
Solutions to odd-numbered exercises
Peter J. Cameron,Introduction to Algebra, Chapter 2

2.1 The answers are (a) No; (b) No; (c) Yes; (d) Yes; (e) No; (f) Yes; (g) Yes; (h) No;
(i) Yes; (j) No.

(a) No: The inverse law for addition (A3) fails. There is no natural numberb such
that 1+b = 0.

(In fact, if your convention is that zero is not a natural number, it doesn’t satisfy
(A2) either.)

(b) We adopted the convention that the zero polynomial doesn’t have a degree, in
which case this set is not a ring since (A2) fails.

If, however, you decide that 0 has degree−1 (or some such), then the set is still
not a ring forn > 0: the closure law for multiplication (M0) fails (ifn > 0).
The polynomialsxn andxn both belong to our set, but their productx2n does not.
[If n = 0, then we have just the constant polynomials, in other words, the real
numbers, which do indeed form a ring.]

(c) Yes: Rather than laboriously check all the axioms, let us take it for granted that
real polynomials form a ring, and apply the subring test. CertainlyZ[x] is non-
empty. If f (x) andg(x) are polynomials inZ[x] (i.e. with integer coefficients),
then so aref (x)−g(x) and f (x)g(x). SoZ[x] passes the Second Subring Test.

Alternatively, using the theorem that the polynomials over a ring form a ring, it
is clear thatZ[x] is a ring.

(d) Yes: This set is a non-empty subset ofZ[x], which we have just shown to be a ring;
so we can apply the Subring Test again. Iff (x) andg(x) are polynomials with
integer coefficients having constant term 0, then so aref (x)−g(x) and f (x)g(x).

(e) No: x2 andx3 both belong to this set, but their productx5 does not.

(f) Yes: Apply the Subring Test. Iff (2) = g(2) = 0, then( f −g)(2) = f (2)−g(2) = 0
and( f g)(2) = f (2)g(2) = 0. [We are using here the fact that, if we subtract or
multiply polynomials and then make a substitution, we get the same answer as if
we make the substitution and then subtract or multiply. Why is this?]

(g) Yes: Ifmandn are divisible by 3, then so arem−n andmn.

(h) No: the matrices

(
1 1
0 1

)
and

(
−1 0
0 −1

)
are both non-singular (they have

determinant 1), but their sum is

(
0 1
0 0

)
, which is singular. So (A0) fails.

(i) Yes: Apply the subring test (sinceC is a ring).

(j) No: This set containsx+1 andx−1 but notx2−1, so (M0) fails.
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2.3 In all cases we can apply the Subring Test since all are contained inM2(R).

(a) Not a ring. For

(
1 1
1 1

)(
2 0
0 3

)
=

(
2 3
2 3

)
, that is, the product of symmetric

matrices need not be symmetric.

(b) Not a ring. For

(
0 1
−1 0

)2

=
(
−1 0
0 −1

)
, that is, the product of skew-symmetric

matrices need not be skew-symmetric.

(c) This set is a ring. For, ifA=
(

a b
0 c

)
andB=

(
d e
0 f

)
are upper triangular, then

A−B =
(

a−d b−e
0 c− f

)
andAB=

(
ad ae+b f
0 c f

)
are both upper triangular.

• This ring is not commutative, as we saw in the solution to Exercise 1.49.

• There is an identity, namely

(
1 0
0 1

)
which is upper triangular.

• It is not a division ring since the non-zero matrix

(
0 1
0 0

)
has no inverse.

(d) This set is also a ring. The argument is similar to that in (c). This time,(
0 a
0 0

)(
0 b
0 0

)
=

(
0 0
0 0

)
; in other words, we have azero ring(all products

are zero. So

• the multiplication is commutative;

• there is no identity;

• it is not a division ring.

(e) LetA =
(

a b
−b a

)
andB =

(
c d
−d c

)
. Then

A−B =
(

a−c b−d
−(b−d) a−c

)
andAB=

(
ac−bd ad+bc

−(ad+bc) ac−bd

)
.

Both are of the correct form to belong to the setRwe are considering. So it passes
the subring test. Calculation shows that the multiplication is commutative; the

identity

(
1 0
0 1

)
belongs to the set; and, ifa andb are not both zero, then the

inverse of

(
a b
−b a

)
turns out (with a little calculation) to be

( a
a2+b2

−b
a2+b2

b
a2+b2

a
a2+b2

)
.

[Multiply it out and see!] SoR is a commutative division ring, that is, a field.
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Remark The ringR in part (e) is isomorphic to the field of complex numbers. Check
that the rules for addition and multiplication for complex numbersa+bi and for ma-

trices

(
a b
−b a

)
work in exactly the same way.

2.5 (a) We can argue informally:m·x is the sum ofm terms equal tox. So, if we add
m·x to n·x, we addm xs ton xs, givingm+n altogether; and if we add upn·x mtimes,
the effect is to addmn xs. So the results hold.

More formally, we can use induction. We can definen·x by the rules:

• 1·x = x;

• for n≥ 1, (n+1) ·x = n·x+x.

Now let us prove the first identity by induction onn.

• Starting the induction forn = 1: the left-hand side is(m+1) ·x and the right is
m·x+x, which are equal according to our definition.

• The inductive step. Suppose that(m+n) ·x = m·x+n·x. Then

(m+n+1) ·x = (m+n) ·x+x (by definition)

= (m·x+n·x)+x (by the induction hypothesis)

= m·x+(n·x+x) (by the associative law)

= m·x+(n+1) ·x (by definition).

So the result holds withn+1 replacingn, and is true for alln by induction.
The proof by induction of the second equation is for you to try!

(b) We have

n·x = x+ · · ·+x (n terms)

= (1+ · · ·+1)x (by the distributive law)

= (n·1)x
= 0x (by assumption)

= 0.

2.7 (a) Since−x is the unique additive inverse ofx, it is enough to show that(−1)x is
also an inverse ofx, that is, thatx+(−1)x = 0. This holds because

x+(−1)x = 1x+(−1)x = (1+(−1))x = 0x = 0.

(b) Again, it suffices to show that−y−x is an inverse ofx+y:

(x+y)+(−y−x) = x+(y−y)−x = x+0−x = x−x = 0.

(c) Suppose that all the axioms hold except possibly the commutative law for addi-
tion. Check that the properties of inverses, and in particular the results of (a) and (b)
above, both hold. (There is a bit more to be done here: for example, in (a), as well as
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showing thatx+(−1)x= 0, we have also to show that(−1)x+x= 0; but the argument
is quite similar.) Now we have

−x−y = (−1)(x+y) =−(x+y) =−y−x.

So addition of−x and−y is commutative, for anyx andy. Since any element has an
inverse, this actually shows that addition of arbitrary elements is commutative.

2.9. To show thatR×S is a ring, it is necessary to check the ring axioms. Every-
thing is very straightforward, since if we evaluate anything inR×S, we just get the
corresponding expressions in the two coordinates. For a simple case, consider (A4):

(r1,s1)+(r2,s2) = (r1 + r2,s1 +s2) = (r2 + r1,s2 +s1) = (r2,s2)+(r1,s1).

One point should be noted. When we write(r1 + r2,s1 + s2) or (r1r2,s1s2), the
addition and multiplication in the first coordinate are those of the ringR, while those
in the second coordinate are those ofS. So, for example, the zero element of the ring
R×S is (0R,0S), where 0R is the zero ofR and 0S is the zero ofS. If you just write
(0,0), you must make clear that 0 means two different things in the two positions.

The proof of the commutative law forR×S, assuming the commutative law forR
and forS, is much like the proofs of the other axioms. To prove the converse (the ‘only
if’ part), argue by contradiction. Ifr1r2 6= r2r1, then(r1,0)(r2,0) 6= (r2,0)(r1,0). So,
if R is not commutative, thenR×S is not commutative. Similarly forS. So, if R×S is
commutative, then bothRandSare commutative.

The argument for the identity is similar. If 1R and 1S are identities inR and S
respectively, then(1R,1S) is the identity ofR×S. Conversely, if(u,v) is an identity of
R×S, thenu andv are identities inRandSrespectively.

The answer to the last part is:R×Sis a field if and only if one of Rand Sconsists of
just one element (namely, 0), and the other is a field. For the forward implication, argue
by contradiction. Suppose that bothR andS have more than one element. Letr and
s be non-zero elements ofR andS respectively. Then(r,0S) and(0R,s) are non-zero
elements ofR×S; but their product is zero, soR×Shas divisors of zero, and cannot
be a field. If, say,R is zero, thenR×S is isomorphic toS(by means of the mappingθ
defined by(0R,s)θ = s); soR×S is a field if and only ifS is a field.

2.11. This exercise requires the verification of a whole list of axioms.
The displayed identity is easily checked:

(a·1+bi +cj +dk)(a·1−bi−cj−dk)
= (a2 +b2 +c2 +d2) ·1+(ab−ba+cd−dc)i

+(ac−ca−bd+db)j +(ad−da+bc−cb)k.

Now, lettingN = a2 +b2 +c2 +d2, we have

(a·1+bi +cj +dk)((a/N) ·1− (b/N)i− (c/N)j− (d/N)k) = 1

if N 6= 0; so non-zero elements have multiplicative inverses.
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2.13. We use the First Isomorphism Theorem. We define a functionθ from R[x] to
(R/I)[x] by the rule that

(∑anxn)θ = ∑anxn,

wherea= I +a∈R/I ; that is,θ replaces each coefficient of a polynomial by its image
under the canonical homomorphism fromR to R/I . Now θ is a homomorphism: for
example, if f = ∑anxn andg = ∑bnxn, then

( f g)θ = ∑
n

(∑
k

akbn−k)xn = ∑
n

(∑
k

akbn−k)xn = ( f θ)(gθ),

with a similar but easier calculation for addition. The kernel ofθ consists of all poly-
nomials∑anxn ∈ R[x] for whichan = 0 (that is,an ∈ I ) for all n; this is justI [x].

SoI [x] is an ideal ofR[x] andR[x]/I [x]∼= (R/I)[x].

2.15. (a) Recall thatmZ is the set of all multiples ofm. If mZ containsnZ then, in
particular,n∈ mZ, son is a multiple ofm, or m dividesn. Conversely, ifm dividesn,
sayn= mk, thennx= m(kx) for all x; so every element ofnZ is in mZ, or mZ contains
nZ.

(b) The Second Isomorphism Theorem says that there is a bijection between ideals
of Z/60Z and ideals ofZ containing 60Z. SinceZ is a PID, every ideal has the form
mZ. By (a), mZ contains 60Z if and only if m divides 60. So there are 12 ideals of
Z/60Z, corresponding to the twelve divisors of 60, viz. 1,2,3,4,5,6,10,12,15,20,30,60.

Again it follows from the Second Isomorphism Theorem that maximal ideals cor-
respond. We proved in lectures that an ideal of a PID is maximal if and only if its
generator is irreducible. So there are three maximal ideals ofZ/60Z, corresponding to
the prime divisors 2,3,5.

(c) By exactly the same argument, the number of ideals ofZ/nZ is the number of
divisors ofn, and the number of maximal ideals is the number of prime divisors.

Any divisor of n = pa1
1 · · · par

r has the formpb1
1 · · · pbr

r , wherebi lies between 0 and
ai inclusive. So there areai +1 choices ofbi for eachi. These choices are independent,
so we multiply them together to get the number of divisors, which is

(a1 +1) · · ·(ar +1).

(For n = 60= 22 ·31 ·51, this formula gives(2+1)(1+1)(1+1) = 12, in agreement
with (b) above.)

The number of prime divisors is clearlyr.

2.17. This question really asks us to prove that the formulae for addition and mul-
tiplication of polynomials work also when we think of a polynomial as a function
on the ringR, so that, lettingf (u) denote the result of substitutingu for x, we have
( f + g)(u) = f (u) + g(u) and ( f g)(u) = f (u)g(u). Both follow easily from the ax-
ioms (but note that the second equation does require (M4), the commutative law for
multiplication!)

2.19. The homomorphism is given by

(mnZ+x)θ = nZ+x.
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It is not clear that it is well defined (independent of the choice of coset representative).
To show this, suppose thatmnZ+x = mnZ+y. Thenx−y is divisible bymn, and so
certainly byn; thusnZ+x = nZ+y, as required.

Checking thatθ is a homomorphism is straightforward. It is clearly onto.

2.21. We showed in Exercise 2.3(c) thatR is a ring.
We are going to prove the whole thing in one blow, using the First Isomorphism

Theorem. You can prove parts (a) and (b) directly without too much difficulty, but a
direct proof of (c) is harder. A useful tip is that, if you are ever asked to prove that
R/I ∼= S, find a homomorphismθ : R→Swhose kernel isI and whose image isS. This
is usually much easier than fiddling round with cosets; the only problem is in finding
the homomorphism.

Defineθ : R→ Rby (
a b
0 c

)
θ =

(
a 0
0 c

)
.

(This appears to be the only reasonable definition.) Now((
a b
0 c

)
+

(
d e
0 f

))
θ =

(
a+d b+e

0 c+ f

)
θ =

(
a+d 0

0 c+ f

)
,(

a b
0 c

)
θ +

(
d e
0 f

)
θ =

(
a 0
0 c

)
+

(
d 0
0 f

)
=

(
a+d 0

0 c+ f

)
.

Similarly((
a b
0 c

)(
d e
0 f

))
θ =

(
ad ae+b f
0 c f

)
θ =

(
ad 0
0 c f

)
,(

a b
0 c

)
θ

(
d e
0 f

)
θ =

(
a 0
0 c

)(
d 0
0 f

)
=

(
ad 0
0 c f

)
.

Soθ is a homomorphism.
The image ofθ clearly isS, the set of all diagonal matrices. Its kernel is{(

a b
0 c

)
:

(
a 0
0 c

)
= O

}
= I .

Thus, by the three parts of the First Isomorphism Theorem, we conclude thatS is a
subring ofR; thatI is an ideal ofR; and thatR/I ∼= S.

2.23. Usingx to denote the coset 12Z+x, the units ofZ/12Z are 1,5,7,11 (the cosets
whose representatives are coprime to 12), and so the associate classes are

{0},{1,5,7,11},{2,10},{3,9},{4,8},{6}.

2.25 If R is an integral domain, then deg( f g) = deg( f ) + deg(g) for any two non-
zero polynomialsf andg in R[x]. For if f andg have leading termsamxm andbnxn

respectively, witham,bn 6= 0, then f g has leading termambnxm+n, andambn 6= 0 since
R is an integral domain.

Thus, a polynomial of degree greater than 0 can never be a unit, since multiplying
it by any non-zero polynomial increases the degree.

A polynomial of degree zero is a constant, and is a unit inR[x] if and only if it is a
unit in R.
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Remark If R= Z8, we have

(1+2x)(1−2x+4x2) = 1,

so that 1+ 2x is a unit. So the condition thatR is an integral domain is necessary for
the proof.

2.27. We have

(1+x)(1−x+x2−·· ·+(−1)n−1xn−1)
= (1+x)− (x+x2)+ · · ·+(−1)n−1(xn−1 +xn)
= 1+(−1)n−1xn = 1.

2.29. (a) Ifa = x+yi andb = s+ t i 6= 0, then

a
b

=
(x+yi)(s− t i)

s2 + t2 =
xs+yt
s2 + t2 +

ys−xt
s2 + t2 i = u+vi,

as claimed. Now letm andn be the integers nearest tou andv respectively. Then
|u−m| ≤ 1

2 and|v−n| ≤ 1
2, so

|(u+vi)− (m+ni| ≤
√

1
2

2 + 1
2

2 = 1/
√

2,

as claimed. This means thata= bq+ r, whereq= m+ni andr = b((u−m)+(v−n)i);
we have

|r| ≤ |b|/
√

2 < |b|,

and the Euclidean property is verified.
(b) The point of this proof is that there is an element ofRwhose distance from any

given complex number is strictly less than 1, in fact at most 1/
√

2. This can be seen
geometrically by noticing that the points ofR are the vertices of the square lattice in
the complex plane, and any point is at distance at most 1/

√
2 from some corner of the

square containing it. Now the Eisenstein integers are the points of the unit triangular
lattice in the plane, and any point is at distance less than 1 (in fact, at most 1/

√
3) from

some corner of the triangle containing it. The rest of the proof proceeds as before.

2.31 Since 9= 32, we have to start with a fieldF with 3 elements (which we take to
be the integers mod 3, say{0,1,2}), and an irreducible polynomial of degree 2 overF
(which you can find by trial and error: there are three irreducible polynomials, one of
which isx2 +1, but any one would do.) [How to check? If a quadratic polynomial is
reducible, it must be a product of two factors of degree 1, and hence it must have a root
in F . So we can check thatx2 +1 is irreducible by noting that

02 +1 = 1 6= 0, 12 +1 = 2 6= 0, 22 +1 = 2 6= 0.]

Now let α be a root of the polynomialx2 + 1 = 0. Then the elements ofK =
F [x]/(x2+1) have the formc0+c1α, wherec0,c1∈ F : there are 32 = 9 such elements.
We add and multiply them in the usual way, using the fact thatα2 =−1 to ensure that
no power ofα higher than the first occurs.
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2.33 Each coset has a unique representative of degree less thann, of the forma0 +
a1α + · · ·+an−1αn−1, whereα = ( f )+x. Each of then coefficientsa0, . . . ,an−1 can
be chosen to be any of theq elements ofF . So there areqn cosets.

2.35 (a) This is true by definition:R is an integral domain if and only if the product of
non-zero elements cannot be zero.

(b) The proof is almost identical to that for the field of fractions of an integral
domain. The ring axioms are easily checked; the embedding ofR is by the mapa 7→
[a,1]; and[a,b] = ab−1, since[b,1][1,b] = [1,1].

2.37 (a) If I is an ideal witha∈ I , thenna∈ I for any elementn∈Z; and any element of
the formsa, at, or siati for s, t,si , ti ∈ R, belongs toI ; hence any sum of such elements
also belongs toI . So 〈a〉 ∈ I . To finish the argument we have to show that the set
of such elements is an ideal (in which case it is clearly the smallest). Closure under
subtraction follows from(n1−n2)a = n1a−n2a, (s1− s2)a = s1a− s2a, a(t1− t2) =
at1−at2. Closure under multiplication on the right by an elementr ∈ R follows from
(na)r = a(nr), (at)r = a(tr), and(siati)r = sia(tir). Closure under left multiplication
is similar.

(b) If R has an identity then we can writena as(n1)a, andsa= sa1, at = 1at. So
every term in the sum is of the formsiati .

(c) If a is central then we can replace each termsiati by a(siti), andna by a(n1);
and then

∑a(siti) = a
(
∑siti

)
.

(d) In this case,〈a〉 is the set of elements of the formna+ar for n∈ Z, a∈ R. The
proof is over to you.

2.39 (a)(1−e)2 = 1−2e+e2 = 1−2e+e= 1−e, so 1−e is an idempotent.
(b) These elements are clearly idempotents. To show that(1,0) is central, observe

that(1,0)(r,s) = (r,0) = (r,s)(1,0).
(c) Note thateR and (1− e)R are ideals ofR. Define a bijectionθ from R to

eR× (1−e)Rby the rule
rθ = (er,(1−e)r).

It is straightforward to show thatθ is a homomorphism. Ifr ∈ Ker(θ), thener =
(1− e)r = 0; adding, we see thatr = 0. Soθ is injective. Now takees∈ eR and
(1−e)t ∈ (1−e)r. Let r = es+(1−e)t. Then

er = e2s+e(1−e)t = es,

(1−e)r = (1−e)es+(1−e)2t = (1−e)t,

sorθ = (es,(1−e)t). Thusθ is onto, and is an isomorphism.

2.41 Suppose thatrn = 1. Then

(1+ r)(1− r + r2−·· ·+(−1)n−1rn−1) = 1+(−1)n−1rn = 1,

so 1+ r is a unit (we have found its inverse).
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