Solutions to odd-numbered exercises
Peter J. Cameron,Introduction to Algebrg Chapter 3

3.1 (a) Yes; (b) No; (c) No; (d) No; (e) Yes; (f) Yes; (g) Yes; (h) No; (i) Yes.

Comments: (a) is the additive group of the Boolean ring; (e) is a subgroup of the
multiplicative group ofR; and (f) is a subgroup of the multiplicative group@fapply
the subgroup test).

(b) This example satisfies the closure and associative laws. Is therdeasaeh
thatAUE = A for every subsef of X? Yes; in fact the only such subset is the empty
set (for 0UE = 0 implies thatE = 0). But now, as long aX is not itself empty, we
see that the inverse law holds: there is nosstich thatX UA = 0, sinceX UA is at
least as big aX. So this example is not a group as longag 0. [If it happens that
X =0, thenZ(X) has just one element, namely 0, and we have the trivial group with
one element.]

(c) The associative law fails. For exampleAit= B=C = {1}, then

A\(B\C) = {1}\0={1},
(A\B)\C = 0\{1}=0.

(d) The inverse law fails: the identity element is 1, and 0 has no inverse.

The proof of (g) by direct calculation is quite difficult. A trick makes it easier.
Use the hyperbolic tangent function tgrh= (e — e ) /(e + e *). This function is
strictly increasing and mayi® onto the interval—1,1); and it satisfies the equation

tanhx+ tanhy

tanfix+y) = 1+ tanhxtanhy’

So it is an isomorphism from the additive gro(iR, +) to (G, o) (in the case = 1);
this structure, being isomorphic to a group, must itself be a group. For an arbitrary
value ofc, simply rescale (use the functiatanhx).

3.3. Call the matrice$,A,B,C,D,E. Construct a Cayley table. (This involves a fair
amount of work.) From the Cayley table we read off the closure law, the identity
law (I is the identity), and the inverse law. The associative law holds because matrix
multiplication is associative. So the matrices do form a group.

Itis not abelian: again, two non-commuting matrices can be found from the Cayley
table. (For exampléAC =D butCA=E.)

3.5. U(R) is infinite. For(1+4+/2)(—1++/2) =1, so 14++/2 is a unit. Then all its
powers are units, and clearly they are all distinct.

3.7. (a) Ifgh= hgthenghgh= gghh and conversely (cancellirgfrom the left anch
from the right).
(b) Sinceg~th~! = (hg) 1, the result is clear.
(c) Suppose thatgh)" = g"h" holds forn = m;m+ 1, m+ 2. The equatins for
n=mm+ 1 give
gn+lhn+1 _ (gh)ngh _ gnhngh



Cancellingg” from the left andh from the right, we see thagh" = h"g, that is, g
commutes with". Simimlarly, the equations fan=n+ 1, n+2 show thag commutes
witth "1, Sog commutes witth"*1h~" = h, as required. (The last step can be done
by direct calculation, or by showing that the set of elements which commutegwith
(the so-calleatentraliserof g) is a subgroup.)

3.9. We are given (G0) and (G1) and half of each of the conditions (G2) and (G3), and
have to prove the other half. That is, we must show thet = g (in (b)) andgoh=¢€
(in (c)).
We prove the second of these things first. GigenG, leth € G be as in (c). Also
by (c), there existk € G with koh = e. Now we have

(koh)o(goh) =eo(goh) =goh,
ko((hog)oh) =Kko(eoh)=koh=¢g,

and these two expressions are equal by the Associative Law.
Now, if his as in (c), we have

goe=go(hog)=(goh)jog=eog=g.

3.11. Recall that, ifh > 0, theng" is defined by inductiong® = g andg"* +g"-g.
Also, g =1 andg ™= (g™)~* for m> 0. Alternatively, ifn > 0, theng” is the product
of nfactors equal tg, and ifn < 0, itis the product of-n factors equal tg~*. The last
form is the most convenient. (Here we implicitly used tfgi) ~* = (g~)". This holds
becausa”- (g~1)" is the product oh factorsg followed by n factorsg—; everything
cancels, leaving the identity.)

To prove thag™™ = g™. g", there are nine different cases to consider, according
to whethemm andn are positive, zero or negative. If one or other of them is zero, the
result is easy: for example,

gm+0:gm:gm.1:gm'90.

This leaves four cases. ffi,n > 0, theng™- g" is the product ofm factorsg followed
by the product oh factorsg, which is the product o+ n factorsg, that is,g™™".
Suppose tham is positive andh negative, sayn= —r. Theng™-g" is the product
of m factorsg followed by r factorsg=1. If m>r, thenr of the gs cancel all the
g ls, leavingg™" = g™™". If m<r, thenm of the g~'s cancel all thegs, leaving
(g1 ™ =g (=M = g™ The argument is similar in the other two cases.

The proof of(g™" = g™ also divides into a number of cases. Whaor nis zero,
both sides are the identity. Whemandn are positive, therig™)" is the product oh
terms, each the product offactorsg, giving the resulg™. The casen< 0 andn >0
is similar with factorg ! instead. Ifm> 0 andn < 0, sayn = —r, then(g™" = (g™)~"
is the product of factors equal tdg™ ! = (g~1)™, so is the product ofnr factors
g~1; thus it is equal tg~™ = g™". The last case is left to the reader.

Finally, suppose thath = hgand considefgh)". If n > 0, this is the product af
factorsgh, which can be rearranged with all tigs at the beginning to givg"-h" as
required. Ifn < 0, sayn = —r, we have

(gh)" = (gh) " = (hg) " = ((hg)")* = (h'g)*
— (gr)fl(hr)fl — gfrhfr — gnh”.



(We use the fact thaixy)~* = y~Ix~* here.) Finally, ifn = 0, then both sides are the
identity.

sol3.13. We claim that, for any € G, the seigHg ! is a subgroup oG. [Apply
the Subgroup Test: take two elementgbfg*, saygxg* andgyg*, wherex,y € H.
Then

(gxg H(gyg ) ) =gxgt-gy gt =g(xy HgtegHg,
sincexy t € H.]

Now the left cosegH of H is equal to(gHg *)g, which is a right coset of the
subgroumHg L.

3.15. (a) Lagrange’s Theorem:® contains an element of order 2, then 2 divides the
order ofG.

(b) As suggested, lety,y1,X2,Y2,...,Xm,Ym be the elements o& which are not
equal to their inverses, with the notation chosen soxh?at: yifori=1...,m and
letz,...,z be the elements equal to their inverses. Tf@&n=2m+r. If |G| is even,
thenr is even. But the identity is equal to its inverserse 1. Hencer > 2, and there
is at least one non-identity elemegitsayz. Thenz=z1, soZ = 1; sincez# 1, zhas
order 2.

3.17 We know that an elemerE Zn, is a unit if and only if gcdx,m) = 1 (by Propo-
sition 2.15). The number of units iy, is thus equal t@ (m); in other wordsg(m) is
the order of the group (Zn,) of units of Zp,.

By Theorem 3.6(c)x*(™ = 1 in Zp, in other wordsyx?(™ =, 1.

Suppose thah = pis a prime number. Then all the non-zero elements.1p—1
of Zp, are units, since the only possible common divisor witwould bep itself, and
none of these are divisible iy So¢(p) = p— 1, andxP~1 =, 1 if x#p 0. Multiplying
both sides by we see thaxP =, xif x#p 0. But this congruence holds alsaifs, O;
so it holds for all elements dp, in other words, all integerssatisfyxP =p x.

3.19 We show first that the group is isomorphic to the groufs; consisting of all
transformations oF of the form6,, : X — ax+b, wherea,b € F anda # 0. Clearly

for every matrix there is such a transformation, so the map is a bijection. We check the
homomorphism property:

6 Y- )

0apbcd : X— (cx+d) — a(cx+d) + b = acx+ (ad+b),

while

in other words,
6a,bec?d = 6ac:.,ad+b-

Now suppose th& = Z3. ThenG; is a group with 2x 3 = 6 elements (since there
are 2 choices foa and 3 forb), each element of which is a permutationfaf Since
the symmetric group oR has only six elements, we must haBg = Sz, and soG is
isomorphic t0Ss.



3.21 The fact thaG/Z(G) is cyclic, generated b¥(G)g, means thaG/Z(G) (the set
of cosets 0Z(G) in G) consists of all the power&Z(G)g)' = Z(G)g'. So every coset
has this form. Now every elemehte G lies in a unique coset &(G), of the form
Z(G)d for somei; thush = zd for somez € Z(G).

Take two elementh; andh, of G; sayh; = z1g' andh, = zg! for somez;,z €
Z(G) andi, j € Z. Then

hihy = 210 - 29 = 2129 = 2219} = 29! - 219 = hohy,

where for the second inequality we use the fact th@ommutes witty'; for the third,
the fact thatz; andz, commute; and for the fourth, the fact thmtcommutes withy'.
Thush; andhy commute. Since they were arbitrary element&ofve see thaG is
abelian, and indee@ = Z(G).

3.23 The groufss has order 6. By Lagrange’s Theorem, any subgroup has order 1, 2,
3 or 6. The only subgroup of order 1§4}, and the only subgroup of order 63s. So
we have to look for subgroups of orders 2 and 3. Note that, as well as the id&tity,
contains two elements of order 3 (v{4,2,3) and(1, 3, 2)), which are inverses of each
other, and three elements of order 2 (\(iz.2), (1,3) and(2,3)).
Again by Lagrange, iH is a subgroup of order 3, then every elementHomust
have order 1 or 3. There are only three such elements altogether, nanj&l2,B)
and(1,3,2); so these form the only possible such subgroup. But this set is indeed a
subgroup. So there is one subgroup of order 3.
If K is a subgroup of order 2, then any elemenitdfas order 1 or K must contain
the identity, so must consist of the identity and a single element of order 2. Thus there
are three possibilities fd€, and it is routine to check that each of them is a subgroup.
So there are altogether six subgroup&ef

3.25 Note that, sincBl is a normal subgroup dg, for any elements € N andg € G,
there existaY € N such thatgn= n'g. (This is becausgn lies in the left cosegN,
which equals the right cosalg.)

We apply the first subgroup test.

e Take two elements dfiH, sayn;h; andnzhy, whereng,n; € N andhy, hy € H.
Their product is

(nahy) - (n2hz) = na(hanz)hg = ny(n'hy)hp = (M) (hehp) € NH,
wheren’ is some element dfl.
e Take an elementhe NH. Its inverse is
(nhy"t=h"tnt=n'hleNH,
for somen’ € N.

SoNH is a subgroup o6.

(a) True. If alsoH is a normal subgroup dB, take anynh e NH andg € G; we
have

g(nh) = (gn)h= (n'g)h = n'(gh) = n'(h'g) = ("'K')g,



so left and right cosets ™ H are equal.

(b) False. LeltG =S, N=A3={1,(1,2,3),(1,3,2)} andH = {1,(1,2)}. (See
Exercise 3.23.) TheNH = G, soNH is certainly a normal subgroup &; butH is
not a normal subgroup.

3.27 (a) Suppose th& is a group of finite orden which has just two conjugacy
classes. One of these classes consists of the identity; so the other has diz&low
the size of a conjugacy class is the index of the centraliser of one of its elements, and
so divides|G| (see Theorem 3.21); so— 1 dividesn. It follows thatn— 1 divides
n—(n—1)=1;son—1=1,andn=2,G=C,.

The hint suggests using the class equation, which would say

1 1
i |
n + k 7
wherek is the order of the centraliser of a non-identity element. This equation has only
the solutiomn = n; = 2. [Why?]
(b) Show directly that the conjugacy classe&irare {1}, {(1,2,3),(1,3,2)}, and
{(1,2),(1,3),(2,3)}. (Elements in different sets in this list have different orders and so

cannot be conjugate; your job is to show that elements in the same set are conjugate.)
The class equation in this case becomes

(c) Suppose thab has three conjugacy classes, and has andigt k andl be the

orders of the centralisers of elements in the other two classes. Then

1 1 1

n + K + [~ 1
If three “unit fractions” sum to 1, then the largest of them is at leA3f 0, without loss
of generalityl =2 orl = 3. If | = 3, then the only possibility is/B+1/3+1/3=1,
s0|G| = 3 (and the cyclic group of order 3 does indeed have three conjugacy classes).
If 1 =2, then ¥n+1/k=1/2, sok < 4. We have two possible solution@,k,|) =
(4,4,2) and(n,k,l) = (6,3,2). So indeedG| < 6. But indeed the solutiof4,4,2) is
impossible, since a group of order 4 is abelian and so has four conjugacy classes. So
there are just two finite groups with three conjugacy classes.

(d) This will be a “non-constructive” proof; that is, we will prove that the function
exists without actually finding any information about it. As a harder exercise, you are
encouraged to find estimates for the valud @f).

We start with the class equation for a group witbonjugacy classes:

1 1 1

—t+ — 4+ —=1,

n n2 Ny
whereng,...,n; are the orders of centralisers of elements in the conjugacy classes.
Note that the group order is the largest of the numbers ., n; (since the centraliser
of the indentity is the whole group). So the result will follow if we can show that, given



r, this equation has only a finite number of solutions: then we canftéketo be the
largest number appearing in any such solution.

In order to prove this, we use induction onbut we have to prove a more general
statement:

Lemma Given any positive integer r and rational number q, there are only finitely
many r-tuplegny, ny, ..., ny) of natural numbers such that

1 1 1
— 4 =4 = =0
n n "

For g = 1 this gives the desired conclusion.

Proof The proof is by induction on. Forr = 1, the equation has one solutiorgifs
the reciprocal of a natural number and none otherwise.

Suppose that the lemma is true for 1. Consider any solution of the equation
with the given values aff andr. If n; is the smallest of the numbemg then I/, is the
largest fraction, so it is at least as great as the aveyageson, <r/q.

Now for each possible value of in the rangd1,r/q], we have the equation

1 1 1

e ,
Ny Nr—1 Nr

and by the induction hypothesis, each of these equations has only finitely many solu-
tions. So there are only finitely many solutions altogether.

Remark Note how the argument forced us to prove a more general result; even
though we are really interested in equations with right-hand side equal to 1, we have to
allow other values in order to use induction.

3.29 Construct a Cayley table for the four elements.
3.31 How many times does the elemeptoccur in rowr of the table? If such an
occurrence occurs in colunmthen

9 0%s=0i,

sogs = gy 1gi. So there is exactly one position in rewhereg; appears. The argument
for columns is similar.

3.33 (a)First proof: LetC, = {1,g}, whereg? = 1. The Cayley table fa€; x C; is

o (1Y) (19 (g1 (99
(1,1 (1) (L9 (g1 (99
(1,9 | (L9 (L1 (g9 (91
91| (91 (g9 (L1 (19
(9,9 | (9 (0,1) (1,9 (L1

which is easily matched up with the Cayley tableVar



Second proof: €x C; is a group of order 4 which is easily seen to have no elements
of order 4; so it is not isomorphic ©4, and must be isomorphic ¥ (see p.132).

(b) First proof: Let C, be as in (a), an@3 = {1,h,h?}, with h® = 1. The order of
(g,h) € C, x C3 must divide 6; it is not 2 (sincég, h)? = (1,h?)), and is not 3 (since
(g,h)® = (g,1)); so it has order 6, and generates the cyclic group.

Second proofBy the preceding exercis€, x Cs is an abelian group of order 6.
Now apply the classification on p.133.

See p.134Cg is obtained if there is an element of order 8, &adk C, x C; if there
is no element of order 4. We obta@ x C, in the case wherk? = 1 andba= ab, and
also in the case whet® = a2 andba = ab.

3.35 (a) As in the first proof in Exercise 3.33(b), & = (g) andCq = (h). Then the
element(g, h) of C, x Cq has order dividingpg, but notp or g; so its order ispg, and
the group is cyclic.

(b) InCp x C,, every element has order 1 prso the group is not cyclic.

3.37 For convenience we represent the elements by permutations, as on p.139.
Check thatz = (1,3)(2,4) commutes with all elements @&. (In fact, we know that
every element ofz can be written in the forna'bl, wherea = (1,2,3,4) andb =
(1,4)(2,3) (see the analysis on p.134); so it is enough to showzbatmmutes witha
andb.) So the subgrou@ = {1,z} is contained irZ(G).

If Z(G) were larger thaiZ, then its order would be 4 or 8, so thayZ(G) would
have order 1 or 2, and would be cyclic; by Exercise 3@1yould be abelian, which
it is not. SoZ(G) = Z. (You can check this directly by showing that for any element
g € G apart from 1 and, there is an elemetite G which does not commute wittp)

Now the only elements of order 4 i@ area anda®, anda® = za soZa= Z&’,
and(Za)? = Z. Thus the factor grou/Z is a group of order 4 in which no element
has order greater than 2, and is necessarily the Klein group. (More simply, invoke
Exercise 3.21 again to see ti&tZ(G) cannot be cyclic.)

3.39 Takeme M andn € N. Consider the elemerg = m *n—'mn the so-called
commutatorof m andn. Writing it asm~(n=*mn), we see that it is the inverse of
m times a conjugate afn; both of these lie irM, sog € M. Similarly, writing it as
g= (mIn~!m)n, we see thaG € N. SinceM NN = {1}, we see thay = 1, so that
mn=nm

SinceG = MN, every element o6 can be written in the forng = mnfor me M
andn € N. Suppose we have another representatieam'n’ with m' € M andn’ € N.
Thenmn= n'r’. Multiplying this equation on the left bym')~! and on the right by
n~1, we obtain(m’)~*m=n'n"1. The left-hand expression lies and the right-hand
one inN; so both are the identity, givingi= m andn=n'.

Now define a ma@ from Gto M x N by

0:mne G— (mn) €M xN.

By what we just proved, this map is well-defined. Clearly it is one-to-one and onto.
Also, if mnm'n’ € G (with m,m’ € M andn,n’ € N), then(mn)(m'n’) = (mn)(nn') by



what we showed in the first paragraph; so

((mn)(m'r'))6 ((mm)(nrf))6 = (mni, nr),
(mn)o-(Mn)e = (mn)(m,n') = (mmn,nn),

where the last equation is the definition of the group operatidvl inN. So 6 is an
isomorphism.

Let N be the rotation group of the cube aktl= {£1}. Since every rotation has
determinant 1, we havd NN = {1 }. Also, |G| =48, |N| =24 andM| = 2, so|MN| =
|G| andMN = G. Moreover, bothM andN are normal subgroupd(because it has
index 2, andM because its elements commute with everything so it 5 ®)). So the
conditions of the first part of the exercise are satisfied, and we conclude thist x N.

3.41 The first part of this exercise is “obvious” from playing with a model. It could of
course be proved by coordinate geometry but | do not expect you to do this!

Clearly any rotation maps a frame to a frame, so induces a permutation on the set
of five frames. Could a rotation fix every frame? Again, a few moments’ playing with
a model shows that only the identity does so. So the map from the rotation Grtmp
the groupS; of permutations of the frames is a one-to-one homomorphism. Its image
is a subgroup 0% having order 60, so a normal subgroup, necessAgly



