Solutions to odd-numbered exercises
Peter J. Cameron,Introduction to Algebrg Chapter 4

4.1 Using the Second Subspace Test, we have to decide whether it is true thahdf
f, are bounded, or continuous, or differentiable, or satfgfy) = f(1), then the same
is true forcy f1 + co T, for all real numbers; andc,.

(a) To say thaff; and f, are bounded means that there ekistandM, such that
[f1(x)] < Mg and|fa(x)| < My for all x € [0,1]. Then

1 fi(X) +caf2(X)] < [ea| - [fa(X)[+ ez - [ f2(X)| < |1 M1+ |cz[M2,
using properties of the modulus function:
|a+b| < [al+ |b[,qquadabl = [a[ - b].

Soc; f1 + ¢y f2 is bounded.
The affirmative answer in (b) and (c) follows from elementary calculus.
For (d), if f1(0) = f1(1) and f2(0) = f2(1), then

¢1f1(0) +¢2f2(0) = 1 f1(1) +c2f2(1),
S0 again we have a subspace.

4.3 (a) The sef0} is a subspace sincevf = v» = 0 thencyvs + covp = 0. (This s true
in any vector space.)

A line L through the origin consists of all the vectors of the fawfor some fixed
non-zero vectov and arbitrary real numbees Now

c1(av) + C2(azv) = (c1a1 +coap)v e L,

soL is a subspace.

It is clear that the whole s#&t is a subspace.

Now letU be an arbitrary subspace. ThEnmust be non-empty, and so must
contain the zero vector. (if € U, then 0= u—u € U.) If there are no other vectors in
U, then itis the se{0}.

If vis a non-zero vector ibJ, then every scalar multiplav is contained irJ. If
there are no other vectorslih then it is a line through the origin.

Suppose thdt) contains a vectow which is not a scalar multiple of. Then any
vector in the plane is a linear combinationvadindw [WHY?], and saU =V.

4.5 A vector inU NV can be written in either of the two forms
a(1,2,0,—1)+b(2,1,1,3)+¢c(1,-1,1,2) =d(3,2,0,2) +€(2,2,0,1).

This gives us four equations for the five numba/is, c,d, e, whose solutions will give
us the intersection. The equations are

a+2b+c = 3d+2e

2at+b—-—c = 2d+2e
b+c = 0,
—-a+3b+2c = 2d+e



Using the third equation to eliminatagives

a+b = 3d+2e
2a+2b = 2d+2e
—a+b = 2d+e

The first two equations then tell us that ¢ 4e = 2d + 2e, soe = —2d; so we have

a+b = -—d,
a—-b = 0

Soa= b, and everything can be expressed in terma: of

b=a, c=—a, d=—-2a, e=4a.

Then the typical vector in the intersection has the form
a(1,2,0,—1)+a(2,1,1,3)—a(1,-1,1,2) = —2a(3,2,0,2) +4a(2,2,0,1) = a(2,4,0,0).
S0(2,4,0,0) is a basis fotJ NW.

Remark: We have gone about this in a rather unsystematic way. Can you formulate
some general rules for such a calculation?

4.7 The First Isomorphism Theorem 4.14 asserts:
Letd :V — W be a linear transformation of vector spaces. Then

(@) Im(0) is a subspace of W;
(b) Ker(6) is a subspace of V;
(c) V/Ker(6) = Im(T).

Note that, unlike for groups and rings (where kernels of homomorphisms are sub-
groups or subrings with some additional property, viz., normal subgroups or ideals), in
this case no extra property is required. Also, the proof is much simpler. A vector space
of dimensiomn over a fieldF is isomorphic td=". So to prove the isomorphism in (c),
all we have to do is to establish that the two vector spaces have the same dimension;
this is just the Rank and Nullity Theorem 4.15.

However, you are encouraged to write a more “structural” proof following the
proofs of the theorem for rings and groups.

The Second Isomorphism Theorem states:

Let W be a subspace of a vector space V. Then there is a one-to-one correspon-
dence between the set of subspaces of V containing W and the set of subspaces of
V/W.

Suppose thal) is a subspace of containingW, and considel /W (the set of
cosets ofW contained inU: note that any coset oV is either contained iU or
disjoint fromU). Take two cosetg/ -+ u; andW + uy in U /W. We have

C1(W+up) 4+ (W + Up) =W+ (c1ug + Coup) € U /W,



sinceU is a subspace; 40 /W is a subspace. The converse is similar.

The Third Isomorphism Theorem states:

LetU and W be two subspaces of V. ThenW and U+W are subspaces of V;
and (U +W)/W=U/UnNW).

The first part is straightforward, and the dimension argument proving the second is
Theorem 4.11. (Again you are encouraged to write out a more structural proof.)

4.9 The greatest common divisor of the elements of the matrix is 1. The gcd of the
2 x 2 subdeterminants is 30, while the determinant of the matrix is 1800. So the Smith
normal form must be

1 0 O
0 30 O
0 0 60

The exercise involves finding the right row and column operations to give this result; |
leave this to you!



