Solutions to odd-numbered exercises
Peter J. Cameron,Introduction to Algebrg Chapter 6

6.1 Recall that 2= 5(s(0)) and 4= s(s(s(s(0)))). Now by definition,

2+2 = 2+9(s(0))
= s(2+90))
= 5(s(2+0))
= s(s(2))
= 4

Not too long; but maybe not enough to satisfy Russell!

6.3 Forn > 1, letn = {x} (in other wordsx just stands for the string of symbols inside
the set brackets far). Thenn+1 = {x,{x}}. So ifan, by, cn, dn denote the numbers of
empty set symbols, opening and closing braces, and commas in the strimghen
forn>1

any1 = 2an,

brii = 1+ (bn—1)+bn=2by,
Cp1 = (Ch—1)+cn+1=2cp,
Oh1 = 2dh+1

With the initial conditionsa; = b; = ¢; = 1, d; = 0, these recurrence relations have
the solutionsy =bp=c¢c,=2",d, =2"—1.

The fact that these expressions are exponentially long indicates why we don't use
them in practice! Our usual decimal system only requires aboyffogymbols to
represent the natural number

6.5 Suppose first that > 0.

Let Sbe the set of natural numbensuch thabn > a. ThenSis non-empty, since
forexamplea+1€ S Also, ifne S thenclearlyn+1€ S

By the Principle of InductionShas a least element, say We haveb(m—1) < a
andbm> a. Puttingqg = m— 1, we have

bg<a<b(g+1),

and subtractindpq gives 0< a— bqg < b. Puttingr = a— bg, we are done.

Now suppose that < 0. (In the cas@a = 0, the resultis trivialg =r = 0.) Then we
can find a numbex such that+ bx > 0. [WHY?7?] By the first parta+ bx= bqg+r,
where 0<r < b; thena=b(q—x) +r.

6.7 LetF denote the field of fractions d&[X| (this is the field ofrational functions
overE). The evaluation map — f(a) takesF to E(a). (This is well-defined. For, if
p(x)/q(x) € F, whereqis a non-zero polynomial, theg{a) # 0 sincea is transcenden-
tal, so thatp(a)/q(a) is an element oE(a); moreover, if two expressions(x)/q(x)



represent the same elementkofthen it is clear that the corresponding expressions
p(a)/q(a) are equal irE(a).

Moreover, the evaluation map is a homomorphism, and its kernel is zero (since a
field has no non-trivial ideals) and its imageH§éa) by definition. So it is an isomor-
phism fromF to E(a).

6.9 (a) Suppose th# andB are countable. Then each is bijective wifhthat is, we
can writeA = {a, : n € N}, and similarly forB.

We may assume th# andB are disjoint. For, ifA’ andB’ are sets bijective with
A andB which are disjoint, then there is an injection fraxnto AUB, and an injection
from AUB to A UB/; so, if A UB' is countable, then so i&U B by the Schoder—
Bernstein theorem.

A bijection fromN to AUB is now given by

a2 if nis even;
f(n) = {b(nl)/z if nis odd.
A bijection betweerN andA x B is harder to write down. We do it by thinking of

A x Bwritten as a square array, and picking up elements on the north-east to south-west
diagonals as shown:

(a0, bo) (a0, b1) (a0, b2) (a0, bs)
/ / /
(a1,bo) (aq,b1) (a1,b2) (a1,bs)
/
(a2, bo) (a,by) (a,b) (a,bs3)
/ / /
(a,bo) (ag,by) (ag,by) (ag,bs)

That is, f(0) = (ap,bo), f(1) = (ag,b1), f(2) = (a1, b0), f(3) = (ag,b2), ...
(b) By induction from (), using the fact thait' is bijective withN"1 x N,

(c) LetAbe countable, say (as abovey {a,: n € N}. LetB be a subset of, and
S={ne N:a, € B}. “Define” a functionN — N by letting f (n) be the least element
in the setS\ {f(0,..., f(n—1)}. Since any non-empty subsetihas a least element,
this procedure will fail only ifS= {f(0,..., f(n—1)}, in which caseS (and henced)
is finite. If it never fails, it defines a bijection betweBandS, which followed by the
mapn — a, gives a bijection fronN to B.

(d) Z is the union of two clearly countable sets (the natural numbers and their
negatives).

We show that the non-negative rationals are countable. Each can be expressed
uniquely as a fractiop/q in its lowest terms; thus the non-negative rationals are bijec-
tive with a subset oN x N, and hence countable by (c). Th@ris the union of the sets
of non-negative and non-positive rationals, each of which is countable.

6.11 Apply Krull's Theorem to the rindgr/I, and then use the Second Isomorphism
Theorem.



6.13 LetV be a vector space over. Let % be the collection of all subseBof V with
the property that every finite subset®fs linearly independent. The st is ordered
by inclusion (that isB; < By if By C Bp).

Let € be a chain in, andC its union. TherC € 4. For suppose not; then some
finite subset o€, say{vi,...,vn}, is linearly dependent. Now eaghbelongs to some
member of the chain; say € By. Of the finitely many set8,,,...,By,, one is the
largest, sayBy;; then{vi,...,vn} is a linearly dependent finite subset®y, contrary
to assumption. S€ is an upper bound for the chaifiin 2.

By Zorn’s Lemma,Z has a maximal element, s@p. We claim thatBy is the
required basis. Clearly its finite subsets are linearly independent. Suppose that there
is a vectorv € V which is not a linear combination of the vectorsBg. But then
BoU{v} € 4, contradicting the maximality d8p. So no such vector can exist.

There is an alternative proof using the Well-ordering Principle and transfinite in-
duction. Well-order the vectors ®. Now construct a sé® as follows: a vectov is in
B if and only if it is not expressible as a linear combination of its predecessors in the
order. (Formally, ifBy is the set constructed by stagef the transfinite induction, then

B By if vis a linear combination of vectors By,
sv) 7\ ByU{v} otherwise.

Then show that the set so constructed is a basis.)



