
Solutions to odd-numbered exercises
Peter J. Cameron,Introduction to Algebra, Chapter 6

6.1 Recall that 2= s(s(0)) and 4= s(s(s(s(0)))). Now by definition,

2+2 = 2+s(s(0))
= s(2+s(0))
= s(s(2+0))
= s(s(2))
= 4.

Not too long; but maybe not enough to satisfy Russell!

6.3 Forn≥ 1, letn = {x} (in other words,x just stands for the string of symbols inside
the set brackets forn). Thenn+1= {x,{x}}. So if an,bn,cn,dn denote the numbers of
empty set symbols, opening and closing braces, and commas in the string forn, then
for n≥ 1

an+1 = 2an,

bn+1 = 1+(bn−1)+bn = 2bn,

cn+1 = (cn−1)+cn +1 = 2cn,

dn+1 = 2dn +1.

With the initial conditionsa1 = b1 = c1 = 1, d1 = 0, these recurrence relations have
the solutionsan = bn = cn = 2n, dn = 2n−1.

The fact that these expressions are exponentially long indicates why we don’t use
them in practice! Our usual decimal system only requires about log10n symbols to
represent the natural numbern.

6.5 Suppose first thata > 0.
Let Sbe the set of natural numbersn such thatbn> a. ThenS is non-empty, since

for examplea+1∈ S. Also, if n∈ S, then clearlyn+1∈ S.
By the Principle of Induction,Shas a least element, saym. We haveb(m−1)≤ a

andbm> a. Puttingq = m−1, we have

bq≤ a < b(q+1),

and subtractingbqgives 0≤ a−bq< b. Puttingr = a−bq, we are done.

Now suppose thata< 0. (In the casea= 0, the result is trivial:q= r = 0.) Then we
can find a numberx such thata+bx> 0. [WHY??] By the first part,a+bx= bq+ r,
where 0≤ r < b; thena = b(q−x)+ r.

6.7 LetF denote the field of fractions ofE[x] (this is the field ofrational functions
overE). The evaluation mapf 7→ f (a) takesF to E(a). (This is well-defined. For, if
p(x)/q(x)∈ F , whereq is a non-zero polynomial, thenq(a) 6= 0 sincea is transcenden-
tal, so thatp(a)/q(a) is an element ofE(a); moreover, if two expressionsp(x)/q(x)
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represent the same element ofF , then it is clear that the corresponding expressions
p(a)/q(a) are equal inE(a).

Moreover, the evaluation map is a homomorphism, and its kernel is zero (since a
field has no non-trivial ideals) and its image isE(a) by definition. So it is an isomor-
phism fromF to E(a).

6.9 (a) Suppose thatA andB are countable. Then each is bijective withN; that is, we
can writeA = {an : n∈ N}, and similarly forB.

We may assume thatA andB are disjoint. For, ifA′ andB′ are sets bijective with
A andB which are disjoint, then there is an injection fromA to A∪B, and an injection
from A∪B to A′ ∪B′; so, if A′ ∪B′ is countable, then so isA∪B by the Schr̈oder–
Bernstein theorem.

A bijection fromN to A∪B is now given by

f (n) =
{

an/2 if n is even;
b(n−1)/2 if n is odd.

A bijection betweenN andA×B is harder to write down. We do it by thinking of
A×B written as a square array, and picking up elements on the north-east to south-west
diagonals as shown:

(a0,b0) (a0,b1) (a0,b2) (a0,b3)
↙ ↙ ↙

(a1,b0) (a1,b1) (a1,b2) (a1,b3)
↙ ↙ ↙

(a2,b0) (a2,b1) (a2,b2) (a2,b3)
↙ ↙ ↙

(a3,b0) (a3,b1) (a3,b2) (a3,b3)

That is, f (0) = (a0,b0), f (1) = (a0,b1), f (2) = (a1,b0), f (3) = (a0,b2), . . .

(b) By induction from (a), using the fact thatNn is bijective withNn−1×N.

(c) LetA be countable, say (as above)A= {an : n∈N}. Let B be a subset ofA, and
S= {n∈ N : an ∈ B}. “Define” a functionN→ N by letting f (n) be the least element
in the setS\{ f (0, . . . , f (n−1)}. Since any non-empty subset ofN has a least element,
this procedure will fail only ifS= { f (0, . . . , f (n−1)}, in which caseS (and henceB)
is finite. If it never fails, it defines a bijection betweenN andS, which followed by the
mapn 7→ an gives a bijection fromN to B.

(d) Z is the union of two clearly countable sets (the natural numbers and their
negatives).

We show that the non-negative rationals are countable. Each can be expressed
uniquely as a fractionp/q in its lowest terms; thus the non-negative rationals are bijec-
tive with a subset ofN×N, and hence countable by (c). ThenQ is the union of the sets
of non-negative and non-positive rationals, each of which is countable.

6.11 Apply Krull’s Theorem to the ringR/I , and then use the Second Isomorphism
Theorem.
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6.13 LetV be a vector space overF . Let B be the collection of all subsetsB of V with
the property that every finite subset ofB is linearly independent. The setB is ordered
by inclusion (that is,B1 < B2 if B1 ⊂ B2).

Let C be a chain inB, andC its union. ThenC∈B. For suppose not; then some
finite subset ofC, say{v1, . . . ,vn}, is linearly dependent. Now eachvi belongs to some
member of the chain; sayvi ∈ Bki . Of the finitely many setsBk1, . . . ,Bkn, one is the
largest, sayBk j ; then{v1, . . . ,vn} is a linearly dependent finite subset ofBk j , contrary
to assumption. SoC is an upper bound for the chainC in B.

By Zorn’s Lemma,B has a maximal element, sayB0. We claim thatB0 is the
required basis. Clearly its finite subsets are linearly independent. Suppose that there
is a vectorv ∈ V which is not a linear combination of the vectors inB0. But then
B0∪{v} ∈B, contradicting the maximality ofB0. So no such vector can exist.

There is an alternative proof using the Well-ordering Principle and transfinite in-
duction. Well-order the vectors ofV. Now construct a setB as follows: a vectorv is in
B if and only if it is not expressible as a linear combination of its predecessors in the
order. (Formally, ifBv is the set constructed by stagev of the transfinite induction, then

Bs(v) =
{

Bv if v is a linear combination of vectors inBv,
Bv∪{v} otherwise.

Then show that the set so constructed is a basis.)
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