
Solutions to odd-numbered exercises
Peter J. Cameron,Introduction to Algebra, Chapter 1

1.1 This exercise should really have been marked with two stars! Apologies for starting
the book with such a hard exercise.

We begin with a lemma.

Lemma Any point is on at least three lines.

Proof We are given that there are three non-collinear points; let us call themA,B,C.
We show first that each of these points lies on at least three lines.

The linesAB, AC andBC are all distinct. NowBC doesn’t pass throughA, so there
is a unique line throughA parallel toBC. Thus,A lies on at least three lines. The same
applies toB andC.

Now let P be any point; we show thatP lies on at least three lines. There is a line
joining P to A. If this line is AB, thenP,A,C are not collinear, so each lies on at least
three lines. Similarly if this line isAC. So we can assume that each of the lines joining
P to A,B,C contains only one of these three points; so these three lines are all distinct.
�

(a) To prove the statement, we argue by contradiction. First, if A is the statement
‘every line passes through at least two points’, then not-A is the statement ‘some line
passes through at most one point’. So we have two jobs to do. First, assume thatL is a
line passing through no points, and derive a contradiction; then assume thatL is a line
passing through just one point, and derive a contradiction.

Suppose thatL passes through no points. Then the pointA does not lie onL; soA
lies on a unique line parallel toL. But sinceL contains no points, every line is parallel
to it; soA lies on only one line, contradicting our lemma.

Now suppose thatL passes through just one pointP. We may suppose thatP 6= A.
ThenA lies on a unique line parallel toL, and a unique line containingP; hence only
two lines altogether, contradicting our Lemma.

(b) Take a lineL. Choose any pointP on L, and letL′ be another line containingP.
ThenL andL′ are not parallel. So every line parallel toL′ must fail to be parallel to
L (by Theorem 1.3), so that the number of points onL is equal to the number of lines
parallel toL′.

Next, we show that if two linesL andL′ are not parallel, then they contain the same
number of lines. ForL andL′ meet at a pointP, and by our strengthened lemma, there
is a third lineL′′ containingP. Now the number of points onL is equal to the number
of lines parallel toL′′; but so is the number of points onL′. So these numbers are equal.

1.3 First we show that, ifn is even, thenn2 is even. For suppose thatn is even; say
n = 2m. Then

n2 = 4m2 = 2(2m2),

which is even since it is twice something (namely, twice 2m2).
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Now for the converse: ifn2 is even thenn is even. We replace this statement by its
contrapositive (which is logically equivalent): ifn is odd, thenn2 is odd. So letn be
odd; sayn = 2m+1. Then

n2 = (2m+1)2 = 4m2 +4m+1 = 2(2m2 +2m)+1,

which is odd, as required.

1.5 (a) Just as in Pythagoras’ proof, but we need a better version of the fact about odd
and even numbers:

If n2 is divisible by the prime numberp, thenn is divisible byp.

There is a more general form of this, which we will discuss in Chapter 2. You may
assume it for now.

If the prime numberp divides a productab, then it divides eithera or b.

Now if p dividesn2 = n·n, then eitherp dividesn or p dividesn; that is, more simply,
p dividesn.

(b) Follow Pythagoras again. This time we need

If n3 is even, thenn is even.

This is for you!

1.7 Look ahead for the proof.

1.9 The argument is not valid. We have assumed the converse of Pythagoras’ Theorem,
i.e. if the sidesa,b,c of a triangle satisfyc2 = a2+b2, then the triangle is right-angled.

We could make the argument valid by proving the converse of Pythagoras’ Theo-
rem; but that is another matter!

1.11 The computation is complicated but elementary. We have(a+bi)2 = (a2−b2)+

2abi. With a =
√

1
2(x+

√
x2 +y2) andb =

√
1
2(−x+

√
x2 +y2), we have

a2−b2 =
1
2
(x+

√
x2 +y2)− 1

2
(−x+

√
x2 +y2) = x,

and

2ab=
√(

x+
√

x2 +y2
)(
−x+

√
x2 +y2

)
=

√
−x2 +x2 +y2 = y,

using the rule for the difference of two squares in the second line.

Of course, ifx and y are real numbers, thenx2 + y2 ≥ 0, so
√

x2 +y2 is a real
number. Also,x2 ≤ x2 + y2, so |x| ≤

√
x2 +y2; thus bothx+

√
x2 +y2 and−x+√

x2 +y2 are non-negative, so their square roots are real numbers also.
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1.13(a) Forn = 0, the sum of no numbers is 0, and 0×1/2 = 0, so the induction starts.
Suppose that the sum of the firstn numbers isn(n+1)/2. Then the sum of the first

n+1 numbers is
n(n+1)

2
+(n+1) =

(n+1)(n+2)
2

,

which is what we get by substitutingn+1 for n in the formula.

(b) I don’t know how to prove this directly by induction. Instead, use part (a); we have
to show that

13 +23 + · · ·+n3 =
n2(n+1)2

4
.

As usual, the induction starts.
Suppose that the equation above is true. Then

13 + · · ·+n3 +(n+1)3 =
n2(n+1)2

4
+(n+1)3 =

(n+1)2(n+2)2

4
,

after some manipulation.

Remark There is a geometric proof of this identity. If you take 1 square of side 1,
2 squares of side 2, . . . ,n squares of siden, then (after cutting one of the squares of
each even side into two pieces) they can be fitted together to form a square of side
1+2+ · · ·+n. Thus

1·12 +2·22 + · · ·+n·n2 = (1+2+ · · ·+n)2,

as required. Can you find how to do this? You can write it as an induction proof, since
once you have done it for the squares with side up ton, you put the squares with side
n+1 as a border along two sides of the big square. Here is the picture forn = 3:

1.15 (a) Forn = 1, the left-hand expression is 1/3, and so is the right-hand expression.
Suppose that the equation holds for the valuen; that is, suppose that

1
1×3

+
1

3×5
+ · · ·+ 1

(2n−1)× (2n+1)
=

n
2n+1

.
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Then

1
1×3

+ · · ·+ 1
(2n+1)× (2n+3)

=
n

2n+1
+

1
(2n+1)(2n+3)

=
n(2n+3)+1

(2n+1)(2n+3)

=
(n+1)(2n+1)
(2n+1)(2n+3)

=
n+1
2n+3

,

[On the left, we have the sum ofn+1 terms, of which the firstn form the sum whose
value we know by assumption. So the total is this sum plus then+1st term.] The final
expression is what is obtained by substitutingn+1 for n in the expression on the right.
So we have done the inductive step.

(b) Forn = 4, the two sides of the inequality are both equal to 256, so it is true. [Note
that it is not true forn = 1,2,3.]

For the inductive step, we see that in going fromn to n+1, the left-hand expression
is multiplied by 4. If we can show that the right-hand expression is multiplied by a
factor which is not more than 4, we will get the required result. So we have to prove
that(n+1)2/n2 ≤ 4. The proof goes like this: Ifn≥ 4, then

(n+1)2 = n2 +2n+1≤ n2 +2n2 +n2 = 4n2,

since 2n≤ 2n2 and 1≤ n2.
So, assuming the result forn, we have 4n ≥ 16n2, and so

4n+1 = 4·4n

≥ 4·16n2 by the induction hypothesis

= 16·4n2

≥ 16(n+1)2 by what we just proved,

o the inductive step is done.

(c) For n = 2, the left-hand expression is 1/(22−1) = 1/3, while the right-hand ex-
pression is 3/4−1/4−1/6 = 1/3.

Suppose the result is true forn, that is,

1
22−1

+
1

32−1
+ · · ·+ 1

n2−1
=

3
4
− 1

2n
− 1

2(n+1)
.

Adding 1/((n+1)2−1) to both sides gives

3
4
− 1

2n
− 1

2(n+1)
+

1
n(n+2)

=
3
4
− 1

2(n+1)
− 1

2(n+2)
,

since 1/(2n)−1/(n(n+2)) = 1/2(n+2).
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1.17 The sequence of primes starting atp1 = 2 is

2,3,7,43,13,53,5,6221671

because

2+1 = 3 is prime;

2·3+1 = 7 is prime;

2·3·7+1 = 43 is prime;

2·3·7·43+1 = 1807= 13·139;

2·3·7·43·13+1 = 23479= 53·443;

2·3·7·43·13·53+1 = 1244335= 5·248867;

2·3·7·43·13·53·5+1 = 6221671 is prime.

Proposition Whatever prime we start with, we always obtain 2 in the sequence.

Proof If we start with 2 (as above), then we certainly get it! Any other starting prime
p would be odd; thenp+1 is even, and its smallest prime factor is 2, so we would get
2 at the second stage. �

The question about whether 3 always arises is much harder, and there is no known
proof that it always occurs.

We can say something. If we start with 3, of course we get it. If we start with 2, we
get 3 at the second step.

Any other prime is of the form 6k+ 1 or 6k+ 5. [Why?] If we start with an odd
prime of the form 6k+1, we get 2 at the next step (as explained). Then at the following
step, we take the smallest prime dividing(6k+1)×2+1= 12k+3, which is obviously
3. But if we start with a prime of the form 6k+5, at the next step we take the smallest
prime dividing 12k+ 11, which cannot be 3. You can continue this process for any
number of steps without getting a guarantee that the prime 3 occurs.

For p1 = 5, it takes four steps to arrive at 3: the primes we get are 5, 2, 11, 3. For
p1 = 59, it takes five steps; forp1 = 479, it takes six; forp1 = 821, it takes seven; for
p1 = 1871, it takes eight; but the numbers are too big for the computer to find a prime
for which it takes nine steps to reach 3. The problem is that the intermediate numbers
get very large!

This is the main difficulty in the calculation. For example, withp1 = 269, we obtain
the sequence

269,2,7,3767,3,42559567,1811316700667923

of primes, and the next value ofN is 3280868190118528357557620466007, which is
too big for the computer to factorise easily.

1.19 The argument is (obviously) not valid: I can clearly find two horses with different
colours, so the inductive step from 1 to 2 must fail. Look at that step. Forn = 2, we
haven−1 = 1, so the purported argument says
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• H1 has the same colour (as itself), and

• H2 has the same colour (as itself).

We can’t conclude thatH1 andH2 have the same colour. The argument given implicitly
assumes that the sets{H1, . . . ,Hn−1} and{H2, . . . ,Hn} overlap; but forn= 2 they don’t.

1.21 Takea = 1, b = c = 2
3. Then

abb+cc = 1×b4
3c = 1,

ab+ac = 2
3 + 2

3 =
4
3
,

babc+ bacc = 0+0 = 0.

1.23 In the previous exercise you have deduced the Remainder Theorem, so I will use
that. If f (x) = xk−1, then f (1) = 0, sox−1 dividesxk−1 (as polynomials), which
means that

xk−1 = (x−1)g(x)

for some polynomialg(x) with integer coefficients. (Can you write down the polyno-
mial g(x)?)

Substituting the natural numberm for x, we find thatmk−1 = (m−1)g(m), and
g(m) is an integer; som−1 dividesmk−1.

Putm= 2l ; thenm−1 = 2l −1 dividesmk−1 = 2kl −1.
Finally, suppose (arguing by contradiction) that 2n−1 is prime butn is composite,

sayn = kl wherek and l are greater than 1. Then 2l −1 divides 2n−1; and 2l −1 is
not 1 (sincel > 1 and is not 2n−1 (sincel < n). But this contradicts the assumption
that 2n−1 is prime.

1.25 Suppose that multiplication of polynomials satisfies the commutative law: that is,
f (x)g(x) = g(x) f (x) for any two polynomialsf (x) andg(x).

Taking polynomials of degree zero, sayf (x) = a, g(x) = b, we see thatab= ba; so
multiplication of the coefficients is commutative.

Taking polynomials of degree 1, sayf (x) = ax+b, g(x) = x+1, we see that

(ax+b)(x+1) = ax2 +(a+b)x+b = ax2 +(b+a)x+b.

We conclude thata+b = b+a, so that addition is commutative.
Finally, taking polynomials of degree 2, sayf (x) = ax2+bx+c andg(x) = x2+x+

1, we see that the term inx2 in (ax2+bx+c)(x2+x+1) and(x2+x+1)(ax2+bx+c)
are (a+ b) + c and (c+ b) + a = a+ (b+ c), respectively; so the addition must be
associative. (I assumed that in adding up three numbers we add the first two and then
add the result to the third.)

If you were watching closely, you will see that I have used the number 1 as a
coefficient of the polynomials in this argument. Is this essential?

1.27 On page 33, we saw thatA⊆ B means

(x∈ A)⇒ (x∈ B)
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for all elementsx. Also,B⊆ A means

(x∈ B)⇒ (x∈ A)

for all x. So both conditions together are equivalent to

(x∈ A)⇔ (x∈ B)

for all x; and this is the definition ofA = B.

1.29 A function f : {1,2, . . . ,n} → A is specified byn values f (1), f (2), . . . , f (n). So
for every function f , we can construct an element ofAn (an n-tuple (a1, . . . ,an) of
elements ofA), wherea1 = f (1), a2 = f (2), . . . ,an = f (n). This defines a functionF
from the set of functions toAn. We see that

• F is one-to-one: since ifF( f ) = F(g), then f (i) = g(i) for all i, so f = g as
functions.

• F is onto: given anyn-tuple(a1, . . . ,an), we can define a functionf which maps
1 toa1, . . . ,n to an. Formally, as a set of ordered pairs, we have

F = {(1,a1),(2,a2), . . . ,(n,an)}.

SoF is a bijection between these two sets.

1.31 (a) If we put 0 into the black box, there is no output: 1/0 is not defined. We could
say instead

F(x) =
{

1/x if x 6= 0,
0 if x=0.

(b) This is a bit more subtle. The roots of the quadraticx2−3x+2 = 0 arex = 1
andx = 2: so isF(−3,2) = (1,2) or is it (2,1)? We are given no rule to decide.

The problem can be resolved by inventing a rule about which of the two roots to
put first. For example, if the real parts of the two roots are unequal, we could put the
one with smaller real part first; if the real parts are equal but the imaginary parts are
unequal, we could put the one with smaller imaginary part first; and if both real and
imaginary parts are equal, then the two roots are equal, and it doesn’t matter which one
we put first! In the example, this rule would giveF(−3,2) = (1,2). Any rule would
do as long as it gives a definite result.

A more sophisticated idea is to change the definition of the codomain of the func-
tion. Let C{2} denote the set of all subsets ofC consisting of one or two elements.
Then the functionF mapsC2 → C{2}. The point is that the two roots of the quadratic
form a set with two elements (if they are unequal) or one element (if they are equal),
and the order is not important.

1.33 An equivalence relation onA is a certain set of ordered pairs of elements ofA. If A
is the empty set, there can be no pairs, so the only relation onA is the “empty relation”,
and you can check that the empty relation is an equivalence relation. So there is one
equivalence relation on the empty set.
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The parts of a partition are required to be non-empty, so at first you might think
that there are no partitions of the empty set. But it is not required that theset of parts
is non-empty! So, again, there is one partition of the empty set, namely the empty set
of subsets.

So the Equivalence Relation Theorem is valid.

1.35 It is easier to describe the five partitions:

{{1,2,3}}
{{1},{2,3}}
{{1,2},{3}}
{{1,3},{2}}
{{1},{2},{3}}

(As a subsidiary exercise, write out the equivalence relation corresponding to each
partition. In the last case it is the relation of equality.)

There are fifteen equivalence relations on a set of size 4. Of these, one has a single
part; four have parts of sizes 1 and 3; three have parts of sizes 2 and 2; six have parts
of sizes 1, 1 and 2; and one has four parts of size 1.

Remark The number of partitions of a set of sizen is called then-th Bell number
and is denoted byBn. As a further exercise, show thatB0 = 1 and, forn > 0,

Bn =
n

∑
k=1

(
n−1
k−1

)
Bn−k.

You can use this relation to check thatB3 = 5 andB4 = 15.

1.37 Let[a] denote the equivalence class of KER(F) containing the elementa. Thus,
[a] consists of all elementsa′ ∈ A for whichF(a′) = F(a).

Defineφ from the set of equivalence classes of KER(F) to B by φ([a]) = F(a).
This is well-defined because, if we had chosen a different representativea′ of [a], then
F(a) = F(a′) by definition. The functionφ actually maps onto Im(F). If is one-to-one;
for, if φ([a1]) = φ([a2]), thenF(a1) = F(a2), so thata1 anda2 actually lie in the same
equivalence class of KER(F): that is,[a1] = [a2]. Soφ is a bijection.

1.39 (a) We show that≡ is an equivalence relation.

• Choosex ∈ X. Then x ∼ x and x ∼ x (because∼ is reflexive); sox ≡ x by
definition. So≡ is reflexive.

• Suppose thatx≡ y. Then, by definition,x∼ y andy∼ x; so y∼ x andx∼ y,
whencey≡ x. Thus≡ is symmetric.

• Suppose thatx≡ yandy≡ z. Thenx∼ yandy∼ z, sox∼ z(since∼ is transitive).
Also z∼ y andy∼ x, soz∼ x. Thusx≡ z; and so≡ is transitive.

(b) We are given thatx∼ y, and thatx≡ x1 andy≡ y1. Thenx1 ∼ x; x∼ y; and
y∼ y1. By transitivity of∼, we havex1 ∼ y1 as required.
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Remark This means that there is a relation≤ defined on the set of equivalence
classes of≡ by the rule

[x]≤ [y] if and only if x∼ y.

(Part (b) shows that this relation is well-defined, independent of the choice of represen-
tatives.) Now, if[x]≤ [y] and[y]≤ [x], thenx∼ y andy∼ x, sox≡ y and[x] = [y].

Thus the relation≤ is irreflexive and transitive, and is a partial order on the equiv-
alence classes.

A reflexive and transitive relation such as∼ is called apreorder.

1.41 More empty set theory! IfA is the empty set, thenA2 is also the empty set, and
it has just one subset, namely itself. So there is only one candidate for a function from
A to A. This “empty function” really is a function, and it is one-to-one and onto, so
is a permutation. (Here is one way to see this. Could the empty functionF fail to be
one-to-one? This could only happen if there exist two different pointsa1,a2 ∈ A such
thatF(a1) = F(a2); but this can never happen since there are no points inA. Similarly,
could it fail to be onto? This could only happen if there is a point inA to which nothing
is mapped byF . But there is no point inA.)

1.43 The order of a permutation is the least common multiple of its cycle lengths. So,
if the order is odd, then every cycle length is odd. Now to decide on the parity of a
permutation, we calculaten− c, wherec is the number of cycles. If the cycle lengths
arex1, . . . ,xc, then

n−c = (x1−1)+(x2−1)+ · · ·+(xc−1),

and if all the cycle lengths are odd, then each termxi −1 is even, and the sum is even.
The converse is false. The permutation(1,2)(3,4) has order lcm(2,2) = 2 which

is even, butn−c = 4−2 = 2 so it is an even permutation.

1.45 (a) The binomial coefficient
(p

k

)
is given by the formula(

p
k

)
=

p!
k!(p−k)!

=
p(p−1) · · ·1

k· · ·1· (p−k) · · ·1
.

There is a factorp in the numerator but no factorp in the denominator, since 1≤ k≤
p−1. As p is prime, it cannot be cancelled out by any of the factors in the denominator
(which are all smaller thanp). So the result is a multiple ofp. (b) The proof is by

induction onn. Forn = 1, we certainly have 1p = 1, so 1p ≡p 1.
For the inductive step we assume thatnp ≡p n and have to prove that(n+1)p ≡p

n+1. By the Binomial Theorem we have

(n+1)p =
p

∑
k=0

(
p
k

)
nk1p−k = np +

p−1

∑
k=1

(
p
k

)
nk +1.

By part (a), all the terms in the sum fromk = 1 to p−1 are multiples ofp, and so all
this part of the expression is divisible byp. Thus we have

(n+1)p ≡p np +1≡p n+1,

where the second step comes from the induction assumptionnp ≡p n.
By induction, the statementnp ≡p n is proved for alln≥ 1.
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1.47 Let

A =
(

a b
c d

)
,B =

(
e f
g h

)
,C =

(
p q
r s

)
.

The distributive law asserts thatA(B+C) = AB+AC. I will do only part of the calcu-
lation here; you can complete it yourself.

We have

A(B+C) =
(

a b
c d

)(
e+ p f +q
g+ r h+s

)
=

(
a(e+ p)+b(g+ r) . . .

. . . . . .

)
,

while

AB+AC=
(

ae+bg . . .
. . . . . .

)
+

(
ap+br . . .

. . . . . .

)
.

So we have to show that

a(e+ p)+b(g+ r) = (ae+bg)+(ap+br).

To do this, we expand the brackets on the left (using the distributive law) to get(ae+
ap)+(bg+br). Then re-position the brackets (using the associative law for addition)
to get ae+ (ap+ bg) + br. Then interchange the two terms in brackets (using the
commutative law for addition) to getae+ (bg+ ap) + br, and finally rearrange the
brackets again to get(ae+bg)+(ap+br).

So we use the distributive law and the associative and commutative laws for addi-
tion in the proof.

1.49 LetA = (ai j ) and B = (bi j ) be upper triangular matrices. This means that, if
i > j, thenai j = bi j = 0. Let A+ B = C = (ci j ), so thatci j = ai j + bi j . If i > j, then
ci j = ai j +bi j = 0+0 = 0, soC is upper triangular.

Now let AB= D = (di j ), so thatdi j = ∑n
k=0aikbk j. Now suppose thati > j. For

each value ofk, eitheri > k or k > j. (For if this were not so, theni ≤ k andk≤ j,
which would imply i ≤ j, contrary to our assumption.) This means that eitheraik or
bk j is zero, so that their product is zero. But then every term in the sum is zero, so that
di j = 0. This shows thatD is upper triangular.

The multiplication is not commutative. Here is an example:(
2 1
0 1

)(
1 2
0 2

)
=

(
2 4
0 2

)
,

(
1 1
0 2

)(
2 1
0 1

)
=

(
2 2
0 2

)
.

1.51 Subtracting twice the first equation from the second, and three times the first from
the third, gives

y+4z = 6,

2y+8z = c−30.

Now subtracting twice the first (new) equation from the second gives 0= c−42. So
there is no solution unlessc = 42.

If c = 42, then we have shown that the last equation is a consequence of the other
two, so can be deleted. Now we can takez to be arbitrary, and findy = 6− 4z, x =
10−2y−3z= 5z−2.
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1.53 The truth table looks like this:

p q p⇒ q q⇒ p (p⇒ q)∨ (q⇒ p)
T T T T T
T F F T T
F T T F T
F F T T T

Since the formula always has the valueT, it is logically valid.
The result could be stated informally: “Given any two propositions, one logically

implies the other”, which sounds paradoxical!

1.55x∈ A4B holds if (and only if)x∈ A or x∈ B, but not both. So we have to show
that¬(p⇔ q) is true if and only if one ofp andq is true and the other false. This is
the same as showing thatp⇔ q is true if and only if both or neither ofp andq is true,
which is precisely the definition of⇔.

The formulap⇒ q is true in all cases except wherep is true andq is false, that is,
in all cases except wherex∈ A andx /∈ B. In other words, the corresponding set is the
complement ofA∩B′, which (by De Morgan’s Law) isA′∪B.
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