Solutions to odd-numbered exercises
Peter J. Cameron,Introduction to Algebrg Chapter 2

2.1 The answers are (a) No; (b) No; (c) Yes; (d) Yes; (e) No; (f) Yes; (g) Yes; (h) No;
(i) Yes; (j) No.

(a) No: The inverse law for addition (A3) fails. There is no natural nuntbguch
that 1+b = 0.

(In fact, if your convention is that zero is not a natural number, it doesn’t satisfy
(A2) either.)

(b) We adopted the convention that the zero polynomial doesn’t have a degree, in
which case this set is not a ring since (A2) fails.

If, however, you decide that 0 has degreg (or some such), then the set is still
not a ring forn > 0: the closure law for multiplication (MO) fails (ifi > 0).

The polynomials” andx” both belong to our set, but their produé® does not.

[If n=0, then we have just the constant polynomials, in other words, the real
numbers, which do indeed form a ring.]

(c) Yes: Rather than laboriously check all the axioms, let us take it for granted that
real polynomials form a ring, and apply the subring test. Certaifiy is non-
empty. If f(x) andg(x) are polynomials irZ[x] (i.e. with integer coefficients),
then so ard (x) — g(x) and f (X)g(x). SO0Z[x] passes the Second Subring Test.
Alternatively, using the theorem that the polynomials over a ring form a ring, it
is clear thaZ[X] is a ring.

(d) Yes: This set is a non-empty subse#%], which we have just shown to be a ring;
so we can apply the Subring Test again f (k) andg(x) are polynomials with
integer coefficients having constant term 0, then sd &g— g(x) and f (x)g(X).

(e) No: x2 andx® both belong to this set, but their produgtdoes not.

(f) Yes: Apply the Subring Test. If(2) =g(2) =0, then(f —g)(2) = f(2) —g(2) =0
and(fg)(2) = f(2)g(2) = 0. [We are using here the fact that, if we subtract or
multiply polynomials and then make a substitution, we get the same answer as if
we make the substitution and then subtract or multiply. Why is this?]

(9) Yes: Ifmandn are divisible by 3, then so are— nandmn

(h) No: the matrices(é 1) and <_01 _01> are both non-singular (they have

determinant 1), but their sum <58 é) , which is singular. So (A0) fails.

(i) Yes: Apply the subring test (sindg is a ring).

()) No: This set containg+ 1 andx— 1 but notx? — 1, so (MO) fails.



2.3 In all cases we can apply the Subring Test since all are contaihég( ).

1 1/\0 3 2 3
matrices need not be symmetric.

(a) Not a ring. For(1 1) <2 O) = (2 3), that is, the product of symmetric

. 0 1\* (-1 o0 . .
(b) Notaring. Fo = , thatis, the product of skew-symmetric

-1 0 0 -1
matrices need not be skew-symmetric.
. . . . a b d e .
(c) This setis aring. For, k= 0 ¢ andB = o f ) areupper triangular, then
_(a—-d b-e _ (ad aetbf .
A—-B= ( 0 c_ f) andAB = ( 0 of ) are both upper triangular.

e This ring is not commutative, as we saw in the solution to Exercise 1.49.

1 0) which is upper triangular.

e There is an identity, nameléO 1

e Itis not a division ring since the non-zero mat<>g 1> has no inverse.

0

(d) This set is also a ring. The argument is similar to that in (c). This time,

0 a\/0 b 0 0).. .
(0 O) (O O>:<O O),|notherwords,wehaveBerorlng(aIIproducts

are zero. So
o the multiplication is commutative;
e there is no identity;
e itis not a division ring.

(e) LetA= (_ab Z) andB = (_Cd ?;) Then

[ a—-c b—d [ ac—bd  ad+bc
A-B= (—(b—d) a—c) andAB = (—(ad+bc) ac—bd)'

Both are of the correct form to belong to the Rate are considering. So it passes
the subring test. Calculation shows that the multiplication is commutative; the
identity (é 2) belongs to the set; and, &andb are not both zero, then the
a

inverse 0f<_b

g) turns out (with a little calculation) to be

a —b
( a?+h2  aZ+h? >
b _a |-
aZ+b?  aZ+b?

[Multiply it out and see!] SR is a commutative division ring, that is, a field.




Remark The ringRin part (e) is isomorphic to the field of complex numbers. Check
that the rules for addition and multiplication for complex numtsessbi and for ma-

trices (_ab g) work in exactly the same way.
2.5 (a) We can argue informallyn- x is the sum oim terms equal tox. So, if we add
m-Xxto n-x, we addm xs ton xs, givingm+ n altogether; and if we add up x mtimes,

the effect is to addnn »s. So the results hold.
More formally, we can use induction. We can define by the rules:

e 1-Xx=X;
e forn>1,(n+1)-x=n-x+x
Now let us prove the first identity by induction on

e Starting the induction fon = 1: the left-hand side iém+ 1) - x and the right is
m- X+ X, which are equal according to our definition.

e The inductive step. Suppose tifat+n) -x=m-Xx+n-x. Then

(m+n+1)-x = (m+n)-x+x(by definition)
= (m-x+n-X)+x (by the induction hypothesis)
= m-x+(n-x+Xx) (by the associative law)
= m-X+(n+1)-x(by definition).

So the result holds with+ 1 replacingn, and is true for alh by induction.
The proof by induction of the second equation is for you to try!

(b) We have

n-x = X+---+x(nterms)
= (1+4---+1)x(by the distributive law)
= (n-1)x
= Ox (by assumption)
0.

2.7 (a) Since-x is the unique additive inverse &f it is enough to show thgt-1)x is
also an inverse df, that is, that+ (—1)x = 0. This holds because

X+ (—=1)x=1x+ (=1)x= (1+ (-1))x=0x=0.
(b) Again, it suffices to show thaty — x is an inverse ok+Y:
(X+Y)+(—=y—%) =x+(y—y) —x=x+0-x=x—x=0.

(c) Suppose that all the axioms hold except possibly the commutative law for addi-
tion. Check that the properties of inverses, and in particular the results of (a) and (b)
above, both hold. (There is a bit more to be done here: for example, in (a), as well as



showing thak+ (—1)x = 0, we have also to show th@t 1)x+ x = 0; but the argument
is quite similar.) Now we have

—X—y=(=1)(X+y) =—(X+y) =—-y—x.

So addition of—x and—y is commutative, for anx andy. Since any element has an
inverse, this actually shows that addition of arbitrary elements is commutative.

2.9. To show thaR x Siis a ring, it is necessary to check the ring axioms. Every-
thing is very straightforward, since if we evaluate anythindRir S, we just get the
corresponding expressions in the two coordinates. For a simple case, consider (A4):

(ri,s1)+(r2, ) =(r1+r2,51+%) = (r2+r1,9+s1) = (r2,%) + (r1, s1).

One point should be noted. When we wri@ +rp,s + S) or (rir2,s1%), the
addition and multiplication in the first coordinate are those of the Rnghile those
in the second coordinate are thoseSofSo, for example, the zero element of the ring
Rx Sis (Or,0s), where & is the zero ofR and & is the zero ofS. If you just write
(0,0), you must make clear that 0 means two different things in the two positions.

The proof of the commutative law fd&® x S, assuming the commutative law fBr
and forS, is much like the proofs of the other axioms. To prove the converse (the ‘only
if’ part), argue by contradiction. Ifira # rorq, then(ry,0)(r2,0) # (r2,0)(r1,0). So,
if Ris not commutative, theR x Sis hot commutative. Similarly fo8. So, ifRx Sis
commutative, then botR andSare commutative.

The argument for the identity is similar. Ifzland Xk are identities inR and S
respectively, theiilg, 1s) is the identity ofR x S. Conversely, if(u,v) is an identity of
Rx S thenu andv are identities irR andSrespectively.

The answer to the last part iB:x Sis a field if and only if one of R and S consists of
just one element (namely, 0), and the other is a field. For the forward implication, argue
by contradiction. Suppose that bd&andS have more than one element. Lreand
s be non-zero elements & and S respectively. Therjr,0s) and(Og,s) are non-zero
elements oR x S; but their product is zero, 98 x S has divisors of zero, and cannot
be a field. If, sayR s zero, therR x Sis isomorphic tdS (by means of the mapping
defined by(0gr,s)0 = s); sOR x Sis a field if and only ifSis a field.

2.11. This exercise requires the verification of a whole list of axioms.
The displayed identity is easily checked:

a-1+bi+c+ a-1—bi—¢—
1+bi+¢+dk)(a-1—bi—cj—dk
= (a®4+b%*+c?+d?) - 14 (ab—ba+cd— do)i

+ (ac—ca—bd+db)j + (ad—da+ bc—ch)k.

Now, lettingN = a2 + b? + ¢ + d?, we have
(@-1-+bi+ ¢ +dk) ((a/N)-1— (b/N)i — (¢/N)j — (d/N)K) = 1

if N £ 0; so non-zero elements have multiplicative inverses.



2.13. We use the First Isomorphism Theorem. We define a funétiom R[x] to
(R/1)[X] by the rule that
(5 anx")0 = anx",

wherea=1+aec R/I; thatis,0 replaces each coefficient of a polynomial by its image
under the canonical homomorphism frd®to R/I. Now 6 is a homomorphism: for
example, iff = 3 apx" andg = S byx", then

(1919 =3 (3 an X' = 3 (3 &ba X" = (16)(g6)

with a similar but easier calculation for addition. The kernebafonsists of all poly-
nomialsy a,x" € R[x] for whicha, = 0 (that is,a, € I) for all n; this is justl [x].
Sol[x] is an ideal ofR[x] andR[x]/I[X] = (R/1)[X].

2.15. (a) Recall thamnZ is the set of all multiples of. If mZ containsnZ then, in
particular,n € mZ, sonis a multiple ofm, or mdividesn. Conversely, ifm dividesn,

sayn = mk thennx= m(kx) for all x; so every element afZ is in mZ, or mZ contains
nZ.

(b) The Second Isomorphism Theorem says that there is a bijection between ideals
of Z/60Z and ideals ofZ containing 6@. SinceZ is a PID, every ideal has the form
mZ. By (a), mZ contains 6@ if and only if m divides 60. So there are 12 ideals of
7./60z, corresponding to the twelve divisors of 60, viz213,4,5,6,10,12 15,20, 30, 60.
Again it follows from the Second Isomorphism Theorem that maximal ideals cor-
respond. We proved in lectures that an ideal of a PID is maximal if and only if its
generator is irreducible. So there are three maximal ideds' 60Z, corresponding to
the prime divisors 23, 5.

(c) By exactly the same argument, the number of ideal8/otZ is the number of
divisors ofn, and the number of maximal ideals is the number of prime divisors.

Any divisor of n= p{* ... p& has the forrrp?1 ... pPr, whereb; lies between 0 and
g inclusive. So there ar@ + 1 choices ob; for eachi. These choices are independent,
so we multiply them together to get the number of divisors, which is

(a1 +1)---(ar +1).

(Forn=60=22.3!.5% this formula giveg2+1)(1+1)(1+1) = 12, in agreement
with (b) above.)
The number of prime divisors is cleanly

2.17. This question really asks us to prove that the formulae for addition and mul-
tiplication of polynomials work also when we think of a polynomial as a function
on the ringR, so that, lettingf (u) denote the result of substitutingfor x, we have
(f+9g)(u) = f(u)+9(u) and (fg)(u) = f(u)g(u). Both follow easily from the ax-
ioms (but note that the second equation does require (M4), the commutative law for
multiplication!)

2.19. The homomorphism is given by

(MMZ+x)6 = NZ+X.



Itis not clear that it is well defined (independent of the choice of coset representative).
To show this, suppose thairZ +x = mnZ +y. Thenx—y is divisible bymn, and so
certainly byn; thusnZ + x = nZ +, as required.

Checking thab is a homomorphism is straightforward. It is clearly onto.

2.21. We showed in Exercise 2.3(c) tikis a ring.

We are going to prove the whole thing in one blow, using the First Isomorphism
Theorem. You can prove parts (a) and (b) directly without too much difficulty, but a
direct proof of (c) is harder. A useful tip is that, if you are ever asked to prove that
R/l 2 S find a homomorphism : R— Swhose kernel i$ and whose image 8 This
is usually much easier than fiddling round with cosets; the only problem is in finding

the homomorphism.
a b a o
(6 c)e-(5 <)

Define6 : R— Rby
(This appears to be the only reasonable definition.) Now
a b d e _ (a+d b+ey, (a+d O
(<o c>+(0 f)>6 = ( 0 c+f)9_< 0 c+f)’
a b d e a o0
(6 )er(o f)e = (52)+(0 7)- (%" 20)

TG ) - 23 2
G0 e - (9605 2)

So06 is a homomorphism.
The image 08 clearly isS, the set of all diagonal matrices. Its kernel is

(5269

Thus, by the three parts of the First Isomorphism Theorem, we conclud& that
subring ofR; thatl is an ideal of}; and thatR/I = S,

2.23. Usingx to denote the coset 22} X, the units ofZ/127 are 15,7,11 (the cosets
whose representatives are coprime to 12), and so the associate classes are

{0},{1,5,7,11},{2,10},{3,9},{4,8},{6}.

2.25 If Ris an integral domain, then defg) = deg f) + degg) for any two non-
zero polynomialsf andg in R[X]. For if f andg have leading termamx™ andbpx"
respectively, witham, b, # 0, thenfg has leading ternamb,x™™", andamby, # 0 since
Ris an integral domain.

Thus, a polynomial of degree greater than 0 can never be a unit, since multiplying
it by any non-zero polynomial increases the degree.

A polynomial of degree zero is a constant, and is a uniR[ij if and only if it is a
unitin R



Remark If R=Zg, we have
(142x)(1—2x+4x%) = 1,
so that 4+ 2x is a unit. So the condition th& is an integral domain is necessary for
the proof.
2.27. We have
(1+X) (L= x4X2 — -+ (=) 11

= (14%) = (XX oo (D))

=14+ (-1)" WX =1
2.29. (a) Ifa=x+yiandb=s+ti # 0, then

a_ (x+yi)(s—ti) xs+yt ys—xt

b P12 O P4t2 P4t

as claimed. Now letn andn be the integers nearest toandv respectively. Then
lu-m| < Jandjv—n| < 3,so0

(uvi) — (mni| < /232 + 22 =1/v2,

as claimed. This means theat bg+r, whereq = m+ni andr = b((u—m)+ (v—n)i);
we have

i =u+wi,

Ir| < |bl/v2< b,

and the Euclidean property is verified.

(b) The point of this proof is that there is an elemenRafhose distance from any
given complex number is strictly less than 1, in fact at mgsf2. This can be seen
geometrically by noticing that the points Bfare the vertices of the square lattice in
the complex plane, and any point is at distance at mogi2lfrom some corner of the
square containing it. Now the Eisenstein integers are the points of the unit triangular
lattice in the plane, and any point is at distance less than 1 (in fact, at rhg8) from
some corner of the triangle containing it. The rest of the proof proceeds as before.

2.31 Since 9= 3%, we have to start with a fiel# with 3 elements (which we take to

be the integers mod 3, s49, 1,2}), and an irreducible polynomial of degree 2 o¥er
(which you can find by trial and error: there are three irreducible polynomials, one of
which isx? + 1, but any one would do.) [How to check? If a quadratic polynomial is
reducible, it must be a product of two factors of degree 1, and hence it must have a root
in F. So we can check that + 1 is irreducible by noting that

0®?+1=1#0, 1241=2#0, 2241=2+#0]

Now let & be a root of the polynomiak> +1 = 0. Then the elements df =
F[X]/(x?+ 1) have the formeg + c1c, wherecy, ¢; € F: there are 3= 9 such elements.
We add and multiply them in the usual way, using the fact éifat —1 to ensure that
no power ofa higher than the first occurs.



2.33 Each coset has a unique representative of degree lesn, tbathe formag +
a o+ - +an_1a" L, wherea = () +x. Each of then coefficientsay, ..., an_1 can
be chosen to be any of thigelements of-. So there arg" cosets.

2.35 (a) This is true by definitiorR is an integral domain if and only if the product of
non-zero elements cannot be zero.

(b) The proof is almost identical to that for the field of fractions of an integral
domain. The ring axioms are easily checked; the embeddimyioby the mapa —
[a,1]; and[a,b] = ab~%, since[b, 1][1,b] = [1,1].

2.37 (a) Iflisanideal witla € 1, thennae | for any elemenh € Z; and any element of
the formsa, at, or sat; for s;t, 5.t € R, belongs td; hence any sum of such elements
also belongs td. So(a) € 1. To finish the argument we have to show that the set
of such elements is an ideal (in which case it is clearly the smallest). Closure under
subtraction follows from(n; —mp)a=ma—ma, (51— )a=s1a—a, alty —t) =
at) — atp. Closure under multiplication on the right by an elemenrtR follows from
(n@)r = a(nr), (at)r = a(tr), and(sat)r = sa(tjr). Closure under left multiplication
is similar.

(b) If R has an identity then we can writeas(nl)a, andsa= sal, at = lat. So
every term in the sum is of the forgat;.

(c) If ais central then we can replace each teyat by a(stj), andna by a(nl);

and then
Za(sti) = a(z sti).
(d) In this case(a) is the set of elements of the foma+ar forne Z,ac R. The
proof is over to you.

239(@)(l-e?=1-2e+e&=1-2et+e=1—¢ sol-eisanidempotent.
(b) These elements are clearly idempotents. To show(1hj is central, observe
that(1,0)(r,s) = (r,0) = (r,5)(1,0).
(c) Note thateRand (1 — e)R are ideals ofR. Define a bijectiond from R to
eRx (1—e)Rby the rule
re = (er,(1—er).

It is straightforward to show thafd is a homomorphism. If € Ker(8), thener =
(1—e)r = 0; adding, we see that=0. So# is injective. Now takeese eRand
(1—-ete(1—eyr. Letr =es+(1—e)t. Then

er = est+e(l-et=es
(1-er = (1—-eest(1-e?%t=(1-el,

sorf = (es(1—e)t). Thus@ is onto, and is an isomorphism.
2.41 Suppose thaf = 1. Then

(L+n)A=r+r? = ()" = 14 (-)" " = 1,

S0 1+ r is a unit (we have found its inverse).



