
Solutions to odd-numbered exercises
Peter J. Cameron,Introduction to Algebra, Chapter 3

3.1 (a) Yes; (b) No; (c) No; (d) No; (e) Yes; (f) Yes; (g) Yes; (h) No; (i) Yes.
Comments: (a) is the additive group of the Boolean ring; (e) is a subgroup of the

multiplicative group ofR; and (f) is a subgroup of the multiplicative group ofC (apply
the subgroup test).

(b) This example satisfies the closure and associative laws. Is there a setE such
thatA∪E = A for every subsetA of X? Yes; in fact the only such subset is the empty
set (for /0∪E = /0 implies thatE = /0). But now, as long asX is not itself empty, we
see that the inverse law holds: there is no setA such thatX∪A = /0, sinceX∪A is at
least as big asX. So this example is not a group as long asX 6= /0. [If it happens that
X = /0, thenP(X) has just one element, namely /0, and we have the trivial group with
one element.]

(c) The associative law fails. For example, ifA = B = C = {1}, then

A\ (B\C) = {1}\ /0 = {1},
(A\B)\C = /0\{1}= /0.

(d) The inverse law fails: the identity element is 1, and 0 has no inverse.
The proof of (g) by direct calculation is quite difficult. A trick makes it easier.

Use the hyperbolic tangent function tanh(x) = (ex−e−x)/(ex +e−x). This function is
strictly increasing and mapsR onto the interval(−1,1); and it satisfies the equation

tanh(x+y) =
tanhx+ tanhy

1+ tanhxtanhy
.

So it is an isomorphism from the additive group(R,+) to (G,◦) (in the casec = 1);
this structure, being isomorphic to a group, must itself be a group. For an arbitrary
value ofc, simply rescale (use the functionctanhx).

3.3. Call the matricesI ,A,B,C,D,E. Construct a Cayley table. (This involves a fair
amount of work.) From the Cayley table we read off the closure law, the identity
law (I is the identity), and the inverse law. The associative law holds because matrix
multiplication is associative. So the matrices do form a group.

It is not abelian: again, two non-commuting matrices can be found from the Cayley
table. (For example,AC= D butCA= E.)

3.5. U(R) is infinite. For(1+
√

2)(−1+
√

2) = 1, so 1+
√

2 is a unit. Then all its
powers are units, and clearly they are all distinct.

3.7. (a) Ifgh= hg thenghgh= gghh, and conversely (cancellingg from the left andh
from the right).

(b) Sinceg−1h−1 = (hg)−1, the result is clear.
(c) Suppose that(gh)n = gnhn holds for n = m,m+ 1,m+ 2. The equatins for

n = m,m+1 give
gn+1hn+1 = (gh)ngh= gnhngh.
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Cancellinggn from the left andh from the right, we see thatghn = hng, that is,g
commutes withhn. Simimlarly, the equations form= n+1,n+2 show thatgcommutes
witth hn+1. Sog commutes withhn+1h−n = h, as required. (The last step can be done
by direct calculation, or by showing that the set of elements which commute withg
(the so-calledcentraliserof g) is a subgroup.)

3.9. We are given (G0) and (G1) and half of each of the conditions (G2) and (G3), and
have to prove the other half. That is, we must show thatg◦e= g (in (b)) andg◦h = e
(in (c)).

We prove the second of these things first. Giveng∈ G, let h∈ G be as in (c). Also
by (c), there existsk∈G with k◦h = e. Now we have

(k◦h)◦ (g◦h) = e◦ (g◦h) = g◦h,

k◦ ((h◦g)◦h) = k◦ (e◦h) = k◦h = e,

and these two expressions are equal by the Associative Law.
Now, if h is as in (c), we have

g◦e= g◦ (h◦g) = (g◦h)◦g = e◦g = g.

3.11. Recall that, ifn > 0, thengn is defined by induction:g1 = g andgn+1 + gn ·g.
Also,g0 = 1 andg−m = (gm)−1 for m> 0. Alternatively, ifn> 0, thengn is the product
of n factors equal tog, and ifn< 0, it is the product of−n factors equal tog−1. The last
form is the most convenient. (Here we implicitly used that(gn)−1 = (g−1)n. This holds
becausegn · (g−1)n is the product ofn factorsg followed byn factorsg−1; everything
cancels, leaving the identity.)

To prove thatgm+n = gm ·gn, there are nine different cases to consider, according
to whetherm andn are positive, zero or negative. If one or other of them is zero, the
result is easy: for example,

gm+0 = gm = gm ·1 = gm ·g0.

This leaves four cases. Ifm,n > 0, thengm ·gn is the product ofm factorsg followed
by the product ofn factorsg, which is the product ofm+ n factorsg, that is,gm+n.
Suppose thatm is positive andn negative, saym = −r. Thengm · gn is the product
of m factorsg followed by r factorsg−1. If m≥ r, then r of the gs cancel all the
g−1s, leavinggm−r = gm+n. If m < r, thenm of the g−1s cancel all thegs, leaving
(g−1)r−m = g−(r−m) = gm+n. The argument is similar in the other two cases.

The proof of(gm)n = gmn also divides into a number of cases. Whenmor n is zero,
both sides are the identity. Whenm andn are positive, then(gm)n is the product ofn
terms, each the product ofm factorsg, giving the resultgmn. The casem< 0 andn > 0
is similar with factorsg−1 instead. Ifm> 0 andn< 0, sayn=−r, then(gm)n = (gm)−r

is the product ofr factors equal to(gm)−1 = (g−1)m, so is the product ofmr factors
g−1; thus it is equal tog−mr = gmn. The last case is left to the reader.

Finally, suppose thatgh= hg and consider(gh)n. If n > 0, this is the product ofn
factorsgh, which can be rearranged with all thegs at the beginning to givegn ·hn as
required. Ifn < 0, sayn =−r, we have

(gh)n = (gh)−r = (hg)−r = ((hg)r)−1 = (hrgr)−1

= (gr)−1(hr)−1 = g−rh−r = gnhn.
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(We use the fact that(xy)−1 = y−1x−1 here.) Finally, ifn = 0, then both sides are the
identity.

sol3.13. We claim that, for anyg∈ G, the setgHg−1 is a subgroup ofG. [Apply
the Subgroup Test: take two elements ofgHg−1, saygxg−1 andgyg−1, wherex,y∈H.
Then

(gxg−1)(gyg−1)−1) = gxg−1 ·gy−1g−1 = g(xy−1)g−1 ∈ gHg−1,

sincexy−1 ∈ H.]

Now the left cosetgH of H is equal to(gHg−1)g, which is a right coset of the
subgroupgHg−1.

3.15. (a) Lagrange’s Theorem: ifG contains an element of order 2, then 2 divides the
order ofG.

(b) As suggested, letx1,y1,x2,y2, . . . ,xm,ym be the elements ofG which are not
equal to their inverses, with the notation chosen so thatx−1

i = yi for i = 1, . . . ,m; and
let z1, . . . ,zr be the elements equal to their inverses. Then|G|= 2m+ r. If |G| is even,
thenr is even. But the identity is equal to its inverse, sor ≥ 1. Hencer ≥ 2, and there
is at least one non-identity elementzi , sayz. Thenz= z−1, soz2 = 1; sincez 6= 1, zhas
order 2.

3.17 We know that an elementx∈ Zm is a unit if and only if gcd(x,m) = 1 (by Propo-
sition 2.15). The number of units inZm is thus equal toφ(m); in other words,φ(m) is
the order of the groupU(Zm) of units ofZm.

By Theorem 3.6(c),xφ(m) = 1 in Zm, in other words,xφ(m) ≡m 1.
Suppose thatm= p is a prime number. Then all the non-zero elements 1, . . . , p−1

of Zp are units, since the only possible common divisor withp would bep itself, and
none of these are divisible byp. Soφ(p) = p−1, andxp−1≡p 1 if x 6≡p 0. Multiplying
both sides byx we see thatxp ≡p x if x 6≡p 0. But this congruence holds also ifx≡p 0;
so it holds for all elements ofZp, in other words, all integersx satisfyxp ≡p x.

3.19 We show first that the groupG is isomorphic to the groupG1 consisting of all
transformations ofF of the formθa,b : x 7→ ax+b, wherea,b∈ F anda 6= 0. Clearly
for every matrix there is such a transformation, so the map is a bijection. We check the
homomorphism property:(

a b
0 1

)(
c d
0 1

)
=

(
ac ad+b
0 1

)
,

while
θa,bθc,d : x 7→ (cx+d) 7→ a(cx+d)+b = acx+(ad+b),

in other words,
θa,bθc,d = θac,ad+b.

Now suppose thatF = Z3. ThenG1 is a group with 2×3= 6 elements (since there
are 2 choices fora and 3 forb), each element of which is a permutation ofF . Since
the symmetric group onF has only six elements, we must haveG1 = S3, and soG is
isomorphic toS3.
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3.21 The fact thatG/Z(G) is cyclic, generated byZ(G)g, means thatG/Z(G) (the set
of cosets ofZ(G) in G) consists of all the powers(Z(G)g)i = Z(G)gi . So every coset
has this form. Now every elementh ∈ G lies in a unique coset ofZ(G), of the form
Z(G)gi for somei; thush = zgi for somez∈ Z(G).

Take two elementsh1 andh2 of G; sayh1 = z1gi andh2 = z2g j for somez1,z2 ∈
Z(G) andi, j ∈ Z. Then

h1h2 = z1gi ·z2g j = z1z2gi+ j = z2z1gi+ j = z2g j ·z1gi = h2h1,

where for the second inequality we use the fact thatz2 commutes withgi ; for the third,
the fact thatz1 andz2 commute; and for the fourth, the fact thatz1 commutes withgi .
Thush1 andh2 commute. Since they were arbitrary elements ofG, we see thatG is
abelian, and indeedG = Z(G).

3.23 The groupS3 has order 6. By Lagrange’s Theorem, any subgroup has order 1, 2,
3 or 6. The only subgroup of order 1 is{1}, and the only subgroup of order 6 isS3. So
we have to look for subgroups of orders 2 and 3. Note that, as well as the identity,S3

contains two elements of order 3 (viz.(1,2,3) and(1,3,2)), which are inverses of each
other, and three elements of order 2 (viz.(1,2), (1,3) and(2,3)).

Again by Lagrange, ifH is a subgroup of order 3, then every element ofH must
have order 1 or 3. There are only three such elements altogether, namely 1,(1,2,3)
and(1,3,2); so these form the only possible such subgroup. But this set is indeed a
subgroup. So there is one subgroup of order 3.

If K is a subgroup of order 2, then any element ofK has order 1 or 2;K must contain
the identity, so must consist of the identity and a single element of order 2. Thus there
are three possibilities forK, and it is routine to check that each of them is a subgroup.

So there are altogether six subgroups ofS3.

3.25 Note that, sinceN is a normal subgroup ofG, for any elementsn∈ N andg∈ G,
there existsn′ ∈ N such thatgn = n′g. (This is becausegn lies in the left cosetgN,
which equals the right cosetNg.)

We apply the first subgroup test.

• Take two elements ofNH, sayn1h1 andn2h2, wheren1,n2 ∈ N andh1,h2 ∈ H.
Their product is

(n1h1) · (n2h2) = n1(h1n2)h2 = n1(n′h1)h2 = (n1n′)(h1h2) ∈ NH,

wheren′ is some element ofN.

• Take an elementnh∈ NH. Its inverse is

(nh)−1 = h−1n−1 = n′h−1 ∈ NH,

for somen′ ∈ N.

SoNH is a subgroup ofG.

(a) True. If alsoH is a normal subgroup ofG, take anynh∈ NH andg∈ G; we
have

g(nh) = (gn)h = (n′g)h = n′(gh) = n′(h′g) = (n′h′)g,
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so left and right cosets ofNH are equal.

(b) False. LetG = S3, N = A3 = {1,(1,2,3),(1,3,2)} andH = {1,(1,2)}. (See
Exercise 3.23.) ThenNH = G, soNH is certainly a normal subgroup ofG; but H is
not a normal subgroup.

3.27 (a) Suppose thatG is a group of finite ordern which has just two conjugacy
classes. One of these classes consists of the identity; so the other has sizen−1. Now
the size of a conjugacy class is the index of the centraliser of one of its elements, and
so divides|G| (see Theorem 3.21); son− 1 dividesn. It follows that n− 1 divides
n− (n−1) = 1; son−1 = 1, andn = 2, G∼= C2.

The hint suggests using the class equation, which would say

1
n

+
1
k

= 1,

wherek is the order of the centraliser of a non-identity element. This equation has only
the solutionn = n1 = 2. [Why?]

(b) Show directly that the conjugacy classes inS3 are{1}, {(1,2,3),(1,3,2)}, and
{(1,2),(1,3),(2,3)}. (Elements in different sets in this list have different orders and so
cannot be conjugate; your job is to show that elements in the same set are conjugate.)
The class equation in this case becomes

1
6

+
1
3

+
1
2

= 1.

(c) Suppose thatG has three conjugacy classes, and has ordern; let k andl be the
orders of the centralisers of elements in the other two classes. Then

1
n

+
1
k

+
1
l

= 1.

If three “unit fractions” sum to 1, then the largest of them is at least 1/3; so, without loss
of generality,l = 2 or l = 3. If l = 3, then the only possibility is 1/3+1/3+1/3 = 1,
so |G|= 3 (and the cyclic group of order 3 does indeed have three conjugacy classes).
If l = 2, then 1/n+ 1/k = 1/2, sok≤ 4. We have two possible solutions;(n,k, l) =
(4,4,2) and(n,k, l) = (6,3,2). So indeed|G| ≤ 6. But indeed the solution(4,4,2) is
impossible, since a group of order 4 is abelian and so has four conjugacy classes. So
there are just two finite groups with three conjugacy classes.

(d) This will be a “non-constructive” proof; that is, we will prove that the function
exists without actually finding any information about it. As a harder exercise, you are
encouraged to find estimates for the value off (r).

We start with the class equation for a group withr conjugacy classes:

1
n1

+
1
n2

+ · · ·+ 1
nr

= 1,

wheren1, . . . ,nr are the orders of centralisers of elements in the conjugacy classes.
Note that the group order is the largest of the numbersn1, . . . ,nr (since the centraliser
of the indentity is the whole group). So the result will follow if we can show that, given
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r, this equation has only a finite number of solutions: then we can takef (r) to be the
largest number appearing in any such solution.

In order to prove this, we use induction onr, but we have to prove a more general
statement:

Lemma Given any positive integer r and rational number q, there are only finitely
many r-tuples(n1,n2, . . . ,nr) of natural numbers such that

1
n1

+
1
n2

+ · · ·+ 1
nr

= q.

For q = 1 this gives the desired conclusion.

Proof The proof is by induction onr. For r = 1, the equation has one solution ifq is
the reciprocal of a natural number and none otherwise.

Suppose that the lemma is true forr − 1. Consider any solution of the equation
with the given values ofq andr. If nr is the smallest of the numbersni , then 1/nr is the
largest fraction, so it is at least as great as the averageq/r; sonr ≤ r/q.

Now for each possible value ofnr in the range[1, r/q], we have the equation

1
n1

+ · · ·+ 1
nr−1

= q− 1
nr

,

and by the induction hypothesis, each of these equations has only finitely many solu-
tions. So there are only finitely many solutions altogether.

Remark Note how the argument forced us to prove a more general result; even
though we are really interested in equations with right-hand side equal to 1, we have to
allow other values in order to use induction.

3.29 Construct a Cayley table for the four elements.

3.31 How many times does the elementgi occur in rowr of the table? If such an
occurrence occurs in columns, then

grgs = gi ,

sogs = g−1
r gi . So there is exactly one position in rowr wheregi appears. The argument

for columns is similar.

3.33 (a)First proof: Let C2 = {1,g}, whereg2 = 1. The Cayley table forC2×C2 is

◦ (1,1) (1,g) (g,1) (g,g)
(1,1) (1,1) (1,g) (g,1) (g,g)
(1,g) (1,g) (1,1) (g,g) (g,1)
(g,1) (g,1) (g,g) (1,1) (1,g)
(g,g) (g,g) (g,1) (1,g) (1,1)

which is easily matched up with the Cayley table forV4.
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Second proof: C2×C2 is a group of order 4 which is easily seen to have no elements
of order 4; so it is not isomorphic toC4, and must be isomorphic toV4 (see p.132).

(b) First proof: Let C2 be as in (a), andC3 = {1,h,h2}, with h3 = 1. The order of
(g,h) ∈C2×C3 must divide 6; it is not 2 (since(g,h)2 = (1,h2)), and is not 3 (since
(g,h)3 = (g,1)); so it has order 6, and generates the cyclic group.

Second proof:By the preceding exercise,C2×C3 is an abelian group of order 6.
Now apply the classification on p.133.

See p.134.C8 is obtained if there is an element of order 8, andC2×C2×C2 if there
is no element of order 4. We obtainC2×C4 in the case whereb2 = 1 andba= ab, and
also in the case whereb2 = a2 andba= ab.

3.35 (a) As in the first proof in Exercise 3.33(b), letCp = 〈g〉 andCq = 〈h〉. Then the
element(g,h) of Cp×Cq has order dividingpq, but notp or q; so its order ispq, and
the group is cyclic.

(b) In Cp×Cp, every element has order 1 orp; so the group is not cyclic.

3.37 For convenience we represent the elements ofG by permutations, as on p.139.
Check thatz= (1,3)(2,4) commutes with all elements ofG. (In fact, we know that
every element ofG can be written in the formaib j , wherea = (1,2,3,4) and b =
(1,4)(2,3) (see the analysis on p.134); so it is enough to show thatz commutes witha
andb.) So the subgroupZ = {1,z} is contained inZ(G).

If Z(G) were larger thanZ, then its order would be 4 or 8, so thatG/Z(G) would
have order 1 or 2, and would be cyclic; by Exercise 3.21,G would be abelian, which
it is not. SoZ(G) = Z. (You can check this directly by showing that for any element
g∈G apart from 1 andz, there is an elementh∈G which does not commute withg.)

Now the only elements of order 4 inG area anda3, anda3 = za, soZa = Za3,
and(Za)2 = Z. Thus the factor groupG/Z is a group of order 4 in which no element
has order greater than 2, and is necessarily the Klein group. (More simply, invoke
Exercise 3.21 again to see thatG/Z(G) cannot be cyclic.)

3.39 Takem∈ M and n ∈ N. Consider the elementg = m−1n−1mn, the so-called
commutatorof m andn. Writing it as m−1(n−1mn), we see that it is the inverse of
m times a conjugate ofm; both of these lie inM, sog ∈ M. Similarly, writing it as
g = (m−1n−1m)n, we see thatG∈ N. SinceM∩N = {1}, we see thatg = 1, so that
mn= nm.

SinceG = MN, every element ofG can be written in the formg = mn for m∈ M
andn∈N. Suppose we have another representation,g = m′n′ with m′ ∈M andn′ ∈N.
Thenmn= m′n′. Multiplying this equation on the left by(m′)−1 and on the right by
n−1, we obtain(m′)−1m= n′n−1. The left-hand expression lies inM and the right-hand
one inN; so both are the identity, givingm= m′ andn = n′.

Now define a mapθ from G to M×N by

θ : mn∈G 7→ (m,n) ∈M×N.

By what we just proved, this map is well-defined. Clearly it is one-to-one and onto.
Also, if mn,m′n′ ∈G (with m,m′ ∈M andn,n′ ∈N), then(mn)(m′n′) = (mm′)(nn′) by
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what we showed in the first paragraph; so

((mn)(m′n′))θ = ((mm′)(nn′))θ = (mm′,nn′),
(mn)θ · (m′n′)θ = (m,n)(m′,n′) = (mm′,nn′),

where the last equation is the definition of the group operation inM×N. Soθ is an
isomorphism.

Let N be the rotation group of the cube andM = {±I}. Since every rotation has
determinant 1, we haveM∩N = {I}. Also, |G|= 48, |N|= 24 and|M|= 2, so|MN|=
|G| andMN = G. Moreover, bothM andN are normal subgroups (N because it has
index 2, andM because its elements commute with everything so it is inZ(G)). So the
conditions of the first part of the exercise are satisfied, and we conclude thatG∼= M×N.

3.41 The first part of this exercise is “obvious” from playing with a model. It could of
course be proved by coordinate geometry but I do not expect you to do this!

Clearly any rotation maps a frame to a frame, so induces a permutation on the set
of five frames. Could a rotation fix every frame? Again, a few moments’ playing with
a model shows that only the identity does so. So the map from the rotation groupG to
the groupS5 of permutations of the frames is a one-to-one homomorphism. Its image
is a subgroup ofS5 having order 60, so a normal subgroup, necessarilyA5.
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