
Solutions to odd-numbered exercises
Peter J. Cameron,Introduction to Algebra, Chapter 5

5.1 All of the left and right module axioms are easily demonstrated by using the as-
sociative, distributive, zero, and additive inverse laws for matrices, while the extra
bimodule axiom comes from the associative law. (Note that this bimodule is unital for
both left and right actions.)

5.3 (a) Suppose thatM is generated asR-module by the elementm. Define a map
θ : R→ M by

rθ = mr

for all r ∈ R. We claim thatθ is anR-module homomorphism. This involves checking
that

m(r1 + r2) = mr1 +mr2,

m(r1r2) = (mr1)r2,

which are just module axioms (MM2) and (MM3). [In the case of the second axiom,
we have to show that(r1r2)θ = (r1θ)r2. We are thinking ofr ′ as an element of the
freeR-moduleR, andr2 as an element of the ringRacting on this module.] The kernel
of θ is {r ∈ R : mr = 0}. Clearly any elementr ∈ Ann(M) satisfies this condition.
Conversely, sincemgeneratesM, every element ofM has the formmr′ for somer ′ ∈R;
thenmr= 0 implies(mr′)r = (mr)r ′ = 0, sor ∈Ann(M). [Remember that our rings are
now commutative with identity!] So the Ker(θ) = Ann(M). Also, sincem generates
M, we have Im(θ) = M. SoM ∼= R/Ann(M) (asR-modules).

5.5 Let

A =
(

a b
c d

)
.

Then the characteristic polynomial ofA is x2− (a+d)x+(ad−bc); and(
a b
c d

)2

− (a+d)
(

a b
c d

)
+(ad−bc)

(
1 0
0 1

)
=

(
0 0
0 0

)
,

after some calculation.
The 3×3 case is left to you!

5.7 We know thatFn, asF [x]-module (as in Example 6 on page 185) is isomorphic to
the direct sum of the modulesF(x)/〈 fi(x)〉, where fi(x) are the diagonal entries in the
Smith normal form.

None of the polynomialsfi(x) can be zero; forF [x]/〈0〉 = F [x] is an infinite-
dimensional vector space overF , whereasFn is finite-dimensional. Sof1(x), . . . , fn(x)
are the invariant factors.

If fi(x) = 1, then the corresponding summand isF [x]/〈1〉 = {0}, and can be re-
moved from the direct sum without changing it. So we are left with just the non-
constant polynomialsfi(x).
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5.9 (a) The setX in question is just{v ∈ V : vA = λv}, since the eigenvectors are
precisely the non-zero vectors in this set.

But, if vA= λv andwA= λw, then

(v+w)A = vA+wA = λv+λw = λ (v+w),
(cv)A = c(vA) = c(λv) = λ (cv);

SoX passes the Subspace Test.

(b) Suppose that we have a linear dependence relation

c1v1 + · · ·+ckvk = 0,

wherec1, . . . ,ck are not all zero. We may assume that the number of non-zero elements
amongc1, . . . ,ck is as small as possible for any linear dependence. The number of
non-zero elements must be at least two. For suppose that all exceptci were zero. Then
we would have, say,civi = 0, contradicting the fact thatci 6= 0 andvi 6= 0 (asvi is an
eigenvector).

Without loss of generality, we can suppose thatc1 andc2 are non-zero. Multiplying
the displayed equation byA, using the fact thatviA = λivi , we obtain

λ1c1v1 +λ2c2v2 + · · ·+λkckvk = 0.

Multiplying the displayed equation byλ1, we obtain

λ1c1v1 +λ1c2v2 + · · ·+λ1ckvk = 0.

Subtracting these two equations gives

(λ2−λ1)c2v2 + · · ·+(λk−λ1)ckvk = 0.

But this last relation is a linear dependence relation onv1, . . . ,vk (since the coefficient
of v2 is (λ2−λ1)c2 6= 0), with one fewer non-zero term than the equation with which we
began. This contradicts the fact that we started with as few non-zero terms as possible.

5.11 (a) implies (b): Ifλ is an eigenvalue ofA, then there is a non-zero vector such that
vA= λv. Thenv(A−λ I) = O, soA−λ I is not invertible; so its determinant is zero.
But this determinant is justc(λ ).

(b) implies (c): Suppose thatc(λ ) = 0, butm(λ ) 6= 0. Then det(A−λ I) = 0, so
A−λ I is not invertible; thus there exists a vectorv 6= 0 with vA= λv. But then an easy
argument shows thatvm(A) = m(λ )v 6= 0, contradicting the fact thatm(A) = O.

(c) implies (a): Ifm(λ ) = 0, thenc(λ ) = 0 by the Cayley–Hamilton Theorem 5.21.
Then just as in the case (b) implies (c), we see that there exists an eigenvector with
eigenvalueλ .

Remark: In this proof, you see that we are covering some of the ground more than
once. The direction of proof given in the book seems to be the most natural!

2



5.13 Letd1, . . . ,dn be the diagonal elements in the Smith normal form ofA. By Theo-
rem 5.9,

G∼= Z/d1Z⊕·· ·⊕Z/dnZ.

We see immediately that, if somedi is zero, thenG is infinite, while if all di are finite,
then|G| is just their product.

Now, when we apply an elementary row or column operation to a matrix, the effect
on the determinant (if any) is to multiply it by−1 or a unit. InZ, the only units are
+1 and−1. So the determinant of the Smith normal form ofA (which isd1d2 · · ·dn) is
equal, up to sign, to det(A), and we are done.
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