Solutions to odd-numbered exercises
Peter J. Cameron,Introduction to Algebrg Chapter 7
7.1 Suppose that (GA1) and (GA2) hold. Then

w(p(x9),0h =pxg9g ) =px1)=x

where the first equality uses (GA1) and the third uses (GA2); the middle inequality
uses the group axiom (G3). The other part of (GA3) is proved similarly.

7.3 (a) First we show that an elementtK has|H N K| representations of the forhk
forhe H andk € K. For ifx=hk= K, then(')~*h =Kk~ € HNK; and conversely,
for any elemeng € H NK, we havehk = (hg™1)(gk), with hg~! € H andgk € K.

Now there ardH| - |[K| pairs(h,k) with h € H andk € K. For any such paihk €
HK; and each element ¢iK has|H N K| such representations. So we hak# | =
[H| - [K|/|H K],

(b) Let X1 = {x~1: x € X} for any subseX of G. Suppose first thatiK is a
subgroup. Then

HK = (HK) 1=K *H 1 =KH.

Conversely, suppose thei = KH. Since, as abovéHK) ! = KH, we see thatiK

is inverse-closed; so, using the First Subgroup Test, we have to show it is product-
closed. So takbiks, hok, € HK. Thenkih, € KH = HK, sok;h, = hkfor someh e H

andk € K. Then

(hik)(haka) = hy(kih)ke = hy(hK)kz = (hih)(kkp) € HK,

and we are done.

(c) The given equation shows that, for amg H andk € K, there exist¥k’ € K
such thakh= hK. We apply the Second Subgroup Testtl. Takehki, ok, € HK.
Choosek’ € K such thatkik, 1)yt = hy K. Then

(hiki)(hokz) ™2 = hy(kik; )yt = hihy Tk € HK,
and we are done.

7.5. For the conjugation action, the fixed point set of an elemen® is its centraliser
Cs(g), while the orbits are the conjugacy classes. So the Orbit-Counting Lemma says
that the number of conjugacy classes is equal to

1
@Q;Kb(g)\-

To see this directly, note that the size of the conjugacy class contajmng|/|Cc(9)|,
so for any conjugacy class we have

1

= 2 Ce(9) =1,

ol 2

from which the result follows. (This is just the proof of the Orbit-Counting Lemma in
this special case.)



7.7 Takeg € Ng(H), whereH = Ng(P). Theng~!Pgis a Sylow p-subgroup ofG
(since it has the same orderR)sand is contained il (sinceg normalised); soitis
a Sylow p-subgroup oH. By Sylow’s Theoremg'Pgis conjugate td® in H; that is,
there exist$1 € H such thag~tPg= h~'Ph. This implies tha{gh)~'P(gh~!) = P.
Sok = gh! belongs to the normaliser &, which of course i$1. Now g = kh, and
k,heH, sogeH.

We conclude thatls(H) < H. But trivially the reverse inequality holds; dig(H) =
H, as required.

7.9 Letp? be the exact power gf dividing the order ofG. We show that a subgroup
of orderp' is contained in a Sylowp-subgroup by induction oa—i. (Note that < a
by Lagrange’s Theorem.)

If a—i = 0 then there is nothing to prove:is already a Sylow subgroup.

Suppose thaa—i > 0 and that the result holds for subgroups of ordewith
a—i' <a—i,thatis,’ >i. By StatemenB; in the proof of Theorem 7. R is contained
(normally) in a subgroup of ordé¥+1, which is contained in a Sylow-subgroup by
the induction hypothesis.

7.11 How does the Jordanéldler Theorem for finite groups need to be adapted? If we
simply ask that any two composition series of finite length for a group have the same
length and the same multiset of composition factors, then the proof for finite groups
works without any modification. However, more is trueGihas a composition series
of finite length then any finite series of subgroupsofvith each normal in the next
can be refined to a composition series of finite length.

To show this by induction on the length of a composition series, it is enough to show
that any normal subgroup & is contained in a composition series of finite length. Let

GC=6G>G1>-->G =1
be a composition series @, andH any normal subgroup @¢b. Then we have
G=HGy>HG1 >---HG, =H.
Now HG; = (HG;+1)G;j, so
HGi/HGi;1 =2 Gi/HG; 1NGi

and the right-hand group is a quotient®¥/G;.1, hence is trivial or simple; so deleting
repetitions, we have part of a composition series féwo H. Similarly we have

H=GynH>GiNH>--->G,NnH = {1}.
Here(GiNnH)NGj+1 =Gj+1NH, so
(Gi ﬂH)/(Gi+lmH) = (Gi ﬂH)Gi+1/Gi+1,

which is a normal subgroup &;/G;.1, and again is trivial or simple; dropping repe-
titions we get the remainder of the composition series.



7.13 Recall two facts:

e the conjugate ot by an elemeng is obtained by replacing the entries in the
cycles ofc by their images undeg;

e two permutations in cycle form are equal if and only if they differ only in the
orders of the factors and the chosen starting points of the cycles.

From the second assertion, it is clear that (writing the expressionvigth the cycle
lengths in decreasing order, say) there ardifferent expressions for. By first as-
sertion, for each such expression there is a unique eleggetforming the required
substitution; therg—lcg = c, sog belongs to the centraliser af Moreover, every
element of the centraliser arises in this way.Cagc) has orderf, as required.

Now suppose that, for some cycle structure, we hdyé < 2(n—1). If there is
some collection of cycle lengths such that the union of all cycles of these lengths has
lengthj, thenn!/f > (T) [WHY?]1f1 < j <n—1,then

(T) > (2) >2(n—1) forn> 5,

so we can assume that this is not the case. This leaves only the cases ishen
product of cycles of the same length, or has a fixed point together with a product of
cycles of the same length. In each of these cases the required inequality can be verified
directly.

7.15 We show that any simple group of order 60 is isomorph#gtdrhen the assertion
follows. So letG be a simple group of order 60. We will show thathas a subgroup

of index 5. TherG acts on the cosets of this subgroup, so has a homomorphism to the
symmetric groufss. SinceG is simple, the kernel of this homomorphism is trivial, so
thatG is isomorphic to a subgroup &. This subgroup has index 2, and so is hormal

in S5; as we saw in Proposition 3.30, it mustAe

The number of Sylow 5-subgroups@fis congruent to 1 mod 5 and divides 12, but
is not 1 (else the Slow 5-subgroup is norma@3ncontrary to assumption). So there are
6 Sylow 5-subgroups db. Since each is cyclic, they intersect pairwise in the identity,
and contain between them 24 elements of order 5.

A similar argument shows that there are 10 Sylow 3-subgroups, containing 20 ele-
ments of order 3. Hence there are 15 elements of order other than 1, 3 or 5.

The number of Sylow 2-subgroups Gfis congruent to 1 mod 2 and divides 15, so
must be 1, 3, 50r 15. Ifitis 1, the Sylow 2-subgroup is normal, contrary to assumption.
If 3, we have a homomorphism fro@to S; whose kernel is trivial, which is impossible
sinceG is larger tharss. If the number if 5, the normaliser is a subgroup of index 5 and
we are done. So we can assume that there are 15 Sylow 2-subgroups. Since there are
only 15 non-identity elements which can lie in such subgroups, we can find subgroups
P.Q of order 4 such thgPN Q| = 2.

Now Ng (PN Q) containsP andQ [WHY?], so has order greater than 4 but dividing
60. SoNg(PN Q) has order 12, 20 or 60. As before, 20 and 60 are impossible, while
12 gives the required conclusion.



Remark: We have two cases in the above argument (viz., 5 or 15 Sylow 2-subgroups),
both leading to the conclusion th@tis isomorphic toAs. SinceAs has five Sylow 2-
subgroups, it turns out that in fact the second case is impossible.

7.17 If the actiony is trivial (so thatb¢ is the identity automorphism @ffor all b € B),
then the rule for composition in the semidirect product at the top of p.251 says

(by,a1) o (b2,a2) = (b1bo, bray),

which is identical to the composition Bix A= Ax B.

7.19 In the casé = B = Cp, for p prime, the only possible homomorphism frdsn
to Aut(A) is the identity. We write botth andB as integers mogb, at slight risk of
confusion. Therf(0,b) = f(b,0) =0 and

f(b1,by+b3) + f(by,bs) = f(by+ by, bs) + f(by,by).
We claim first thatf (1,b) = f(b, 1) for all b. This holds forb = 1, and
f(1,b+1)+f(b,1) = f(b+1,1)+ f(1,b)

(puttingb; = bz = 1), so it holds for alb by induction.
Next we claim that the values df1,b) determinef. This is also proved by induc-
tion using
f(by,b2+1) + (b2, 1) = f(by+ b2, 1) + f (b, bp).

Let f be any factor set. Define a functidnon the integers mog by the rule that
d(0) =d(1) =0and
d(b+1)=d(b)— f(1,b)

for 1 < b < p—2. Then the corresponding inner derivatibhgiven by f'(by,by) =
d(by) +d(bz) —d(by + by) agrees withf at (1,b) for b=0,...,p— 1, Subtractingf’
from f, we see that any element of the extension group is represented by a factor set
with f(1,b) =0 forb=0,...,p—2. Hence there at most elements oE(Cy,Cp),
corresponding to the possible valuesfol, p—1).

On the other hand; (Cp, Cp) is not the trivial group, since there exist non-isomorphic
extensions; and it is a group of expongntby the argument in Schur's Theorem. So
its order isp, as required.

7.21. LetR be a unique factorisation domain, and suppose that the polyndixig=
anX" 4+ - - -+ ay X+ ag satisfies the conditions of Theorem 7.27: that is,

o f is primitive (this means that the gcd of its coefficients is 1, which is meaningful
over a UFD);

e pdividesay,...,an_1 but notay;
e p? does not divide;



wherepis an irreducible. We observe thatpfividesab, thenp dividesa or p divides
b; for if not, then we haveb = pc, and if we factorise, b, ¢ into irreducibles we see
that p occurs in the factorisation on the left but not in that on the right.

Suppose that is reducible, sayf = gh, where

gx) = bmX"+---+bo,
h(X) = Cn,anim + R CO

Thenbgcy = ap; so one oty andcy but not the other is divisible bp. Sayp | bg. For
1<i<m,we have

8 =boG +b1G_1+---+bi_1c1 +bico.

Assuming inductively thap divideshy,...,bj_1, we conclude from this equation that
p dividesb;cg, so thatp dividesh;.

The final conclusion is that | bm. But thenp | bmch—m = an, contrary to assump-
tion.

7.23. (a) Let) be the radical of. We have first to show thdtis an ideal.
e Takea,b € J, and suppose that",b" € |. Then

(a+b)™L = '“*i‘l (“” n- 1) dpmn-i-i
~ i
i=

Now, for eachi, eitheri < m, ori > m, in which casen+n—1—i <n. So each
term in the binomial sum has a factor linsincel is an ideal, the whole term
belongs td, and hence so does the sum. (8e-b) € J.

e Suppose that € J, with, say,a" € 1, and take any € R. Then(ra)"=r"a" e I;
sora e J.

SoJis indeed an ideal.

Itis a radical ideal. For, suppose thrat Rwith r" € J. Thenr™ ¢ | for somem,
by definition ofJ; sor € J.

(b) Suppose first thdtbelongs to the radical dfys, . .., gm). Thenf" € (gy,...,0m);
so, ifxis a vector for whictgy (X) = - - - = gm(X) = 0, thenf (x) = 0. Sof € I (A(d1,--.,9m))-

Conversely, suppose théte | (A(g1,...,0m)). Then, ifx satisfiesgy(x) = --- =
gm(X) = 0, thenf (x) = 0. According to the NullstellensatfX € (gy,...,gm) for some
k; so f belongs to the radical of this ideal.

7.25. Suppose thdt(x) = ¥ a,x" andg(x) = 5 bnx" are non-zero formal power series
satisfying f (x)g(x) = 0. Leti andj be the smallest natural numbers such gt 0
andbj # 0. Then the coefficient of 71 in f(x)g(x) is aib; (all other terms in the sum
are zero); this product is non-zero, a contradiction.

Now let (a,) and(b,) be non-zerg-adic integers whose product is zero. Land
j be the smallest natural numbers such t#gas not zero modo', andb; is not zero
mod p/. Now &, andbi, are congruent t@ andb; respectively mod'*1~1; so
ai+bi+j is not congruent to zero maa*’, whenceab # 0, a contradiction.



7.27 For each natural numbarleta be thep-adic integer(a,), wherea, = a mod p"
for all n. (We can take, = awhenp" > a.) Itis easy to see that— ais a one-to-one
ring homomorphism.

7.29 This exercise is really just straightforward verification!

7.31 Suppose that(x)/g(x) is a pth root ofx. Thenf(x)P = xg(x)P in F[x]. Now
F[x] is a unique factorisation domain, and the irreducible polynories multiplicity
divisible by pin f(x)P, but congruent to 1 mogd in xg(x)P, a contradiction.

The polynomialy? — x is irreducible ovefF (x) since, if it were reducible, it would
have aroot irF (x), that is, a square root @f contradicting the first paragraph. Butoif
is a root of this polynomial in an extension®fx), we havely — )% = y* — a? = y> —x
(since the characteristic is 2), sohas multiplicity 2 in its minimal polynomial over
F(x).

7.33 Sincex— 1 dividesx? — 1 (as polynomials) for any positive integgrwe see that
pX— 1 dividespkd— 1. So, ifn = kqg+r, then

P —1=(p"-p)+ (P —1)=p(P9-1)+(p'~1)=p — 1 modp*-1.

So, applying Euclid’'s algorithm ton and n, and simultaneously t@™ — 1 and
p" — 1, we see that it terminates at the same stage and yields the required result. [In the
second calculation, every remainder has the fpfm 1, wherer is the corresponding
remainder in the first calculation.]

7.35 Some of these axioms speak of an identity element, which we regard as a nullary
operation (an operation of arity zero). Some speak of inverses; we take the inverse to be
a unary operation. With this convention, all the axioms are laws (universally quantified
statements). For example, the inverse law for the abelian group with opesadiath
identity O would not be written as

(VX)(3y)(xoy = 0)

but as
(VX)(xoxt = 0),

wheret is the inverse operation.
With these conventions, it is just a case of observing that all axioms are laws.

7.37 Letay,...,a, € A letg have length; (then the sum of the arities of the operation
symbols ing; is | — 1. Thenas...a,u has length(s Ii) + 1, and the sum of the arities
of its operation symbols i€ (I; — 1)) 4+ n; so indeed this string has variability 1.

Any proper non-empty prefix dd; ... anu has the forma; ... a p; its variability is
the sum of those ddy, .. ., an, p, which is certainly positive.

Soay,...,apu € A

If B is an algebra and we choose elemdnts B, define the map : A — B by
induction on the length of the string by

X¢ = b
(Ar...an)¢ = (2a9)...(and)u,



where on the right, the operatignis applied in the algebrB. It is immediate thad is
uniquely defined and is a homomorphism. (We use the fact that elemeftsaof be
parsed uniquely, proved in the preceding question.)

7.41 (a)[x,y] = 1 meanscly Ixy= 1, oryx= xy.

(b) Clear.

(c) If N is a normal subgroup dB, then[xN,yN] = [x,y|N (in G/N). If G/N is
abelian, therixN,yN] = N, that is,[x,y] € N. Clearly, if alsoN is abelian, then any two
commutators commute, $dsatisfies the stated law.

(d) For anyg € G, we havex9,y9] = [x,y]9, wherexd is the conjugatg—'xg. So the
conjugate of a commutator is a commutator. Moreopey] = [y, x], so the inverse
of a commutator is a commutator. So the subgrbufconsisting of all products of
commutators and their inverses) is fixed by conjugation, that is, is normal. Now, since
all commutators belong tH, reversing the argument in (c) givedH,yH] = [X,y|H =
H, soG/H is abelian.

(e) If G satisfies this law, then any two commutators commute. So any two products
of commutators and their inverses commute, that is, the derived ¢tasabelian, as
required.

(f) Groups of derived length at mpdtsatisfy the lawcy = 1, wherecy(Xq, . .., Xpd)
is defined inductively by the rule thag = x; and

Cd(Xl7 . ,de) = [Cd—l(XL ce. ,defl,Cd_l[X2d71+1, e ,de].

7.43 The question is slightly mis-stated: a Boolean ring should be defined as a ring
with identitysatisfyingx? = x.
Let X be a Boolean lattice, and define addition and multiplication by the rules given.
We have to verify the ring axioms and the conditin= x. The closure laws are clear.
First, observe that, for any elementy,

(XVY)V(XAY) = (XVYVX)A(XVYyVY)=1A1l=1
(XVY)AXAY) = (XAXAY)V(YAXAY)=0v0=0;

by the uniqueness of complemefityy) = X' AY. Similarly, (xAy)' =X Vy'. Thus,
X+y=(XVY)A (X VY).
Then we find after a short calculation that
(X+y)+z=(XVYV2AKX VY VAKX VYVZ)A(XVY VZ).

Similarly, x4 (y+ z) works out to the same expression. So addition is associative.
Clearly addition is also commutative.
We have
X+0=(XVO)A(X V1) =XxAl=X,

and
X+Xx=(XVX)A (X VX)=xAX =0.



So the identity and inverse laws hold for addition. Moreover,
X-1=xXA1=x,

so 1 is the identity.
The associative law for multiplication is immediate from the corresponding lattice
law. Furthermorex? = x Ax = x. So we are done.

Conversely, leR be a Boolean ring. We know th&is commutative and satisfies
x+x = 0. (For reference, here are the proofs. Consider

X+Y = (X+Y)? =X+ XY+ YX+ Y = X+ XY+ YX+Y.
By the cancellation lawky+yx= 0 for anyx, y. Puttingy = X givesx+x = x?+x% = 0.
Now xy-+ yx= 0= xy+ Xy, soxy = yx by the cancellation law.)
Now definingxVVy = x+y+XxyandxAy = xy, we have to prove the lattice axioms,

the distributive laws, and the existence of complements. All of this is straightforward.
For example, the idempotent law for

XVX=X2+X+X=X,
usingx? = x andx+ x = 0. The absorptive laws:
XA (XVY) = X(X+Y+XY) =X+XYy+XYy=X, XV (XAY)= X+ Xy—+ X2y = X.
The first distributive law:
XA (YV 2) = X(Y+ 2+ Y2) = Xy+ X2+ X2yz= XyV xz2= (XAY) V (XA 2).
The complement ofis 1+ X, since
XV (14+X) = x+14+Xx+x+x2 =1, XA(1+X) =x(1+x) =x+x*>=0.

Now implicitly we have a bijective map between Boolean lattices and Boolean
rings; this is the “map on objects” of the required isomorphism. Moreovér,R— S
is a Boolean lattice homomorphism, then exactly the same map between the same sets
with different operations is a Boolean ring homomorphism, @nd versa

7.45 In a distributive lattice,

XV (YA(xvu)) = xV((yAX)V(yAu)) (distributive law)
= (XV(YAX))V(yAu) (associative law)
= XV(YAuU) (absorptive law)
= (XVy)A(XVu) (distributive law)

so the modular law holds.

7.47 We begin by showing directly that the equivalence classes of a congraente
a groupG are the cosets of a normal subgroup. Nebe the equivalence class of the
identity.



e IfabeNthena=1andb=1, soab=1, orabe N.
e facN,thena=landal=al sol=a?l andaleN.

e If a€ N andgis arbitrary, thera= 1 andg =g, soag= aandga= a. Thus
ag=ga Also,g '=g 1, sog lag=a=1, andg lage N.

So indeedN is a normal subgroup, and the equivalence classes are its cosets.

Thus, the congruence lattice is isomorphic to the lattice of normal subgroups. (Un-
der this isomorphism, meet and join correspond to intersection and product.)

Now, if X,Y,Z are normal subgroups with < Z, thenX(YNZ) < XYNZ, since
this holds in any lattice. Takee XYNZ. Thenze Z; andz= xywith x € X < Z and
yeY;soyeZ andze X(YNZ). Thus,X(YNZ)=XYNZ, and the lattice is modular.

7.49 We prove (b) first. Suppose thiat V, AVg,. Thenf is constant on the parts of
71, and also on the parts ab; hence by definition it is constant on the partstof/ .
(For by definition, ifx,y lie in the same part ofr; V 7o, then there is a chain from
toy where successive steps in the chain are alternately in the same parobf m,,
and the value off does not change. Conversely, suppose thatVy,,z,. Thenf is
constant on parts of; and of m, (since these two partitions both refing Vv m); so
f € Vg, AVg,. So we have equality.

Now we prove (a). Suppose thét, =Vy,, and letry V 7o = 73, By (D), Vg, = Va,.
Without loss of generalityr; < m3; som; strictly refinesns, and there are two points
X,y in the same part aof3 but not ofr1. Define

f(2) = {1 if zis in the same part of; asx,
0 otherwise. ’

Thenf €V, but f ¢ Vy,, a contradiction.

The map just defined turns out not to be an embedding of the dual of the partition
lattice into the subspace lattice. For it to be so, we would require that

Viam = Vi, V V.

To see that this is false, 18 = {1,2,3,4} and letn; = {{1,2},{3,4}} and m, =
{{1,3},{2,4}}. Thenm A m, is the partition into singletons, $& , is the whole
of F4. ButVy, andVz, have dimension 2 and intersect in the space of constant func-
tions, so their sum has dimension 3.

In fact, there cannot be an isomorphism. The subspace lattice of a vector space
satisfies the modular law by Theorem 7.55, while the dual partition lattice of a set of
size at least 4 is not modular [Exercise!]

7.51.{0,1} is a Boolean lattice, and Boolean lattices form a variety so are closed under
Cartesian product (p.282). Alternatively, this is easily proved directly.

Conversely, a finite Boolean lattice is the lattice of subsets of a finit%¢ fexercise
7.44 or 7.53). Now take a familfly : x € X) of copies ofl = {0,1} indexed byX; there
is an isomorphisn® between??(X) and[]xcx Ix given byY 6 = fy, wherefy is the
characteristic function of (thatis,fy(x) =1if xeY, fy(x) =0if x¢Y).



7.53. (a) We have to show that an atansatisfiesa < x Ay if and only if a < x and

a <y. The forward implication is clear. Converselydfis an atom satisfying < x
anda <y, thenaAx=aAy=a, whenceaA (XA\y) = aby the associative law, so that
a<XxAvyas required.

(b) We show first that a finite Boolean lattitels atomic. Takex € L and letS(x)
be the set of atoms below (By finitenessx = 0 impliesS(x) # 0.) Letx* be the join
of the atoms ir5(x). Clearlyx* < x. If equality does not hold, thep= xA (x*)" # 0.
Let a be an atom below; thena < x, soa € §(x), soa < x*, a contradiction.

We also claim that, ifA is the set of atoms, the®(x') = A\ §(x). These sets are
disjoint, sincexAX = 0. Also 1=xV X = \/(S(x) US(X)), soA= (1) = §(x) US(X).
So the claim is proved.

Now, givenx andy, we havexVy = (X AYy)" by De Morgan’s Law, so

Sxvy) = A\SX AY) = A\ (SX)NS(Y)) = A\ (A\S(x)) N (A\S(y)) = S USy).

Finally, the isomorphism fron to &?(A) required for the proof of Theorem 7.54
is simplyx — S(x).
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