
Solutions to odd-numbered exercises
Peter J. Cameron,Introduction to Algebra, Chapter 8

8.1 This code is non-linear, so we have to look at the distances between all pairs of
words.

The first three words are mutually at distance 6, as are the last three. Symmetry
between the symbols 1,2,3 shows that we need only consider the distances from the
first three words to the fourth, which all turn out to be 4. So the minumum distance
is 4.

8.3 (a) The code has dimension 2 overZ3 (since the generator matrix has rank 2), so
there are 32 = 9 codewords These are 0000, 1011, 2022, 0112, 1120, 2101, 0221, 1202,
2210.

(c) By inspection the minimum weight is 3: all non-zero words have weight 3.

(b) SinceC is linear, its minimum distance is equal to its minimum weight (which
is 3).

(d) The generator matrix isG = ( I A), whereA =
(

1 1
1 2

)
. By Theorem 8.8 on

p.308, a check matrix is

H = (−A> I ) =
(

2 2 1 0
2 1 0 1

)
.

(e) 12 is encoded as

(1 2)
(

1 0 1 1
0 1 1 2

)
= (1 2 0 2) .

For decoding, we note thatC has minimum weight 3 and so is 1-error-correcting.
Now the syndrome of(1 0 2 1) is

(1 0 2 1)
(

2 2 1 0
2 1 0 1

)>
= (1 0) ,

which is the transpose of the third column ofH; so the error is 0010, and the transmitted
word is 1011. This is the first row ofG, so the message is 10. (We could simply observe
that, sinceG is in standard form, the first two digits of the codeword are information
digits.)

8.5 Letn = 2m+1. Then, by the symmetry of the binomial coefficients,

m

∑
i=0

(
n
i

)
=

n

∑
i=m+1

(
n
i

)
,

and hence
m

∑
i=0

(
n
i

)
= 2n−1.
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The repetition codeC| has minimum weightn and so ism-error-correcting; the Ham-
ming bound gives

|C| ≤ 2n
/( m

∑
i=0

(
n
i

))
= 2.

Since|C|= 2, the bound is attained.

8.7 We note that, overZ2, wt(v) is congruent tov · v mod 2, where· is the standard
inner product. Hence

wt(v+w)≡2 (v+w) · (v+w)≡2 v·v+w ·w≡2 wt(v)+wt(w).

So, if wt(v) and wt(w) are even, then also wt(v+w) is even. This shows that the set of
words of even weight inC is closed under addition, and hence forms a linear subcode.

8.9 (a) See p.103.

(b) We claim that the minimum weight ofC is 4. Clearly it cannot be larger, since
the rows of the generator matrix all have weight 4. Could some non-zero linear com-
bination of the rows have weight 3 or less? Letv be such a word, andi the number of
non-zero elements among the first three coordinates ofv.

If i = 0, then clearlyv = 0, contrary to assumption.
If i = 1, thenv is a multiple of a row ofG; but thenv has weight 4.
If i = 2, thenv has at least two zero entries among the last three coordinates. Sup-

pose for example, thatv = av1+bv2, wherev1 andv2 are the first two rows ofG. Then
two of a+b, a+bω, a+bω̄ are zero, which is impossible since this would imply that
two of 1,ω, ω̄ are equal to−b/a and hence to one another. A similar argument holds
if v = av1 +cv3 or v = bv2 +cv3.

If i = 3, andv= av1+bv2+cv3, then(a,b,c)> is in the kernel of the matrix formed
by the last three columns ofG; but this matrix is a Vandermonde, and so is invertible
(p.177), a contradiction.

The codeC has dimension 3 and so contains 64 codewords. The Singleton bound
(Theorem 8.3(b), p.302) shows that a code with length 6 and minimum distance 4 over
an alphabet of size 4 has at most 46−4+1 = 64 codewords.

8.11 This code has the rows(1,a j ,a2 j , . . .) in its check matrix forj = 1,2,3,4. How-
ever, the rows forj = 2 and j = 4 can be omitted, by Proposition 8.16 (p.314). So
the check matrix has 10 rows overZ2, and the dimension of the code is at least
31−10= 21.

In fact, the dimension is exactly 21. This is a bit harder and is left to you as a starred
exercise.

8.13 Suppose that gcd(n,q−1) = 1, wheren = (qe−1)/(q−1). The multiplicative
groupG of GF(qe) is cyclic of orderqe−1 (Theorem 7.44(b), p.274). Our assumption
shows thatG is a direct productG = G1×G2 of cyclic groups of ordersq−1 andn.
The cyclic group of orderq−1 is the multiplicative group of GF(q). Now any element
of GF(qe) which fixes a 1-dimensional GF(q)-subspace must belong to GF(q); so the
stabiliser of a 1-dimensional subspace in the groupG2 is the identity.
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Now the non-zero vectors in GF(q)e can be identified with the non-zero elements of
the field GF(qe), and multiplication by an element of this field induces a linear map of
the vector space, which permutes among themselves the 1-dimensional subspaces (the
columns of the check matrix of the Hamming code). The subgroupG2 then permutes
these columns cyclically: the stabiliser of a column is the identity, and so the Orbit–
Stabiliser theorem shows that the orbit length isn. Writing the columns in the order
given by applying powers of a generator ofG2 shows that the code is cyclic.

8.15 (a) The polynomialx3− 2 is irreducible overQ, by Eisenstein’s criterion. So
the order of the Galois groupG is divisible by 3. Also, one root is real and the other
two non-real, so complex conjugation is an automorphism of order 2. Thus|G| is a
multiple of 6, and soG∼= S3. The splitting field isQ( 3

√
2,ω), whereω = (−1+

√
3)/2

is a primitive cube root of unity.
The subgroups ofS3 are{1}, three subgroups of order 2, the alternating groupA3

of order 3, andS3. If symbols 1,2,3 correspond to the rootsa, aω, aω2 respectively,
wherea = 3

√
2, then the Galois correspondence is as follows:

• {1} corresponds toQ(a,ω);

• {1,(2,3)} (the stabiliser ofa) corresponds toQ(a);

• {1,(1,3)} corresponds toQ(aω);

• {1,(1,2)} corresponds toQ(aω2);

• A3 = {1,(1,2,3),(1,3,2)} corresponds toQ(ω);

• S3 corresponds toQ.

(b) Again the polynomial is irreducible. (By Gauss’ Lemma, the only possible roots
are±1.) Now leta be a root, so thata3 +a2−2a−1 = 0. Letb = a2−2. Then

b3 +b2−2b−1 = a6−6a4 +12a2−8+a4−4a2 +4−2a2 +4−1

= a6−5a4 +6a2−1

= (a3 +a2−2a−1)(a3−a2−2a+1)
= 0,

sob is also a root; and clearlyb 6= a, elsea satisfies a polynomial of degree 2. Similarly
c = b2−2 is a root different froma andb. SoQ(a) contains all three roots, and is a
splitting field; and the Galois group is cyclic of order 3.

Remark Where does this come from? If you puta= w+w−1, then calculation shows
that

0 = a3 +a2−2a−1 = w3 +w2 +w+1+w−1 +w−2 +w−3.

So w is a primitive cube root of unity, sayw = e2π i/7, anda = 2cos(2π/7). Then
b = 2cos(4π/7) = a2−2.
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8.17 LetG be a subgroup ofS5 containing(1,2,3,4,5) and an arbitrary transposition.
Since all the powers of(1,2,3,4,5) except the identity are 5-cycles, and any two sym-
bols occur consecutively in one such power, we may assume without loss of generality
that the transposition is in fact(1,2). Then transpositions of adjacent elements (mod 5)
are conjugates of(1,2) by powers of the 5-cycle. From these we can obtain transposi-
tions of non-adjacent elements: for example,

(1,3) = (2,3)(1,2)(2,3).

SoG contains all transpositions, andG = S5.
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