
Solutions to odd-numbered exercises
Peter J. Cameron,Introduction to Algebra, Chapter 4

4.1 Using the Second Subspace Test, we have to decide whether it is true that, iff1 and
f2 are bounded, or continuous, or differentiable, or satisfyf (0) = f (1), then the same
is true forc1 f1 +c2 f2 for all real numbersc1 andc2.

(a) To say thatf1 and f2 are bounded means that there existM1 andM2 such that
| f1(x)| ≤M1 and| f2(x)| ≤M2 for all x∈ [0,1]. Then

c1 f1(x)+c2 f2(x)| ≤ |c1| · | f1(x)|+ |c2| · | f2(x)| ≤ |c1|M1 + |c2|M2,

using properties of the modulus function:

|a+b| ≤ |a|+ |b|,qquad|ab|= |a| · |b|.

Soc1 f1 +c2 f2 is bounded.
The affirmative answer in (b) and (c) follows from elementary calculus.
For (d), if f1(0) = f1(1) and f2(0) = f2(1), then

c1 f1(0)+c2 f2(0) = c1 f1(1)+c2 f2(1),

so again we have a subspace.

4.3 (a) The set{0} is a subspace since ifv1 = v2 = 0 thenc1v1+c2v2 = 0. (This is true
in any vector space.)

A line L through the origin consists of all the vectors of the formav for some fixed
non-zero vectorv and arbitrary real numbersa. Now

c1(a1v)+c2(a2v) = (c1a1 +c2a2)v∈ L,

soL is a subspace.
It is clear that the whole setV is a subspace.
Now let U be an arbitrary subspace. ThenU must be non-empty, and so must

contain the zero vector. (Ifu∈U , then 0= u−u∈U .) If there are no other vectors in
U , then it is the set{0}.

If v is a non-zero vector inU , then every scalar multipleav is contained inU . If
there are no other vectors inU , then it is a line through the origin.

Suppose thatU contains a vectorw which is not a scalar multiple ofv. Then any
vector in the plane is a linear combination ofv andw [WHY?], and soU = V.

4.5 A vector inU ∩V can be written in either of the two forms

a(1,2,0,−1)+b(2,1,1,3)+c(1,−1,1,2) = d(3,2,0,2)+e(2,2,0,1).

This gives us four equations for the five numbersa,b,c,d,e, whose solutions will give
us the intersection. The equations are

a+2b+c = 3d+2e,

2a+b−c = 2d+2e,

b+c = 0,

−a+3b+2c = 2d+e.
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Using the third equation to eliminatec gives

a+b = 3d+2e,

2a+2b = 2d+2e,

−a+b = 2d+e.

The first two equations then tell us that 6d+4e= 2d+2e, soe=−2d; so we have

a+b = −d,

a−b = 0.

Soa = b, and everything can be expressed in terms ofa:

b = a, c =−a, d =−2a, e= 4a.

Then the typical vector in the intersection has the form

a(1,2,0,−1)+a(2,1,1,3)−a(1,−1,1,2)=−2a(3,2,0,2)+4a(2,2,0,1)= a(2,4,0,0).

So(2,4,0,0) is a basis forU ∩W.

Remark: We have gone about this in a rather unsystematic way. Can you formulate
some general rules for such a calculation?

4.7 The First Isomorphism Theorem 4.14 asserts:
Let θ : V →W be a linear transformation of vector spaces. Then

(a) Im(θ) is a subspace of W;

(b) Ker(θ) is a subspace of V ;

(c) V/Ker(θ)∼= Im(T).

Note that, unlike for groups and rings (where kernels of homomorphisms are sub-
groups or subrings with some additional property, viz., normal subgroups or ideals), in
this case no extra property is required. Also, the proof is much simpler. A vector space
of dimensionn over a fieldF is isomorphic toFn. So to prove the isomorphism in (c),
all we have to do is to establish that the two vector spaces have the same dimension;
this is just the Rank and Nullity Theorem 4.15.

However, you are encouraged to write a more “structural” proof following the
proofs of the theorem for rings and groups.

The Second Isomorphism Theorem states:
Let W be a subspace of a vector space V. Then there is a one-to-one correspon-

dence between the set of subspaces of V containing W and the set of subspaces of
V/W.

Suppose thatU is a subspace ofV containingW, and considerU/W (the set of
cosets ofW contained inU : note that any coset ofW is either contained inU or
disjoint fromU). Take two cosetsW+u1 andW+u2 in U/W. We have

c1(W+u1)+c2(W+u2) = W+(c1u1 +c2u2) ∈U/W,
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sinceU is a subspace; soU/W is a subspace. The converse is similar.
The Third Isomorphism Theorem states:
Let U and W be two subspaces of V . Then U∩W and U+W are subspaces of V ;

and(U +W)/W ∼= U/(U ∩W).
The first part is straightforward, and the dimension argument proving the second is

Theorem 4.11. (Again you are encouraged to write out a more structural proof.)

4.9 The greatest common divisor of the elements of the matrix is 1. The gcd of the
2×2 subdeterminants is 30, while the determinant of the matrix is 1800. So the Smith
normal form must be 1 0 0

0 30 0
0 0 60

 .

The exercise involves finding the right row and column operations to give this result; I
leave this to you!
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