove that

M>M = nI,

wheren = |A|, and deduce that|det(M)|= nn/2.

5. Show that the automorphism group ofC2×C2×C2 is a simple group of or-
der 168.

6. Leta,b,c,d be elements of afinitegroup which satisfy

b−1ab= a2,c−1bc= b2,d−1cd = c2,a−1da= d2.

Prove thata = b = c = d = 1. [Hint: Let p be the smallest prime divisor of the
order ofa, assumed greater than 1, Show that the order ofb is divisible by a prime
divisor of p−1.]
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7. LetG be the group of 2×2 matrices overZp with determinant 1, wherep is an
odd prime.

(a) Show thatG contains a unique elementz of order 2.

(b) Forp= 3 andp= 5, show thatG/〈z〉 is isomorphic to the alternating group
A4 or A5 respectively.

(c)* Identify the groupG/〈z〉 for p= 7 with the simple group defined in Ques-
tion 5.

8. Let G be a finite group. Letg1, . . . ,gr be representatives of the conjugacy
classes ofG (with g1 = 1, and letmi = |CG(gi)| for i = 1, . . . , r.

medskip
(a) Show that

r

∑
i=1

1
mi

= 1,

with m1 = |G|.

(b) Show that the displayed equation in (a) has only finitely many solutions in
non-negative integersm1, . . . ,mr for fixed r.

(c) Deduce that there are only finitely many finite groups with a given number
of conjugacy classes.

(d) Find all finite groups with three or four conjugacy classes.

9. Let G be a group, andg∈ G. The inner automorphismιg induced byg is the
mapx 7→ g−1xgof G.

(a) Prove thatιg is an automorphism ofG.

(b) Prove that the mapθ : G→ Aut(G) given bygθ = ιg is a homomorphism,
whose image is the set Inn(G) of all inner automorphisms ofG and whose kernel
is Z(G), the centre ofG. Deduce that Inn(G)∼= G/Z(G).

(c) Prove that Inn(G) is a normal subgroup of Aut(G). (The factor group
Aut(G)/ Inn(G) is called theouter automorphism groupof G.)

10. Prove that every group (finite or infinite) except the trivial group and the
cyclic group of order 2 has a non-identity automorphism. [You will need to use
the Axiom of Choice to answer this question!]
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11. LetPn denote the Sylow 2-subgroup of the symmetric group of degree 2n.

(a) Show thatPn+1 has a subgroup of index 2 isomorphic toPn×Pn.

(b) Let pn be the proportion of fixed-point-free elements inPn, Prove that
p0 = 0 and

pn+1 = 1
2(1+ p2

n)

for n≥ 0.

(c) Deduce that limn→∞ pn = 1.

(d) Prove that, in any subgroupP of S2n which is a transitive 2-group, there is
an intransitive subgroup of index 2, and deduce that more than half of the elements
of P are fixed-point-free.

(e)** For everyn> 0, construct a subgroup ofS2n which is a transitive 2-group
in which fewer than two-thirds of the elements are fixed-point-free.

12. A finite groupG is said to besupersolubleif it has a sequence

G = G0 > G1 > · · ·> Gr = {1}

of normalsubgroups with the property thatGi/Gi+1 is cyclic for i = 0, . . . , r −1.
[Compare this with the property of being soluble: what is the difference?]

(a) Show that the symmetric groupA4 is soluble but not supersoluble.

(b)* Prove that, ifG is supersoluble, then the derived groupG′ is nilpotent.

13. This exercise asks you to prove the following strengthening of Jordan’s theo-
rem:

Let G be a finite group acting transitively on a setΩ of n elements,
where n> 1. Then the proportion of fixed-point-free elements in G is
at least1/n.

(a) Let fix(g) be the number of fixed points ofg in Ω. Show that fix(g)2 is the
number of fixed points ofg in its coordinatewise action on the Cartesian product
Ω×Ω, and deduce that

1
|G| ∑

g∈G

fix(g)2 ≥ 2.
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(b) By evaluating

∑
g∈G

(fix(g)−1)(fix(g)−n),

noting that only fixed-point-free elements give a positive contribution to the sum,
prove the theorem stated above.

(c)* What can be concluded about a group which attains the bound? Give an
example of such a group.

14. TheFrattini subgroupΦ(G) of a groupG is defined to be the intersection of
all the maximal proper subgroups ofG.

(a) Prove thatΦ(G) is a normal subgroup ofG.

(b) An elementg ∈ G is said to be anon-generatorof G if, wheneverG is
generated byA∪{g}, for some subsetA of G, it actually holds thatG is generated
by A. Prove that an elementg ∈ G belongs toΦ(G) if and only if it is a non-
generator.

(c) Let G be a finite group. Recall theFrattini argument(Exercise 7.10 on
p.255 in the book): IfH is a normal subgroup ofG, andP a Sylowp-subgroup of
H, thenG = HNG(P). Deduce that the Sylow subgroups ofΦ(G) are normal in
G, and from this, deduce thatΦ(G) is nilpotent.

(d) Now letG be a finitep-group. Prove thatΦ(G) = 1 if and only ifG is ele-
mentary abelian (a direct product of cyclic groups of orderp). Hence show that, in
general,G/Φ(G) is elementary abelian, and that if the cosetsΦ(G)g1, . . . ,Φ(G)gr

form a basis forG/Φ(G) (as vector space overZp, theng1, . . . ,gr generateG.

15. For any groupG, define two parameters as follows:

• d(G) is the minimum number of elements in a generating set forG;

• µ(G) is the maximum number of elements in a minimal generating set forG
(where a generating setS is minimal if no proper subset ofS is a generating
set).

(a) LetG be the symmetric groupSn, wheren≥ 3. Show thatd(G) = 2 and
µ(G)≥ n−1. [Remark:In fact it was proved by Julius Whiston thatµ(G) = n−1,
but the proof is much more complicated.]

(b) Prove thatµ(G) ≤ `(G), where`(G) is the subgroup length ofG (see
Problem 3 above).

(c) Prove that, ifG is a p-group, thenµ(G) = d(G). Is the converse true?
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16. (a)** Let A andB be nilpotent normal subgroups of a groupG. Prove thatAB
is a nilpotent normal subgroup.

(b) Deduce thatG contains a unique maximal nilpotent normal subgroup.
(This subgroup is called theFitting subgroupof G, denoted byF(G).)

(c) Show that, ifG is a finite group, thenΦ(G)≤ F(G). Give an example of a
group where these two subgroups are not equal.

17. A groupG is said to befinitely generatedif it is generated by a finite set of
elements.

(a) Prove that, ifG is finitely generated andH is finite, then there are only
finitely many homomorphisms fromG to H.

(b) Prove that, ifG is finitely generated, then the number of subgroups ofG
of indexn is finite, for any natural numbern. [Hint: A subgroup of indexn gives
rise to a homomorphism fromG to Sn.]

(c) Prove that, ifG is generated byd elements, thenG has at mostn(n!)d

subgroups of indexn for anyn.

(d) Find a group which is not finitely generated but has only finitely many
subgroups of indexn for anyn.

18. (a) Show that, ifH is a proper subgroup of the finite groupG, then there is a
conjugacy class inG which is disjoint fromH.

(b) Show that this is not the case for infinite groups. (You may wish to consider
the groupG= GL(n,F), whereF is an algebraically closed field, withH the group
of upper triangular matrices.)

19. LetG be a permutation group on the set{1, . . . ,n} (a subgroup of the symmet-
ric groupSn). Let pi(G) be the proportion of elements ofG which have precisely
i fixed points, and letFj(G) be the number of orbits ofG on orderedj-tuples of
distinct elements of{1, . . . ,n}. Define polynomialsP andQ of degreen by

• P(x) =
n

∑
i=0

pi(G)xi ,

• Q(x) =
n

∑
j=0

Fj(G)x j/ j!.
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(a)* By using the Orbit-Counting Lemma, show thatQ(x) = P(x+1).

(b) Deduce that the proportion of fixed-point-free elements inG is equal to
Q(−1).

(c) In the case thatG = Sn, show that

Q(x) =
n

∑
j=0

x j

j!
,

the Taylor series for ex truncated to degreen. Deduce that the proportion of fixed-
point-free elements inSn is approximately 1/e.

20. How many groups of order 12 are there (up to isomorphism)?

21. A Steiner triple systemis a pair(X,B), whereX is a finite set andB a
collection of 3-element subsets ofX (called triples), such that any two distinct
points ofX are contained in a unique triple. Itsorder is the cardinality ofX.

Let (X,B) be a Steiner triple system. Take a new element 0/∈ X, and define a
binary operation+ onX∪{0} by the rules

• 0+0 = 0;

• 0+x = x+0 = x, x+x = 0 for all x∈ X;

• x+y = z if {x,y,z} ∈B.

(a) Prove that(X∪{0},+) satisfies the closure, identity, inverse, and commu-
tative laws.

(b) Prove that(X∪{0},+) satisfies the associative law if and only if(X,B)
has the following property:

for all distinct u, . . . ,z∈ X, if {u,v,w}, {u,x,y}, {v,x,z} are triples,
then{w,y,z} is a triple.

(c) Deduce that a Steiner triple system satisfying the displayed property in part
(b) has order 2n−1 for some natural numbern.

(d) Construct such a system for everyn∈ N.
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22. LetG be a group generated by elementsx1, . . . ,xr . Let H be a subgroup ofG
of indexn, and letg1, . . . ,gn be right coset representatives forH in G, with g1 = 1.
For i = 1, . . . ,n and j = 1, . . . , r, put

yi j = gix jg
−1
k whereHgix j = Hgk.

(a) Show that, ifHgix j = Hgk, thenHgkx
−1
j = Hgi . Deduce that under this

hypothesisy−1
i j = gkx

−1
j g−1

i .

(b) Show that the elementsyi j , for i = 1, . . . ,n and j = 1, . . . , r, all belong to
H.

(c) Show that the elements in (b) generateH.

(d) Deduce that a subgroup of finite index in a finitely generated group is
finitely generated.

(e) By choosing the coset representatives with more care, show thatH can be
generated bynr−n+1 elements.

23. Let X = {1,2,3,4,5,6}. Following Sylvester, we define aduad to be a 2-
element subset ofX; a synthemeto be a partition ofX into three duads; and a
synthematic total(or total, for short) to be a partition of the set of duads into
synthemes. LetY be the set of totals.

(a) Show that there are 15 duads; there are 15 synthemes, each containing three
duads; there are 6 totals, each containing five synthemes. Show that the symmetric
groupS6 acts in a natural way on the sets of duads, synthemes and totals.

(b) Write Y = {y1, . . . ,y6}. Given a permutationg ∈ S6, let g∗ be the per-
mutation inS6 given by(yi)g = yig∗ for i = 1, . . . ,6, where(yi)g is the image of
yi under the induced action defined in (a). Prove that the mapσ : g 7→ g∗ is an
automorphism ofS6.

(c) Show that the stabiliser of a total fixes no point inX. Deduce thatσ is an
outer automorphism ofS6 (see Problem 9).

(d) Show that a syntheme lies in exactly two totals (i.e. a “duad of totals”); a
duad lies in three synthemes belonging to disjoint pairs of totals (i.e. a “syntheme
of totals”; and that, given an elementx of X, the five sets of three synthemes
corresponding to the duads containingx cover each pair of totals once (i.e. a
“total of totals”).

9



(e) Deduce thatσ2 is an inner automorphism ofS6.

(f)* Prove that the outer automorphism group ofS6 has order 2.

(g)** Prove that, forn 6= 6, the outer automorphism group ofS6 is trivial (that
is, every automorphism is inner).
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