Solutions to odd-numbered exercises Peter J. Cameron, *Introduction to Algebra*, Chapter 6

6.1 Recall that 2 = s(s(0)) and 4 = s(s(s(s(0)))). Now by definition,

$$2+2 = 2+s(s(0))$$

$$= s(2+s(0))$$

$$= s(s(2+0))$$

$$= s(s(2))$$

$$= 4.$$

Not too long; but maybe not enough to satisfy Russell!

6.3 For $n \ge 1$, let $n = \{x\}$ (in other words, x just stands for the string of symbols inside the set brackets for n). Then $n+1=\{x,\{x\}\}$. So if a_n,b_n,c_n,d_n denote the numbers of empty set symbols, opening and closing braces, and commas in the string for n, then for $n \ge 1$

$$a_{n+1} = 2a_n,$$

 $b_{n+1} = 1 + (b_n - 1) + b_n = 2b_n,$
 $c_{n+1} = (c_n - 1) + c_n + 1 = 2c_n,$
 $d_{n+1} = 2d_n + 1.$

With the initial conditions $a_1 = b_1 = c_1 = 1$, $d_1 = 0$, these recurrence relations have the solutions $a_n = b_n = c_n = 2^n$, $d_n = 2^n - 1$.

The fact that these expressions are exponentially long indicates why we don't use them in practice! Our usual decimal system only requires about $\log_{10} n$ symbols to represent the natural number n.

6.5 Suppose first that a > 0.

Let *S* be the set of natural numbers *n* such that bn > a. Then *S* is non-empty, since for example $a + 1 \in S$. Also, if $n \in S$, then clearly $n + 1 \in S$.

By the Principle of Induction, S has a least element, say m. We have $b(m-1) \le a$ and bm > a. Putting q = m - 1, we have

$$bq \le a < b(q+1)$$
,

and subtracting bq gives $0 \le a - bq < b$. Putting r = a - bq, we are done.

Now suppose that a < 0. (In the case a = 0, the result is trivial: q = r = 0.) Then we can find a number x such that a + bx > 0. [WHY??] By the first part, a + bx = bq + r, where $0 \le r < b$; then a = b(q - x) + r.

6.7 Let F denote the field of fractions of E[x] (this is the field of **rational functions** over E). The evaluation map $f \mapsto f(a)$ takes F to E(a). (This is well-defined. For, if $p(x)/q(x) \in F$, where q is a non-zero polynomial, then $q(a) \neq 0$ since a is transcendental, so that p(a)/q(a) is an element of E(a); moreover, if two expressions p(x)/q(x)

represent the same element of F, then it is clear that the corresponding expressions p(a)/q(a) are equal in E(a).

Moreover, the evaluation map is a homomorphism, and its kernel is zero (since a field has no non-trivial ideals) and its image is E(a) by definition. So it is an isomorphism from F to E(a).

6.9 (a) Suppose that *A* and *B* are countable. Then each is bijective with \mathbb{N} ; that is, we can write $A = \{a_n : n \in \mathbb{N}\}$, and similarly for *B*.

We may assume that A and B are disjoint. For, if A' and B' are sets bijective with A and B which are disjoint, then there is an injection from $A \cup B$, and an injection from $A \cup B$ to $A' \cup B'$; so, if $A' \cup B'$ is countable, then so is $A \cup B$ by the Schröder–Bernstein theorem.

A bijection from \mathbb{N} to $A \cup B$ is now given by

$$f(n) = \begin{cases} a_{n/2} & \text{if } n \text{ is even;} \\ b_{(n-1)/2} & \text{if } n \text{ is odd.} \end{cases}$$

A bijection between \mathbb{N} and $A \times B$ is harder to write down. We do it by thinking of $A \times B$ written as a square array, and picking up elements on the north-east to south-west diagonals as shown:

$$(a_0,b_0)$$
 (a_0,b_1) (a_0,b_2) (a_0,b_3)
 (a_1,b_0) (a_1,b_1) (a_1,b_2) (a_1,b_3)
 (a_2,b_0) (a_2,b_1) (a_2,b_2) (a_2,b_3)
 (a_3,b_0) (a_3,b_1) (a_3,b_2) (a_3,b_3)

That is,
$$f(0) = (a_0, b_0)$$
, $f(1) = (a_0, b_1)$, $f(2) = (a_1, b_0)$, $f(3) = (a_0, b_2)$, ...

- (b) By induction from (a), using the fact that \mathbb{N}^n is bijective with $\mathbb{N}^{n-1} \times \mathbb{N}$.
- (c) Let A be countable, say (as above) $A = \{a_n : n \in \mathbb{N}\}$. Let B be a subset of A, and $S = \{n \in \mathbb{N} : a_n \in B\}$. "Define" a function $\mathbb{N} \to \mathbb{N}$ by letting f(n) be the least element in the set $S \setminus \{f(0, \dots, f(n-1))\}$. Since any non-empty subset of \mathbb{N} has a least element, this procedure will fail only if $S = \{f(0, \dots, f(n-1))\}$, in which case S (and hence B) is finite. If it never fails, it defines a bijection between \mathbb{N} and S, which followed by the map $n \mapsto a_n$ gives a bijection from \mathbb{N} to B.
- (d) $\ensuremath{\mathbb{Z}}$ is the union of two clearly countable sets (the natural numbers and their negatives).

We show that the non-negative rationals are countable. Each can be expressed uniquely as a fraction p/q in its lowest terms; thus the non-negative rationals are bijective with a subset of $\mathbb{N} \times \mathbb{N}$, and hence countable by (c). Then \mathbb{Q} is the union of the sets of non-negative and non-positive rationals, each of which is countable.

6.11 Apply Krull's Theorem to the ring R/I, and then use the Second Isomorphism Theorem.

6.13 Let V be a vector space over F. Let \mathcal{B} be the collection of all subsets B of V with the property that every finite subset of B is linearly independent. The set \mathcal{B} is ordered by inclusion (that is, $B_1 < B_2$ if $B_1 \subset B_2$).

Let $\mathscr C$ be a chain in $\mathscr B$, and C its union. Then $C \in \mathscr B$. For suppose not; then some finite subset of C, say $\{v_1,\ldots,v_n\}$, is linearly dependent. Now each v_i belongs to some member of the chain; say $v_i \in B_{k_i}$. Of the finitely many sets B_{k_1},\ldots,B_{k_n} , one is the largest, say B_{k_j} ; then $\{v_1,\ldots,v_n\}$ is a linearly dependent finite subset of B_{k_j} , contrary to assumption. So C is an upper bound for the chain $\mathscr C$ in $\mathscr B$.

By Zorn's Lemma, \mathcal{B} has a maximal element, say B_0 . We claim that B_0 is the required basis. Clearly its finite subsets are linearly independent. Suppose that there is a vector $v \in V$ which is not a linear combination of the vectors in B_0 . But then $B_0 \cup \{v\} \in \mathcal{B}$, contradicting the maximality of B_0 . So no such vector can exist.

There is an alternative proof using the Well-ordering Principle and transfinite induction. Well-order the vectors of V. Now construct a set B as follows: a vector v is in B if and only if it is not expressible as a linear combination of its predecessors in the order. (Formally, if B_v is the set constructed by stage v of the transfinite induction, then

$$B_{s(v)} = \begin{cases} B_v & \text{if } v \text{ is a linear combination of vectors in } B_v, \\ B_v \cup \{v\} & \text{otherwise.} \end{cases}$$

Then show that the set so constructed is a basis.)