Solutions to odd-numbered exercises
Peter J. Cameron,Introduction to Algebrg Chapter 1

1.1 This exercise should really have been marked with two stars! Apologies for starting
the book with such a hard exercise.
We begin with a lemma.

Lemma Any pointis on at least three lines.

Proof We are given that there are three non-collinear points; let us call y&)C.
We show first that each of these points lies on at least three lines.

The linesAB, AC andBC are all distinct. NowBC doesn’t pass through, so there
is a unique line througl parallel toBC. Thus,A lies on at least three lines. The same
applies toB andC.

Now let P be any point; we show th#& lies on at least three lines. There is a line
joining P to A. If this line is AB, thenP, A,C are not collinear, so each lies on at least
three lines. Similarly if this line i®\C. So we can assume that each of the lines joining
P to A, B,C contains only one of these three points; so these three lines are all distinct.
O

(a) To prove the statement, we argue by contradiction. First, if A is the statement
‘every line passes through at least two points’, then not-A is the statement ‘some line
passes through at most one point’. So we have two jobs to do. First, assurhéstiaat
line passing through no points, and derive a contradiction; then assunieishaiine
passing through just one point, and derive a contradiction.

Suppose thdt passes through no points. Then the pdirttoes not lie or.; SOA
lies on a unique line parallel to. But sincel. contains no points, every line is parallel
to it; soAlies on only one line, contradicting our lemma.

Now suppose thdt passes through just one polit We may suppose th&t+# A.
ThenA lies on a unique line parallel to, and a unique line containing, hence only
two lines altogether, contradicting our Lemma.

(b) Take a lineL. Choose any poin® on L, and letL’ be another line containing.
ThenL andL’ are not parallel. So every line parallel itb must fail to be parallel to
L (by Theorem 1.3), so that the number of pointsLois equal to the number of lines
parallel toL'.

Next, we show that if two linek andL’ are not parallel, then they contain the same
number of lines. FoL andL’ meet at a poinP, and by our strengthened lemma, there
is a third linel” containingP. Now the number of points ohis equal to the number
of lines parallel td_”; but so is the number of points & So these numbers are equal.

1.3 First we show that, ifi is even, them? is even. For suppose thatis even; say

n=2m. Then
n? = 4n? = 2(2n?),

which is even since it is twice something (namely, twice®



Now for the converse: if? is even them is even. We replace this statement by its
contrapositive (which is logically equivalent): rifis odd, them? is odd. So len be
odd; sayn =2m+ 1. Then

n? = (2m+1)? = 4n? + 4m+ 1= 2(2n? +2m) + 1,

which is odd, as required.

1.5 (a) Just as in Pythagoras’ proof, but we need a better version of the fact about odd
and even numbers:

If n? is divisible by the prime numbeg, thenn is divisible byp.

There is a more general form of this, which we will discuss in Chapter 2. You may
assume it for now.

If the prime numbep divides a produchb, then it divides eithea or b.

Now if p dividesn? = n-n, then eitherp dividesn or p dividesn; that is, more simply,
p dividesn.

(b) Follow Pythagoras again. This time we need
If n®is even, them is even.

This is for you!
1.7 Look ahead for the proof.

1.9 The argument is not valid. We have assumed the converse of Pythagoras’ Theorem,
i.e. if the sidesa, b, ¢ of a triangle satisfg? = a? 4 b?, then the triangle is right-angled.

We could make the argument valid by proving the converse of Pythagoras’ Theo-
rem; but that is another matter!

1.11 The computation is complicated but elementary. We tavebi)? = (a2 —b?) +
2abi. With a= /3 (x+ /X2 +y2) andb = \/%(—x+ x2+y?), we have

[

b = S (xR YR) - (xR YE) =

2 2

and

2ab= \/(x+ X2+y2) (—x+ \/x2+y2) =V R+x+y2=y,
using the rule for the difference of two squares in the second line.

Of course, ifx andy are real numbers, thext +y? > 0, so/x2+y2 is a real
number. Also,x? < X242, so|x| < /X2 +y?; thus bothx + /X2 +y2 and —x +
/X2 +y?2 are non-negative, so their square roots are real numbers also.



1.13(a) Fom = 0, the sum of no numbers is 0, anck@/2 = 0, so the induction starts.
Suppose that the sum of the firshumbers isa(n+1)/2. Then the sum of the first
n+ 1 numbers is
n(n+1) (n+1)(n+2)
2 2 ’
which is what we get by substituting+ 1 for n in the formula.

+(n+1) =

(b) I don’t know how to prove this directly by induction. Instead, use part (a); we have
to show that ) 5
n-(n+1
B34 4= %.
As usual, the induction starts.
Suppose that the equation above is true. Then

3 N(n+1)2
o 4

s_ (n+1)%(n+2)?

Bt 44 (n+1) +(n+1) 2 7

after some manipulation.

Remark There is a geometric proof of this identity. If you take 1 square of side 1,

2 squares of side 2, ..n,squares of side, then (after cutting one of the squares of
each even side into two pieces) they can be fitted together to form a square of side
14+2+---4n. Thus

1-1242.224 ... 4n-n’=(14+2+---+n)?,

as required. Can you find how to do this? You can write it as an induction proof, since
once you have done it for the squares with side up, tgou put the squares with side
n+ 1 as a border along two sides of the big square. Here is the pictune<f@:

1.15 (a) Fom = 1, the left-hand expression ig3, and so is the right-hand expression.
Suppose that the equation holds for the valuthat is, suppose that

1 1 1 n

1x3 7 3x5 T x(@ntD) 2041




Then

1 1 n

Ix3 Ty x(@n13) 20+l (@n+L)(2n+3)
n2n+3)+1

(2n+1)(2n+3)
(n+1)(2n+1)

(2n+1)(2n+3)

n+1

n+3’

[On the left, we have the sum of+ 1 terms, of which the firah form the sum whose
value we know by assumption. So the total is this sum plusithést term.] The final
expression is what is obtained by substituting 1 for n in the expression on the right.
So we have done the inductive step.

(b) Forn = 4, the two sides of the inequality are both equal to 256, so it is true. [Note
that it is not true fon=1,2,3.]

For the inductive step, we see that in going frome n+ 1, the left-hand expression
is multiplied by 4. If we can show that the right-hand expression is multiplied by a
factor which is not more than 4, we will get the required result. So we have to prove
that(n+1)?/n? < 4. The proof goes like this: I > 4, then

(N+1)2=n+2n+1<n’+2n%+n? =4n?,

since 21 < 2n? and 1< 2.
So, assuming the result far we have 4 > 16n2, and so

4n+1 = 4. 4n
4.-16n? by the induction hypothesis
16- 4n?

> 16(n+1)? by what we just proved,

Y

o the inductive step is done.

(c) Forn = 2, the left-hand expression ig @2 — 1) = 1/3, while the right-hand ex-
pressionis p4—1/4—-1/6=1/3.
Suppose the result is true forthat is,
1 1 1 3 1 1

2 1t 1T T w17 a 2 2nt D)

Adding 1/((n+1)? — 1) to both sides gives
3 1 1 1 3 1 1

2720 20+1) nint2) 4 2(n+1) 2(n+2)
since %(2n) —1/(n(n+2)) = 1/2(n+2).



1.17 The sequence of primes startingpat= 2 is
2,3,7,43 13 53,5,6221671
because

2+1=3is prime;

2-34+1=7is prime;

2-3-74+1=43is prime;
2-3-7-43+1=1807=13-139;
2-3:7-43-13+1=23479=53-443;
2-3-7-43-13-53+1=1244335=5-248867;
2-3-7-43-13-53-5+1=6221671 is prime

Proposition Whatever prime we start with, we always obtain 2 in the sequence.

Proof If we start with 2 (as above), then we certainly get it! Any other starting prime
p would be odd; themp+ 1 is even, and its smallest prime factor is 2, so we would get
2 at the second stage. O

The question about whether 3 always arises is much harder, and there is no known
proof that it always occurs.

We can say something. If we start with 3, of course we get it. If we start with 2, we
get 3 at the second step.

Any other prime is of the form16+ 1 or 6+ 5. [Why?] If we start with an odd
prime of the form &+ 1, we get 2 at the next step (as explained). Then at the following
step, we take the smallest prime dividif@k+ 1) x 2+ 1= 12k+ 3, which is obviously
3. But if we start with a prime of the formkét- 5, at the next step we take the smallest
prime dividing 1+ 11, which cannot be 3. You can continue this process for any
number of steps without getting a guarantee that the prime 3 occurs.

For p; = 5, it takes four steps to arrive at 3: the primes we get are 5, 2, 11, 3. For
p1 = 59, it takes five steps; fqu; = 479, it takes six; fop; = 821, it takes seven; for
p1 = 1871, it takes eight; but the numbers are too big for the computer to find a prime
for which it takes nine steps to reach 3. The problem is that the intermediate numbers
get very large!

This is the main difficulty in the calculation. For example, with= 269, we obtain
the sequence

2692,7,3767,3,425595671811316700667923

of primes, and the next value bdfis 3280868190118528357557620466007, which is
too big for the computer to factorise easily.

1.19 The argument is (obviously) not valid: | can clearly find two horses with different
colours, so the inductive step from 1 to 2 must fail. Look at that step.nFoR, we
haven—1 =1, so the purported argument says



e Hj has the same colour (as itself), and
e Hy has the same colour (as itself).

We can’t conclude that; andH, have the same colour. The argument given implicitly
assumesthatthe sdtds,...,Hn_1} and{H,,...,Hn} overlap; but fom = 2 they don't.

1.21 Takea=1,b=c= 2. Then
alb+c] =1x[3] =1,

ab+ac =2+2
lab]+]ac] =0+0 =

1.23 In the previous exercise you have deduced the Remainder Theorem, so | will use
that. If f(x) = x¥— 1, thenf(1) = 0, sox— 1 dividesx — 1 (as polynomials), which
means that

XK —1=(x—1)g(x)

for some polynomiag(x) with integer coefficients. (Can you write down the polyno-
mial g(x)?)

Substituting the natural numbet for x, we find thatmk — 1 = (m— 1)g(m), and
g(m) is an integer; son— 1 dividesm¥ — 1.

Putm=2'; thenm—1=2' —1 dividesmk -1 = 2K —1.

Finally, suppose (arguing by contradiction) th&t-21 is prime butn is composite,
sayn = kl wherek and| are greater than 1. Theh21 divides 2 —1; and 2—1is
not 1 (sincd > 1 and is not 2— 1 (sincel < n). But this contradicts the assumption
that 2' — 1 is prime.

1.25 Suppose that multiplication of polynomials satisfies the commutative law: that is,
f(x)9(x) = g(x) f (x) for any two polynomialsf (x) andg(x).

Taking polynomials of degree zero, séfx) = a, g(x) = b, we see thaab= ba; so
multiplication of the coefficients is commutative.

Taking polynomials of degree 1, sdyx) = ax+b, g(x) = x+ 1, we see that

(ax+b)(x+1) = @l + (a+b)x+b=a + (b+a)x+b.

We conclude thaa + b = b+ a, so that addition is commutative.

Finally, taking polynomials of degree 2, ségx) = ax? +bx+candg(x) = x>+ x+
1, we see that the term i in (ax? + bx+¢) (X% +x+ 1) and(x? +x+ 1) (ax® + bx+c)
are (a+b)+c and(c+b)+a=a+ (b+c), respectively; so the addition must be
associative. (I assumed that in adding up three numbers we add the first two and then
add the result to the third.)

If you were watching closely, you will see that | have used the number 1 as a
coefficient of the polynomials in this argument. Is this essential?

1.27 On page 33, we saw thatC B means

(xe A)= (xeB)



for all elementx. Also, B C Ameans
(xeB)=(xeA)

for all x. So both conditions together are equivalent to
(xeA) < (xeB)

for all x; and this is the definition oA = B.

1.29 A functionf : {1,2,...,n} — Ais specified byn valuesf (1), f(2),..., f(n). So
for every functionf, we can construct an element Af (an n-tuple (as,...,an) of
elements of\), wherea; = (1), a, = f(2), ...,a, = f(n). This defines a functiok
from the set of functions t8". We see that

e F is one-to-one: since iF(f) = F(g), thenf(i) = g(i) for all i, sof =g as
functions.

e F is onto: given ann-tuple(ay, .. .,an), we can define a functioh which maps
1ltoay, ...,ntoa,. Formally, as a set of ordered pairs, we have

F={(1,a),(2,a),...,(n,an)}.

SoF is a bijection between these two sets.

1.31 (a) If we put 0 into the black box, there is no outpyf0 is not defined. We could

say instead
_[1/x ifx#£0,
Fx) = {o if x=0.

(b) This is a bit more subtle. The roots of the quadrafie- 3x+2 =0 arex=1
andx = 2: soisF(—3,2) = (1,2) oris it (2,1)? We are given no rule to decide.

The problem can be resolved by inventing a rule about which of the two roots to
put first. For example, if the real parts of the two roots are unequal, we could put the
one with smaller real part first; if the real parts are equal but the imaginary parts are
unequal, we could put the one with smaller imaginary part first; and if both real and
imaginary parts are equal, then the two roots are equal, and it doesn’t matter which one
we put first! In the example, this rule would gi¥g —3,2) = (1,2). Any rule would
do as long as it gives a definite result.

A more sophisticated idea is to change the definition of the codomain of the func-
tion. LetC!Z denote the set of all subsets Gfconsisting of one or two elements.
Then the functiorF mapsC2 — C{Z'. The point is that the two roots of the quadratic
form a set with two elements (if they are unequal) or one element (if they are equal),
and the order is not important.

1.33 An equivalence relation dkis a certain set of ordered pairs of elementa.off A

is the empty set, there can be no pairs, so the only relatighisthe “empty relation”,

and you can check that the empty relation is an equivalence relation. So there is one
equivalence relation on the empty set.



The parts of a partition are required to be non-empty, so at first you might think
that there are no partitions of the empty set. But it is not required thatethef parts
is non-empty! So, again, there is one partition of the empty set, namely the empty set
of subsets.

So the Equivalence Relation Theorem is valid.

1.35 It is easier to describe the five partitions:

{{1.2,3}}
{1}.{2.3}}
{{1.2},{3}}
{{1.3},{2}}
{1142}, {3}}

(As a subsidiary exercise, write out the equivalence relation corresponding to each
partition. In the last case it is the relation of equality.)

There are fifteen equivalence relations on a set of size 4. Of these, one has a single
part; four have parts of sizes 1 and 3; three have parts of sizes 2 and 2; six have parts
of sizes 1, 1 and 2; and one has four parts of size 1.

Remark The number of partitions of a set of sinds called then-th Bell number
and is denoted bB,. As a further exercise, show thBg = 1 and, fom > 0,

D /n-1
Bn: Z (k—l) ank.

K=1
You can use this relation to check tigf =5 andB, = 15.

1.37 Let[a] denote the equivalence class of KER containing the elemerat Thus,
[a] consists of all elemen® € Afor whichF (&) = F(a).

Define ¢ from the set of equivalence classes of KEERto B by ¢([a]) = F(a).
This is well-defined because, if we had chosen a different represerdatiféal, then
F(a) = F (&) by definition. The functior actually maps onto IiF). If is one-to-one;
for, if ¢([a1]) = ¢([az]), thenF (a1) = F(a2), so thatay anday actually lie in the same
equivalence class of KER): that is,[a1] = [a2]. S04 is a bijection.

1.39 (a) We show that is an equivalence relation.

e Choosex € X. Thenx ~ x andx ~ x (because~ is reflexive); sox = x by
definition. So= is reflexive.

e Suppose thax=y. Then, by definitionx ~y andy ~ x; soy ~ x andx ~y,
whencey = x. Thus= is symmetric.

e Suppose that=yandy=z Thenx~ yandy ~ z, SOX~ z(since~ is transitive).
Also z~ yandy ~ X, soz~ x. Thusx = z; and so= is transitive.

(b) We are given that ~ y, and thatx = x; andy = y1. Thenx; ~ X; X ~y; and
y ~ y1. By transitivity of ~, we havex; ~ y; as required.



Remark This means that there is a relatishdefined on the set of equivalence

classes of by the rule
[X] <[y] ifand only ifx ~ .

(Part (b) shows that this relation is well-defined, independent of the choice of represen-
tatives.) Now, if[x] < [y] and[y] < [x], thenx ~ y andy ~ X, sox =y and[x] = [y].

Thus the relatior< is irreflexive and transitive, and is a partial order on the equiv-
alence classes.

A reflexive and transitive relation such asis called apreorder.

1.41 More empty set theory! K is the empty set, theA? is also the empty set, and

it has just one subset, namely itself. So there is only one candidate for a function from
Ato A. This “empty function” really is a function, and it is one-to-one and onto, so
is a permutation. (Here is one way to see this. Could the empty funEti@i to be
one-to-one? This could only happen if there exist two different painta, € A such

thatF (a;) = F(az); but this can never happen since there are no poirs 8imilarly,

could it fail to be onto? This could only happen if there is a poirA te which nothing

is mapped byr. But there is no point ir\.)

1.43 The order of a permutation is the least common multiple of its cycle lengths. So,
if the order is odd, then every cycle length is odd. Now to decide on the parity of a
permutation, we calculate— c, wherec is the number of cycles. If the cycle lengths
arexy,...,X%, then

n—c=X-1+X-1)+ -+ *X—-1),

and if all the cycle lengths are odd, then each t&m1 is even, and the sum is even.
The converse is false. The permutatidn2)(3,4) has order Icrf2,2) = 2 which
is even, buh—c=4-—2= 2 soitis an even permutation.

1.45 (a) The binomial coefficierff) is given by the formula

P\__ P pp-1---1

k kK(p—k)! k---1-(p—k)---1
There is a factop in the numerator but no factgrin the denominator, sinced k <
p—1. Aspis prime, it cannot be cancelled out by any of the factors in the denominator
(which are all smaller thap). So the result is a multiple gb. (b) The proof is by
induction onn. Forn = 1, we certainly havefl=1, so P =, 1.

For the inductive step we assume th8t=, n and have to prove thdh+ 1)P =,
n+ 1. By the Binomial Theorem we have

(P kip_k PP\ &
(n+1P=7% (k>n P E=nPty (k>n +1
k=1

k=0

By part (a), all the terms in the sum frokn= 1 to p— 1 are multiples ofp, and so all
this part of the expression is divisible lpy Thus we have

n+HP=ynP+1=,n+1,
p p

where the second step comes from the induction assummptien, n.
By induction, the statemenf =, nis proved for alln > 1.



1.47 Let

(2 Y3 e )

The distributive law asserts tha{B +C) = AB+ AC. | will do only part of the calcu-
lation here; you can complete it yourself.
We have

A(B+C):<2 3) (Zif ﬁg)z(a(ﬁp)”fb(gﬂ) :::>’

while
AB4 AC— (ae+bg ) N (ap+br )
So we have to show that
a(e+ p) +b(g+r) = (ae+bg) + (ap+br).

To do this, we expand the brackets on the left (using the distributive law) ttaget
ap) + (bg+ br). Then re-position the brackets (using the associative law for addition)
to getae+ (ap+ bg) + br. Then interchange the two terms in brackets (using the
commutative law for addition) to gete+ (bg+ ap) + br, and finally rearrange the
brackets again to géae-+ bg) + (ap+ br).

So we use the distributive law and the associative and commutative laws for addi-
tion in the proof.

1.49 LetA = (&j) andB = (bj;) be upper triangular matrices. This means that, if
i > j, thenaj = bjj =0. LetA+B=C = (gj), so thatcjj = &j +bjj. If i > j, then
Cij = &j +bjj =04+ 0=0, soC is upper triangular.
Now let AB= D = (dij), so thatdij = 33_yaxbkj. Now suppose that> j. For
each value ok, eitheri > k or k> j. (For if this were not so, then< k andk < j,
which would implyi < j, contrary to our assumption.) This means that eitheor
by is zero, so that their product is zero. But then every term in the sum is zero, so that
dij = 0. This shows thaD is upper triangular.
The multiplication is not commutative. Here is an example:

626262 (2E-62)

1.51 Subtracting twice the first equation from the second, and three times the first from
the third, gives

y+4z = 6
2y+8 = c-—30

Now subtracting twice the first (new) equation from the second givex0- 42. So
there is no solution unlegs= 42.

If ¢ =42, then we have shown that the last equation is a consequence of the other
two, so can be deleted. Now we can taki be arbitrary, and fing = 6 — 4z, x =
10-2y—3z=5z—-2.

10



1.53 The truth table looks like this:

plalp=qg|a=p|(P=qV(@A=Dp)
T|T T T T
T|F F T T
F|T T F T
FI|F T T T

Since the formula always has the valligit is logically valid.
The result could be stated informally: “Given any two propositions, one logically
implies the other”, which sounds paradoxical!

1.55x € AA B holds if (and only if)x € A or x € B, but not both. So we have to show
that—(p < q) is true if and only if one ofp andq is true and the other false. This is
the same as showing thpt= q is true if and only if both or neither gb andq is true,
which is precisely the definition of.

The formulap = qis true in all cases except whepds true andj is false, that is,
in all cases except wherec A andx ¢ B. In other words, the corresponding set is the
complement oANB’, which (by De Morgan’'s Law) i\ UB.
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