Solutions to odd-numbered exercises
Peter J. Cameron,Introduction to Algebrg Chapter 5

5.1 All of the left and right module axioms are easily demonstrated by using the as-
sociative, distributive, zero, and additive inverse laws for matrices, while the extra
bimodule axiom comes from the associative law. (Note that this bimodule is unital for
both left and right actions.)

5.3 (a) Suppose thdfl is generated aB-module by the element. Define a map
6 :R— M by
re =mr

for all r € R. We claim that is anR-module homomorphism. This involves checking
that

m(ri+rz) = mri+mry,
m(rirz) = (mry)ra,

which are just module axioms (MM2) and (MM3). [In the case of the second axiom,
we have to show thafrir2)6 = (r10)r,. We are thinking of’ as an element of the
freeR-moduleR, andr, as an element of the rirlgacting on this module.] The kernel

of 6 is {r € R: mr=0}. Clearly any element € Ann(M) satisfies this condition.
Conversely, sincengenerate®, every element df1 has the forrmr’ for somer’ € R;
thenmr =0 implies(mr’)r = (mr)r’ =0, sor € Ann(M). [Remember that our rings are
now commutative with identity!] So the K&9) = Ann(M). Also, sincem generates

M, we have Injf) = M. SoM = R/Ann(M) (asR-modules).

55 Let b
a
A=(28).

Then the characteristic polynomial Afis x*> — (a+d)x+ (ad — bc); and

(‘Z‘ 3)2—(a+d)(i 3)+(ad—bc)(é 2):(8 8),

after some calculation.
The 3x 3 case is left to you!

5.7 We know thaF", asF [x]-module (as in Example 6 on page 185) is isomorphic to
the direct sum of the modulds(x) /( fi(x)), wheref;(x) are the diagonal entries in the
Smith normal form.

None of the polynomialsij(x) can be zero; folF[x]/(0) = F[x] is an infinite-
dimensional vector space ovér whereas-" is finite-dimensional. Sd1(x),..., fn(x)
are the invariant factors.

If fi(x) =1, then the corresponding summand-ix] /(1) = {0}, and can be re-
moved from the direct sum without changing it. So we are left with just the non-
constant polynomials; (x).



5.9 (a) The seKX in question is jusf{v € V : vA= Av}, since the eigenvectors are
precisely the non-zero vectors in this set.
But, if vA= Av andwA = Aw, then

(VFWA=VA+WA = Av+Aiw=A(V+w),
(v A=c(VA) = c(Av)=A(cv);

SoX passes the Subspace Test.
(b) Suppose that we have a linear dependence relation

Civi+ -+ =0,

wherecy, . .., ¢ are not all zero. We may assume that the number of non-zero elements
amongcy,...,Ck is as small as possible for any linear dependence. The number of
non-zero elements must be at least two. For suppose that all exeegrte zero. Then
we would have, sayv; = 0, contradicting the fact thay £ 0 andv; # 0 (asv; is an
eigenvector).

Without loss of generality, we can suppose thaindc, are non-zero. Multiplying
the displayed equation by, using the fact tha; A = A;v;, we obtain

A1C1va + AoCoVo + - - - + Ak = O.
Multiplying the displayed equation bis, we obtain
AMC1vi + ACoVo + - -+ A1V = 0.
Subtracting these two equations gives
(A2 —A1)Cvo+ -+ (A — A1) e = 0.

But this last relation is a linear dependence relatiowvgn. ., vk (since the coefficient
of v is (A2 — A1)C2 # 0), with one fewer non-zero term than the equation with which we
began. This contradicts the fact that we started with as few non-zero terms as possible.

5.11 (a) implies (b): Il is an eigenvalue o, then there is a non-zero vector such that
vA=Av. Thenv(A—Al) = O, soA— Al is not invertible; so its determinant is zero.
But this determinant is just(1).

(b) implies (c): Suppose thatA) =0, butm(1) # 0. Then detA— Al) =0, so
A— Al is not invertible; thus there exists a vectog£ 0 with vA= Av. But then an easy
argument shows thatm(A) = m(A)v # 0, contradicting the fact tha(A) = O.

(c) implies (a): Ifm(4) =0, thenc(A4) = 0 by the Cayley—Hamilton Theorem 5.21.
Then just as in the case (b) implies (c), we see that there exists an eigenvector with
eigenvaluel.

Remark: In this proof, you see that we are covering some of the ground more than
once. The direction of proof given in the book seems to be the most natural!



5.13 Letdy,...,d, be the diagonal elements in the Smith normal forrAoBy Theo-
remb5.9,
GXXZ/WZ @ - dZ/dnZ.

We see immediately that, if songgis zero, therG is infinite, while if all d; are finite,
then|G] is just their product.

Now, when we apply an elementary row or column operation to a matrix, the effect
on the determinant (if any) is to multiply it by 1 or a unit. InZ, the only units are
+1 and—1. So the determinant of the Smith normal formfofwhich isdidz - - - dp) is
equal, up to sign, to déd), and we are done.



