
Solutions to odd-numbered exercises
Peter J. Cameron,Introduction to Algebra, Chapter 7

7.1 Suppose that (GA1) and (GA2) hold. Then

µ(µ(x,g),g−1) = µ(x,gg−1) = µ(x,1) = x,

where the first equality uses (GA1) and the third uses (GA2); the middle inequality
uses the group axiom (G3). The other part of (GA3) is proved similarly.

7.3 (a) First we show that an element ofHK has|H∩K| representations of the formhk
for h∈H andk∈K. For if x= hk= h′k′, then(h′)−1h= k′k−1∈H∩K; and conversely,
for any elementg∈ H ∩K, we havehk= (hg−1)(gk), with hg−1 ∈ H andgk∈ K.

Now there are|H| · |K| pairs(h,k) with h∈ H andk ∈ K. For any such pair,hk∈
HK; and each element ofHK has|H ∩K| such representations. So we have|HK| =
|H| · |K|/|H ∩K|.

(b) Let X−1 = {x−1 : x ∈ X} for any subsetX of G. Suppose first thatHK is a
subgroup. Then

HK = (HK)−1 = K−1H−1 = KH.

Conversely, suppose thatHK = KH. Since, as above,(HK)−1 = KH, we see thatHK
is inverse-closed; so, using the First Subgroup Test, we have to show it is product-
closed. So takeh1k1,h2k2 ∈HK. Thenk1h2 ∈KH = HK, sok1h2 = hk for someh∈H
andk∈ K. Then

(h1k1)(h2k2) = h1(k1h2)k2 = h1(hk)k2 = (h1h)(kk2) ∈ HK,

and we are done.

(c) The given equation shows that, for anyh ∈ H andk ∈ K, there existsk′ ∈ K
such thatkh= hk′. We apply the Second Subgroup Test toHK. Takeh1k1,h2k2 ∈HK.
Choosek′ ∈ K such that(k1k−1

2 )h−1
2 = h−1

2 k′. Then

(h1k1)(h2k2)−1 = h1(k1k−1
2 )h−1

2 = h1h−1
2 k′ ∈ HK,

and we are done.

7.5. For the conjugation action, the fixed point set of an elementg∈G is its centraliser
CG(g), while the orbits are the conjugacy classes. So the Orbit-Counting Lemma says
that the number of conjugacy classes is equal to

1
|G| ∑

g∈G

|CG(g)|.

To see this directly, note that the size of the conjugacy class containingg is |G|/|CG(g)|,
so for any conjugacy classC we have

1
|G| ∑

g∈C

|CG(g)|= 1,

from which the result follows. (This is just the proof of the Orbit-Counting Lemma in
this special case.)
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7.7 Takeg ∈ NG(H), whereH = NG(P). Theng−1Pg is a Sylow p-subgroup ofG
(since it has the same order asP) and is contained inH (sinceg normalisesH); so it is
a Sylowp-subgroup ofH. By Sylow’s Theorem,g−1Pg is conjugate toP in H; that is,
there existsh∈ H such thatg−1Pg= h−1Ph. This implies that(gh−1)−1P(gh−1) = P.
Sok = gh−1 belongs to the normaliser ofP, which of course isH. Now g = kh, and
k,h∈ H, sog∈ H.

We conclude thatNG(H)≤H. But trivially the reverse inequality holds; soNG(H)=
H, as required.

7.9 Letpa be the exact power ofp dividing the order ofG. We show that a subgroupP
of orderpi is contained in a Sylowp-subgroup by induction ona− i. (Note thati ≤ a
by Lagrange’s Theorem.)

If a− i = 0 then there is nothing to prove:P is already a Sylow subgroup.
Suppose thata− i > 0 and that the result holds for subgroups of orderi′ with

a− i′ < a− i, that is,i′ > i. By StatementBi in the proof of Theorem 7.7,P is contained
(normally) in a subgroup of orderPi+1, which is contained in a Sylowp-subgroup by
the induction hypothesis.

7.11 How does the Jordan–Hölder Theorem for finite groups need to be adapted? If we
simply ask that any two composition series of finite length for a group have the same
length and the same multiset of composition factors, then the proof for finite groups
works without any modification. However, more is true: ifG has a composition series
of finite length then any finite series of subgroups ofG with each normal in the next
can be refined to a composition series of finite length.

To show this by induction on the length of a composition series, it is enough to show
that any normal subgroup ofG is contained in a composition series of finite length. Let

G = G0 ≥ G1 ≥ ·· · ≥ Gr = 1

be a composition series forG, andH any normal subgroup ofG. Then we have

G = HG0 ≥ HG1 ≥ ·· ·HGr = H.

Now HGi = (HGi+1)Gi , so

HGi/HGi+1
∼= Gi/HGi+1∩Gi

and the right-hand group is a quotient ofGi/Gi+1, hence is trivial or simple; so deleting
repetitions, we have part of a composition series fromG to H. Similarly we have

H = G0∩H ≥ G1∩H ≥ ·· · ≥ Gr ∩H = {1}.

Here(Gi ∩H)∩Gi+1 = Gi+1∩H, so

(Gi ∩H)/(Gi+1∩H)∼= (Gi ∩H)Gi+1/Gi+1,

which is a normal subgroup ofGi/Gi+1, and again is trivial or simple; dropping repe-
titions we get the remainder of the composition series.
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7.13 Recall two facts:

• the conjugate ofc by an elementg is obtained by replacing the entries in the
cycles ofc by their images underg;

• two permutations in cycle form are equal if and only if they differ only in the
orders of the factors and the chosen starting points of the cycles.

From the second assertion, it is clear that (writing the expression forc with the cycle
lengths in decreasing order, say) there aref different expressions forc. By first as-
sertion, for each such expression there is a unique elementg performing the required
substitution; theng−1cg = c, so g belongs to the centraliser ofc. Moreover, every
element of the centraliser arises in this way. SoCG(c) has orderf , as required.

Now suppose that, for some cycle structure, we haven!/ f ≤ 2(n−1). If there is
some collection of cycle lengths such that the union of all cycles of these lengths has
length j, thenn!/ f ≥

(n
j

)
. [WHY?] If 1 < j < n−1, then(

n
j

)
≥

(
n
2

)
> 2(n−1) for n > 5,

so we can assume that this is not the case. This leaves only the cases whenc is a
product of cycles of the same length, or has a fixed point together with a product of
cycles of the same length. In each of these cases the required inequality can be verified
directly.

7.15 We show that any simple group of order 60 is isomorphic toA5. Then the assertion
follows. So letG be a simple group of order 60. We will show thatG has a subgroup
of index 5. ThenG acts on the cosets of this subgroup, so has a homomorphism to the
symmetric groupS5. SinceG is simple, the kernel of this homomorphism is trivial, so
thatG is isomorphic to a subgroup ofS5. This subgroup has index 2, and so is normal
in S5; as we saw in Proposition 3.30, it must beA5.

The number of Sylow 5-subgroups ofG is congruent to 1 mod 5 and divides 12, but
is not 1 (else the Slow 5-subgroup is normal inG, contrary to assumption). So there are
6 Sylow 5-subgroups ofG. Since each is cyclic, they intersect pairwise in the identity,
and contain between them 24 elements of order 5.

A similar argument shows that there are 10 Sylow 3-subgroups, containing 20 ele-
ments of order 3. Hence there are 15 elements of order other than 1, 3 or 5.

The number of Sylow 2-subgroups ofG is congruent to 1 mod 2 and divides 15, so
must be 1, 3, 5 or 15. If it is 1, the Sylow 2-subgroup is normal, contrary to assumption.
If 3, we have a homomorphism fromG to S3 whose kernel is trivial, which is impossible
sinceG is larger thanS3. If the number if 5, the normaliser is a subgroup of index 5 and
we are done. So we can assume that there are 15 Sylow 2-subgroups. Since there are
only 15 non-identity elements which can lie in such subgroups, we can find subgroups
P,Q of order 4 such that|P∩Q|= 2.

Now NG(P∩Q) containsP andQ [WHY?], so has order greater than 4 but dividing
60. SoNG(P∩Q) has order 12, 20 or 60. As before, 20 and 60 are impossible, while
12 gives the required conclusion.
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Remark: We have two cases in the above argument (viz., 5 or 15 Sylow 2-subgroups),
both leading to the conclusion thatG is isomorphic toA5. SinceA5 has five Sylow 2-
subgroups, it turns out that in fact the second case is impossible.

7.17 If the actionφ is trivial (so thatbφ is the identity automorphism ofA for all b∈B),
then the rule for composition in the semidirect product at the top of p.251 says

(b1,a1)◦ (b2,a2) = (b1b2,b1a2),

which is identical to the composition inB×A∼= A×B.

7.19 In the caseA = B = Cp, for p prime, the only possible homomorphism fromB
to Aut(A) is the identity. We write bothA andB as integers modp, at slight risk of
confusion. Thenf (0,b) = f (b,0) = 0 and

f (b1,b2 +b3)+ f (b2,b3) = f (b1 +b2,b3)+ f (b1,b2).

We claim first thatf (1,b) = f (b,1) for all b. This holds forb = 1, and

f (1,b+1)+ f (b,1) = f (b+1,1)+ f (1,b)

(puttingb1 = b3 = 1), so it holds for allb by induction.
Next we claim that the values off (1,b) determinef . This is also proved by induc-

tion using
f (b1,b2 +1)+ f (b2,1) = f (b1 +b2,1)+ f (b1,b2).

Let f be any factor set. Define a functiond on the integers modp by the rule that
d(0) = d(1) = 0 and

d(b+1) = d(b)− f (1,b)

for 1 < b < p−2. Then the corresponding inner derivationf ′ given by f ′(b1,b2) =
d(b1)+d(b2)−d(b1 +b2) agrees withf at (1,b) for b = 0, . . . , p−1, Subtractingf ′

from f , we see that any element of the extension group is represented by a factor set
with f (1,b) = 0 for b = 0, . . . , p− 2. Hence there at mostp elements ofE(Cp,Cp),
corresponding to the possible values off (1, p−1).

On the other hand,E(Cp,Cp) is not the trivial group, since there exist non-isomorphic
extensions; and it is a group of exponentp, by the argument in Schur’s Theorem. So
its order isp, as required.

7.21. LetR be a unique factorisation domain, and suppose that the polynomialf (x) =
anxn + · · ·+a1x+a0 satisfies the conditions of Theorem 7.27: that is,

• f is primitive (this means that the gcd of its coefficients is 1, which is meaningful
over a UFD);

• p dividesa0, . . . ,an−1 but notan;

• p2 does not dividea0;
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wherep is an irreducible. We observe that, ifp dividesab, thenp dividesa or p divides
b; for if not, then we haveab= pc, and if we factorisea,b,c into irreducibles we see
that p occurs in the factorisation on the left but not in that on the right.

Suppose thatf is reducible, sayf = gh, where

g(x) = bmxm+ · · ·+b0,

h(x) = cn−mxn−m+ · · ·+c0.

Thenb0c0 = a0; so one ofb0 andc0 but not the other is divisible byp. Sayp | b0. For
1≤ i ≤ m, we have

ai = b0ci +b1ci−1 + · · ·+bi−1c1 +bic0.

Assuming inductively thatp dividesb0, . . . ,bi−1, we conclude from this equation that
p dividesbic0, so thatp dividesbi .

The final conclusion is thatp | bm. But thenp | bmcn−m = an, contrary to assump-
tion.

7.23. (a) LetJ be the radical ofI . We have first to show thatJ is an ideal.

• Takea,b∈ J, and suppose thatam,bn ∈ I . Then

(a+b)m+n−1 =
m+n−1

∑
i=0

(
m+n−1

i

)
aibm+n−1−i .

Now, for eachi, eitheri ≤ m, or i > m, in which casem+n−1− i ≤ n. So each
term in the binomial sum has a factor inI ; sinceI is an ideal, the whole term
belongs toI , and hence so does the sum. So(a+b) ∈ J.

• Suppose thata∈ J, with, say,an ∈ I , and take anyr ∈ R. Then(ra)n = rnan ∈ I ;
sora ∈ J.

SoJ is indeed an ideal.

It is a radical ideal. For, suppose thatr ∈ R with rn ∈ J. Thenrmn∈ I for somem,
by definition ofJ; sor ∈ J.

(b) Suppose first thatf belongs to the radical of〈g1, . . . ,gm〉. Then f n∈ 〈g1, . . . ,gm〉;
so, ifx is a vector for whichg1(x)= · · ·= gm(x)= 0, thenf (x)= 0. So f ∈ I(A(g1, . . . ,gm)).

Conversely, suppose thatf ∈ I(A(g1, . . . ,gm)). Then, if x satisfiesg1(x) = · · · =
gm(x) = 0, then f (x) = 0. According to the Nullstellensatz,f k ∈ 〈g1, . . . ,gm〉 for some
k; so f belongs to the radical of this ideal.

7.25. Suppose thatf (x) = ∑anxn andg(x) = ∑bnxn are non-zero formal power series
satisfying f (x)g(x) = 0. Let i and j be the smallest natural numbers such thatai 6= 0
andb j 6= 0. Then the coefficient ofxi+ j in f (x)g(x) is aib j (all other terms in the sum
are zero); this product is non-zero, a contradiction.

Now let (an) and(bn) be non-zerop-adic integers whose product is zero. Leti and
j be the smallest natural numbers such thatai is not zero modpi , andb j is not zero
mod p j . Now ai+ j andbi+ j are congruent toai andb j respectively modpi+ j−1; so
ai+ jbi+ j is not congruent to zero modpi+ j , whenceab 6= 0, a contradiction.
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7.27 For each natural numbera, let a be thep-adic integer(an), wherean ≡ a mod pn

for all n. (We can takean = a whenpn > a.) It is easy to see thata 7→ a is a one-to-one
ring homomorphism.

7.29 This exercise is really just straightforward verification!

7.31 Suppose thatf (x)/g(x) is a pth root of x. Then f (x)p = xg(x)p in F [x]. Now
F [x] is a unique factorisation domain, and the irreducible polynomialx has multiplicity
divisible by p in f (x)p, but congruent to 1 modp in xg(x)p, a contradiction.

The polynomialy2−x is irreducible overF(x) since, if it were reducible, it would
have a root inF(x), that is, a square root ofx, contradicting the first paragraph. But, ifα

is a root of this polynomial in an extension ofF(x), we have(y−α)2 = y2−α2 = y2−x
(since the characteristic is 2), soα has multiplicity 2 in its minimal polynomial over
F(x).

7.33 Sincex−1 dividesxq−1 (as polynomials) for any positive integerq, we see that
pk−1 dividespkq−1. So, ifn = kq+ r, then

pn−1 = (pn− pr)+(pr −1) = pr(pkq−1)+(pr −1)≡ pr −1 modpk−1.

So, applying Euclid’s algorithm tom and n, and simultaneously topm− 1 and
pn−1, we see that it terminates at the same stage and yields the required result. [In the
second calculation, every remainder has the formpr −1, wherer is the corresponding
remainder in the first calculation.]

7.35 Some of these axioms speak of an identity element, which we regard as a nullary
operation (an operation of arity zero). Some speak of inverses; we take the inverse to be
a unary operation. With this convention, all the axioms are laws (universally quantified
statements). For example, the inverse law for the abelian group with operation◦ and
identity 0 would not be written as

(∀x)(∃y)(x◦y = 0)

but as
(∀x)(x◦xι = 0),

whereι is the inverse operation.
With these conventions, it is just a case of observing that all axioms are laws.

7.37 Leta1, . . . ,an ∈ A; let ai have lengthl i (then the sum of the arities of the operation
symbols inai is l i −1. Thena1 . . .anµ has length(∑ l i)+1, and the sum of the arities
of its operation symbols is(∑(l i −1))+n; so indeed this string has variability 1.

Any proper non-empty prefix ofa1 . . .anµ has the forma1 . . .ai p; its variability is
the sum of those ofa1, . . . ,an, p, which is certainly positive.

Soa1, . . . ,anµ ∈ A.

If B is an algebra and we choose elementsbi ∈ B, define the mapφ : A→ B by
induction on the length of the string by

xiφ = bi ,

(a1 . . .anµ)φ = (a1φ) . . .(anφ)µ,
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where on the right, the operationµ is applied in the algebraB. It is immediate thatφ is
uniquely defined and is a homomorphism. (We use the fact that elements ofA can be
parsed uniquely, proved in the preceding question.)

7.41 (a)[x,y] = 1 meansx−1y−1xy= 1, oryx= xy.

(b) Clear.

(c) If N is a normal subgroup ofG, then[xN,yN] = [x,y]N (in G/N). If G/N is
abelian, then[xN,yN] = N, that is,[x,y] ∈N. Clearly, if alsoN is abelian, then any two
commutators commute, soG satisfies the stated law.

(d) For anyg∈G, we have[xg,yg] = [x,y]g, wherexg is the conjugateg−1xg. So the
conjugate of a commutator is a commutator. Moreover,[x,y]−1 = [y,x], so the inverse
of a commutator is a commutator. So the subgroupH (consisting of all products of
commutators and their inverses) is fixed by conjugation, that is, is normal. Now, since
all commutators belong toH, reversing the argument in (c) gives[xH,yH] = [x,y]H =
H, soG/H is abelian.

(e) If G satisfies this law, then any two commutators commute. So any two products
of commutators and their inverses commute, that is, the derived groupH is abelian, as
required.

(f) Groups of derived length at mpstd satisfy the lawcd = 1, wherecd(x1, . . . ,x2d)
is defined inductively by the rule thatc0 = x1 and

cd(x1, . . . ,x2d) = [cd−1(x1, . . . ,x2d−1,cd−1[x2d−1+1, . . . ,x2d ].

7.43 The question is slightly mis-stated: a Boolean ring should be defined as a ring
with identitysatisfyingx2 = x.

LetX be a Boolean lattice, and define addition and multiplication by the rules given.
We have to verify the ring axioms and the conditionx2 = x. The closure laws are clear.

First, observe that, for any elementsx,y,

(x∨y)∨ (x′∧y′) = (x∨y∨x′)∧ (x∨y∨y′) = 1∧1 = 1,

(x∨y)∧ (x′∧y′) = (x∧x′∧y′)∨ (y∧x′∧y′) = 0∨0 = 0;

by the uniqueness of complement,(x∨y)′ = x′∧y′. Similarly, (x∧y)′ = x′∨y′. Thus,

x+y = (x∨y)∧ (x′∨y′).

Then we find after a short calculation that

(x+y)+z= (x∨y∨z)∧ (x′∨y′∨z)∧ (x′∨y∨z′)∧ (x∨y′∨z′).

Similarly, x+ (y+ z) works out to the same expression. So addition is associative.
Clearly addition is also commutative.

We have
x+0 = (x∨0)∧ (x′∨1) = x∧1 = x,

and
x+x = (x∨x)∧ (x′∨x′) = x∧x′ = 0.
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So the identity and inverse laws hold for addition. Moreover,

x ·1 = x∧1 = x,

so 1 is the identity.
The associative law for multiplication is immediate from the corresponding lattice

law. Furthermore,x2 = x∧x = x. So we are done.

Conversely, letR be a Boolean ring. We know thatR is commutative and satisfies
x+x = 0. (For reference, here are the proofs. Consider

x+y = (x+y)2 = x2 +xy+yx+y2 = x+xy+yx+y.

By the cancellation law,xy+yx= 0 for anyx,y. Puttingy= x givesx+x= x2+x2 = 0.
Now xy+yx= 0 = xy+xy, soxy= yx by the cancellation law.)

Now definingx∨y= x+y+xyandx∧y= xy, we have to prove the lattice axioms,
the distributive laws, and the existence of complements. All of this is straightforward.
For example, the idempotent law for∨:

x∨x = x2 +x+x = x,

usingx2 = x andx+x = 0. The absorptive laws:

x∧ (x∨y) = x(x+y+xy) = x+xy+xy= x, x∨ (x∧y) = x+xy+x2y = x.

The first distributive law:

x∧ (y∨z) = x(y+z+yz) = xy+xz+x2yz= xy∨xz= (x∧y)∨ (x∧z).

The complement ofx is 1+x, since

x∨ (1+x) = x+1+x+x+x2 = 1, x∧ (1+x) = x(1+x) = x+x2 = 0.

Now implicitly we have a bijective map between Boolean lattices and Boolean
rings; this is the “map on objects” of the required isomorphism. Moreover, ifθ : R→S
is a Boolean lattice homomorphism, then exactly the same map between the same sets
with different operations is a Boolean ring homomorphism, andvice versa.

7.45 In a distributive lattice,

x∨ (y∧ (x∨u)) = x∨ ((y∧x)∨ (y∧u)) (distributive law)
= (x∨ (y∧x))∨ (y∧u) (associative law)
= x∨ (y∧u) (absorptive law)
= (x∨y)∧ (x∨u) (distributive law),

so the modular law holds.

7.47 We begin by showing directly that the equivalence classes of a congruence≡ on
a groupG are the cosets of a normal subgroup. LetN be the equivalence class of the
identity.
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• If a,b∈ N thena≡ 1 andb≡ 1, soab≡ 1, orab∈ N.

• If a∈ N, thena≡ 1 anda−1 ≡ a−1, so 1≡ a−1, anda−1 ∈ N.

• If a∈ N andg is arbitrary, thena≡ 1 andg≡ g, soag≡ a andga≡ a. Thus
ag≡ ga. Also,g−1 ≡ g−1, sog−1ag≡ a≡ 1, andg−1ag∈ N.

So indeedN is a normal subgroup, and the equivalence classes are its cosets.
Thus, the congruence lattice is isomorphic to the lattice of normal subgroups. (Un-

der this isomorphism, meet and join correspond to intersection and product.)
Now, if X,Y,Z are normal subgroups withX ≤ Z, thenX(Y∩Z) ≤ XY∩Z, since

this holds in any lattice. Takez∈ XY∩Z. Thenz∈ Z; andz= xy with x∈ X ≤ Z and
y∈Y; soy∈ Z, andz∈ X(Y∩Z). Thus,X(Y∩Z) = XY∩Z, and the lattice is modular.

7.49 We prove (b) first. Suppose thatf ∈Vπ1 ∧Vπ2. Then f is constant on the parts of
π1, and also on the parts ofπ2; hence by definition it is constant on the parts ofπ1∨π2.
(For by definition, ifx,y lie in the same part ofπ1∨π2, then there is a chain fromx
to y where successive steps in the chain are alternately in the same part ofπ1 or of π2,
and the value off does not change. Conversely, suppose thatf ∈ Vπ1∨π2. Then f is
constant on parts ofπ1 and ofπ2 (since these two partitions both refineπ1∨ π2); so
f ∈Vπ1 ∧Vπ2. So we have equality.

Now we prove (a). Suppose thatVπ1 = Vπ2, and letπ1∨π2 = π3. By (b),Vπ1 = Vπ3.
Without loss of generality,π1 < π3; soπ1 strictly refinesπ3, and there are two points
x,y in the same part ofπ3 but not ofπ1. Define

f (z) =
{

1 if z is in the same part ofπ1 asx,
0 otherwise.

.

Then f ∈Vπ1 but f /∈Vπ3, a contradiction.

The map just defined turns out not to be an embedding of the dual of the partition
lattice into the subspace lattice. For it to be so, we would require that

Vπ1∧π2 = Vπ1 ∨Vπ2.

To see that this is false, letS= {1,2,3,4} and letπ1 = {{1,2},{3,4}} and π2 =
{{1,3},{2,4}}. Thenπ1∧ π2 is the partition into singletons, soVπ1∧π2 is the whole
of F4. But Vπ1 andVπ2 have dimension 2 and intersect in the space of constant func-
tions, so their sum has dimension 3.

In fact, there cannot be an isomorphism. The subspace lattice of a vector space
satisfies the modular law by Theorem 7.55, while the dual partition lattice of a set of
size at least 4 is not modular [Exercise!]

7.51.{0,1} is a Boolean lattice, and Boolean lattices form a variety so are closed under
Cartesian product (p.282). Alternatively, this is easily proved directly.

Conversely, a finite Boolean lattice is the lattice of subsets of a finite setX (Exercise
7.44 or 7.53). Now take a family(Ix : x∈X) of copies ofI = {0,1} indexed byX; there
is an isomorphismθ betweenP(X) and∏x∈X Ix given byYθ = fY, where fY is the
characteristic function ofY (that is, fY(x) = 1 if x∈Y, fY(x) = 0 if x /∈Y).
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7.53. (a) We have to show that an atoma satisfiesa≤ x∧ y if and only if a≤ x and
a≤ y. The forward implication is clear. Conversely, ifa is an atom satisfyinga≤ x
anda≤ y, thena∧x = a∧y = a, whencea∧ (x∧y) = a by the associative law, so that
a≤ x∧y as required.

(b) We show first that a finite Boolean latticeL is atomic. Takex∈ L and letS(x)
be the set of atoms belowx. (By finiteness,x 6= 0 impliesS(x) 6= /0.) Letx∗ be the join
of the atoms inS(x). Clearlyx∗ ≤ x. If equality does not hold, theny = x∧ (x∗)′ 6= 0.
Let a be an atom belowy; thena≤ x, soa∈ S(x), soa≤ x∗, a contradiction.

We also claim that, ifA is the set of atoms, thenS(x′) = A\S(x). These sets are
disjoint, sincex∧x′ = 0. Also 1= x∨x′ =

∨
(S(x)∪S(x′)), soA= S(1) = S(x)∪S(x′).

So the claim is proved.
Now, givenx andy, we havex∨y = (x′∧y′)′ by De Morgan’s Law, so

S(x∨y) = A\S(x′∧y′) = A\(S(x′)∩S(y′)) = A\((A\S(x))∩(A\S(y)) = S(x)∪S(y).

Finally, the isomorphism fromL to P(A) required for the proof of Theorem 7.54
is simplyx 7→ S(x).
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