
2 Linear and projectivegroups

In thissection,wedefineandstudythegeneralandspeciallineargroupsandtheir
projectiveversions.Welookattheactionsof theprojectivegroupsonthepointsof
theprojectivespace,anddiscusstransitivity properties,generation,andsimplicity
of thesegroups.

2.1 The generallinear groups

Let F be a division ring. As we saw, a vectorspaceof rank n over F can be
identifiedwith thestandardspaceFn (with scalarsontheleft) by choosingabasis.
Any invertiblelineartransformationof V is thenrepresentedby aninvertiblen � n
matrix,actingonFn by right multiplication.

We let GL
�
n � F � denotethegroupof all invertiblen � n matricesoverF, with

theoperationof matrixmultiplication.
The groupGL

�
n � F � actson the projective spacePG

�
n � 1 � F � , sincean in-

vertible linear transformationmapsa subspaceto anothersubspaceof the same
dimension.

Proposition2.1 Thekernelof theactionofGL
�
n � F � onthesetofpointsofPG

�
n �

1 � F � is thesubgroup �
cI : c � Z

�
F ��� c �	 0 


of central scalarmatricesin F, where Z
�
F � denotesthecentreof F.

Proof Let A 	 �
ai j � beaninvertiblematrixwhichfixeseveryrank1 subspaceof

Fn. Thus,Amapseachnon-zerovector
�
x1 �������
� xn � toascalarmultiple

�
cx1 ��������� cxn �

of itself.
Let ei be the ith basisvector, with 1 in position i and 0 elsewhere. Then

eiA 	 ciei , sothe ith row of A is ciei . Thisshows thatA is adiagonalmatrix.
Now for i �	 j, wehave

ciei � c jej
	 �

ei � ej � A 	 d
�
ei � ej �

for somed. Soci
	 c j . Thus,A is adiagonalmatrixcI.

Finally, let a � F, a �	 0. Then

c
�
ae1 � 	 �

ae1 � A 	 a
�
e1A� 	 ace1 �

soac 	 ca. Thus,c � Z
�
F � .
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Let Z be the kernelof this action. We definethe projectivegeneral linear
group PGL

�
n � F � to be the groupinducedon the pointsof the projective space

PG
�
n � 1 � F � by GL

�
n � F � . Thus,

PGL
�
n � F ���	 GL

�
n � F ��� Z �

In thecasewhereF is thefinite field GF
�
q� , wewrite GL

�
n � q� andPGL

�
n � q�

in placeof GL
�
n � F � andPGL

�
n � F � (with similar conventionsfor thegroupswe

meetlater).Now we cancomputetheordersof thesegroups:

Theorem 2.2 (a) � GL
�
n � q��� 	 �

qn � 1� � qn � q������� � qn � qn � 1 � ;
(b) � PGL

�
n � q��� 	 � GL

�
n � q����� � q � 1� .

Proof (a) Therows of aninvertiblematrix over a field arelinearly independent,
thatis, for i 	 1 ��������� n, theith row liesoutsidethesubspaceof ranki � 1 generated
by theprecedingrows. Now thenumberof vectorsin asubspaceof ranki � 1 over
GF

�
q� is qi � 1, sothenumberof choicesfor the ith row is qn � qi � 1. Multiplying

thesenumbersfor i 	 1 ��������� n givestheresult.
(b) PGL

�
n � q� is the imageof GL

�
n � q� undera homomorphismwhosekernel

consistsof non-zeroscalarmatricesandsohasorderq � 1.

If thefield F is commutative,thenthedeterminantfunctionis definedonn � n
matricesoverF andis a multiplicativemapto F:

det
�
AB� 	 det

�
A� det

�
B���

Also, det
�
A���	 0 if andonly if A is invertible. Sodet is a homomorphismfrom

GL
�
n � F � to F � , the multiplicative groupof F (alsoknown asGL

�
1 � F � ). This

homomorphismis onto, sincethe matrix with c in the top left corner, 1 in the
otherdiagonalpositions,and0 elsewherehasdeterminantc.

Thekernelof thishomomorphismis thespeciallinear groupSL
�
n � F � , a nor-

malsubgroupof GL
�
n � F � with factorgroupisomorphicto F � .

We definethe projectivespeciallinear group PSL
�
n � F � to be the imageof

SL
�
n � F � underthehomomorphismfrom GL

�
n � F � to PGL

�
n � F � , thatis, thegroup

inducedon theprojectivespaceby SL
�
n � F � . Thus,

PSL
�
n � F � 	 SL

�
n � F ��� � SL

�
n � F ��� Z ���

Thekernelof this homomorphismconsistsof the scalarmatricescI which have
determinant1, that is, thosecI for which cn 	 1. This is a finite cyclic group
whoseorderdividesn.

Again,for finite fields,wecancalculatetheorders:
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Theorem 2.3 (a) � SL
�
n � q��� 	 � GL

�
n � q����� � q � 1� ;

(b) � PSL
�
n � q��� 	 � SL

�
n � q����� � n � q � 1� , where

�
n � q � 1� is thegreatestcommon

divisorof n andq � 1.

Proof (a) SL
�
n � q� is thekernelof thedeterminanthomomorphismon GL

�
n � q�

whoseimageF � hasorderq � 1.
(b) Fromtheremarkbeforethetheorem,weseethatPSL

�
n � q� is theimageof

SL
�
n � q� undera homomorphismwhosekernelis thegroupof nth rootsof unity

in GF
�
q� . Sincethemultiplicativegroupof this field is cyclic of orderq � 1, the

nth rootsform asubgroupof order
�
n � q � 1� .

A groupG actssharplytransitivelyonasetΩ if its actionis regular, thatis, it
is transitiveandthestabiliserof apoint is theidentity.

Theorem 2.4 LetF beadivisionring. ThenthegroupPGL
�
n � F � actstransitively

on thesetof all
�
n � 1� -tuplesof pointsof PG

�
n � 1 � F � with thepropertythat no

n points lie in a hyperplane;the stabiliserof such a tuple is isomorphicto the
groupof inner automorphismsof the multiplicativegroupof F. In particular, if
F is commutative, thenPGL

�
n � F � is sharplytransitiveon thesetof such

�
n � 1� -

tuples.

Proof Considern pointsnot lying in ahyperplane.Then vectorsspanningthese
pointsform abasis,andwemayassumethatthis is thestandardbasise1 �������
� en of
Fn, whereei hasith coordinate1 andall otherszero.Theproofof Proposition2.1
shows thatG actstransitively on thesetof suchn-tuples,andthestabiliserof the
n points is the groupof diagonalmatrices.Now a vectorv not lying in the hy-
perplanespannedby any n � 1 of thebasisvectorsmusthave all its coordinates
non-zero,andconversely. Moreover, the groupof diagonalmatricesactstransi-
tively on thesetof suchvectors.This provesthatPG

�
n � F � is transitiveon theset

of
�
n � 1� -tuplesof the given form. Without lossof generality, we may assume

thatv 	 e1 � ����� � en
	 �

1 � 1 �������
� 1� . Thenthestabiliserof then � 1 pointsconsists
of the groupof scalarmatrices,which is isomorphicto the multiplicative group
F � . Wehaveseenthatthekernelof theactionontheprojectivespaceis Z

�
F � � , so

thegroupinducedby thescalarmatricesis F � � Z
�
F ��� , which is isomorphicto the

groupof innerautomorphismsof F � .
Corollary 2.5 ThegroupPGL

�
2 � F � is 3-transitiveonthepointsof theprojective

line PG
�
1 � F � ; the stabiliserof threepoints is isomorphicto the group of inner

16



automorphismsof themultiplicativegroupofF. In particular, if F is commutative,
thenPGL

�
2 � F � is sharply3-transitiveon thepointsof theprojectiveline.

For n ! 2, thegroupPGL
�
n � F � is 2-transitiveon thepointsof theprojective

spacePG
�
n � 1 � F � .

This follows from the theorembecause,in the projective plane,the hyper-
planesarethepoints,andsono two distinctpointslie in a hyperplane;while, in
general,any two pointsareindependentandcanbeextendedto an

�
n � 1� -tuple

asin thetheorem.
We canrepresentthe setof pointsof the projective line as

�
∞ 
#" F, where

∞ 	%$ � 1 � 0��& anda 	%$ � a � 1��& for a � F. Thenthe stabiliserof the threepoints
∞ � 0 � 1 actsin thenaturalwayonF ' �

0 � 1 
 by conjugation.
For considertheeffect of thediagonalmatrix aI on thepoint $ � x � 1��& . This is

mappedto $ � xa� a��& , which is thesamerank1 subspaceas $ � a � 1xa� 1��& ; soin the
new representation,aI inducesthemapx () a � 1xa.

In this convenientrepresentation,theactionof PGL
�
2 � F � canberepresented

by linear fractional transformations.The matrix

*
a b
c d + maps

�
x � 1� to

�
xa �

c � xb � d � , whichspansthesamepointas
���

xb � d � � 1 � xa � c� � 1� if xb � d �	 0, or�
1 � 0� otherwise.Thusthetransformationinducedby thismatrixcanbewrittenas

x () �
xb � d � � 1 � xa � c���

providedwemake standardconventionsabout∞ (for example,0 � 1a 	 ∞ for a �	
0 and

�
∞b � d � � 1 � ∞a � c� 	 b � 1a. If F is commutative, this transformationis

convenientlywrittenasa fraction:

x () ax � c
bx � d

�
Exercise2.1 Work out carefully all the conventionsrequiredto usethe linear
fractionalrepresentationof PGL

�
2 � F � .

Exercise2.2 By Theorem2.4, the orderof PGL
�
n � q� is equalto the numberof�

n � 1� -tuplesof pointsof PG
�
n � 1 � q� for which no n lie in a hyperplane.Use

this to giveanalternativeproofof Theorem2.2.

Paul Cohnconstructedanexampleof a division ring F suchthatall elements
of F ' �

0 � 1 
 areconjugatein the multiplicative groupof F . For a division ring
F with this property, we seethatPGL

�
2 � F � is 4-transitive on theprojective line.

This is thehighestdegreeof transitivity thatcanberealisedin thisway.
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Exercise2.3 Show that, if F is a division ring with the above property, thenF
hascharacteristic2, andthemultiplicativegroupof F is torsion-freeandsimple.

Exercise2.4 Let F be a commutative field. Show that, for all n , 2, the group
PSL

�
n � F � is 2-transitive on thepointsof theprojective spacePG

�
n � 1 � F � ; it is

3-transitiveif andonly if n 	 2 andeveryelementof F is asquare.

2.2 Generation

For therestof this section,we assumethatF is a commutativefield. A transvec-
tion of theF-vectorspaceV is a linearmap: V ) V whichsatisfiesrk

�
T � I � 	 1

and
�
T � I � 2 	 0. Thus,if wechooseabasissuchthate1 spanstheimageof T � I

ande1 ��������� en � 1 spanthekernel,thenT is representedby thematrix I � U , where
U hasentry1 in the top right positionand0 elsewhere.Note thata transvection
hasdeterminant1. Theaxisof thetransvectionis thehyperplaneker

�
T � I � ; this

subspaceis fixedelementwiseby T. Dually, thecentreof T is theimageof T � I ;
every subspacecontainingthis point is fixedby T (sothatT actstrivially on the
quotientspace).

Thus,a transvectionis amapof theform

x () x � �
xf � a �

wherea � V and f � V � satisfyaf 	 0 (thatis, f � a†). Its centreandaxisare $ a&
andker

�
f � respectively.

Thetransformationof projective spaceinducedby a transvectionis calledan
elation. Thematrix form givenearliershows thatall elationslie in PSL

�
n � F � .

Theorem 2.6 For any n , 2 and commutativefield F, the group PSL
�
n � F � is

generatedby theelations.

Proof Weuseinductiononn.
Considerthecasen 	 2. Theelationsfixing a specifiedpoint, togetherwith

the identity, form a groupwhich actsregularly on the remainingpoints. (In the
linearfractionalrepresentation,thiselationgroupis�

x () x � a : a � F 
-�
fixing ∞.) Hencethe groupG generatedby the elationsis 2-transitive. So it is
enoughto show thatthestabiliserof thetwo points∞ and0 in G is thesameasin
PSL

�
2 � F � , namely �

x () a2x : a � F � a �	 0 
-�
18



Givena � F, a �	 0, wehave*
1 1
0 1 + *

1 0
a � 1 1 + *

1 � a � 1

0 1 + *
1 0

a � a2 1 + 	 *
a 0
0 a � 1 + �

andthe last matrix inducesthe linear fractionalmapx () ax� a� 1 	 a2x, as re-
quired.

(The proof shows that two elationgroups,with centres∞ and0, suffice to
generatePSL

�
2 � F � .)

Now for thegeneralcase,we assumethatPSL
�
n � 1 � F � is generatedby ela-

tions.Let G bethesubgroupof PSL
�
n � F � generatedby elations.First,weobserve

thatG is transitive; for, givenany two pointsp1 andp2, thereis anelationon the
line $ p1 � p2 & carryingp1 to p2, which is inducedby anelationon thewholespace
(actingtrivially on a complementto the line). So it is enoughto show that the
stabiliserof a point p is generatedby elations. Take an elementg � PSL

�
n � F �

fixing p.
By induction, Gp inducesat leastthe group PSL

�
n � 1 � F � on the quotient

spaceV � p. So,multiplying g by a suitableproductof elations,we mayassume
thatg inducesanelementonV � pwhichisdiagonal,with all butoneof its diagonal
elementsequalto 1. In otherwords,wecanassumethatg hastheform.////0 λ 0 ����� 0 0

0 1 ����� 0 0
...

...
...

...
...

0 0 ����� 1 0
x1 x2 ����� xn � 1 λ � 1

1322224 �
By further multiplication by elations,we may assumethat x1

	 ����� 	 xn � 1
	 0.

Now theresultfollowsfrom thematrixcalculationgivenin thecasen 	 2.

Exercise2.5 A homology is an elementof PGL
�
n � F � which fixesa hyperplane

pointwiseand also fixes a point not in this hyperplane. Thus, a homologyis
representedin a suitablebasisby a diagonalmatrix with all its diagonalentries
exceptoneequalto 1.

(a) Find two homologieswhoseproductis anelation.

(b) Prove thatPGL
�
n � F � is generatedby homologies.
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2.3 Iwasawa’sLemma

Let G bea permutationgroupon a setΩ: this meansthatG is a subgroupof the
symmetricgroupon Ω. Iwasawa’s Lemmagivesa criterion for G to be simple.
We will usethis to prove thesimplicity of PSL

�
n � F � andvariousotherclassical

groups.
Recall that G is primitive on Ω if it is transitive and thereis no non-trivial

equivalencerelationon Ω which is G-invariant: equivalently, if thestabiliserGα
of apointα � Ω is amaximalsubgroupof G. Any 2-transitivegroupis primitive.

Iwasawa’sLemmais thefollowing.

Theorem 2.7 Let G beprimitive on Ω. Supposethat there is an abeliannormal
subgroupA of Gα with thepropertythat theconjugatesof A generateG. Thenany
non-trivial normalsubgroupof G containsG5 . In particular, if G 	 G5 , thenG is
simple.

Proof SupposethatN is a non-trivial normalsubgroupof G. ThenN �6 Gα for
someα. SinceGα is a maximalsubgroupof G, wehaveNGα

	 G.
Let g beany elementof G. Write g 	 nh, wheren � N andh � Gα. Then

gAg� 1 	 nhAh� 1n � 1 	 nAn� 1 �
sinceA is normalin Gα. SinceN is normalin G we havegAg� 1 6

NA. Sincethe
conjugatesof A generateG weseethatG 	 NA.

Hence
G� N 	 NA� N �	 A� � A � N �

is abelian,whenceN , G5 , andwearedone.

2.4 Simplicity

We now applyIwasawa’s Lemmato prove thesimplicity of PSL
�
n � F � . First,we

considerthetwo exceptionalcaseswherethegroupis notsimple.
RecallthatPSL

�
2 � q� is asubgroupof thesymmetricgroupSq7 1, having order�

q � 1� q � q � 1��� � q � 1 � 2� .
(a) If q 	 2, thenPSL

�
2 � q� is a subgroupof S3 of order6, soPSL

�
2 � 2� �	 S3.

It is notsimple,having anormalsubgroupof order3.

(b) If q 	 3, thenPSL
�
2 � q� is asubgroupof S4 of order12,soPSL

�
2 � 3�8�	 A4.

It is notsimple,having anormalsubgroupof order4.
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(c) For comparison,we notethat, if q 	 4, thenPSL
�
2 � q� is a subgroupof S5

of order60,soPSL
�
2 � 4� �	 A5. Thisgroupis simple.

Lemma 2.8 ThegroupPSL
�
n � F � is equalto its derivedgroupif n ! 2 or if �F �3!

3.

Proof The groupG 	 PSL
�
n � F � actstransitively on incidentpoint-hyperplane

pairs.Eachsuchpairdefinesauniqueelationgroup.Soall theelationgroupsare
conjugate.ThesegroupsgenerateG. So the proof will be concludedif we can
show thatsomeelationgroupis containedin G5 .

Supposethat �F �9! 3. It is enoughto considern 	 2, sincewe canextendall
matricesin theargumentbelow to rankn by appendinga block consistingof the
identity of rankn � 2. Thereis anelementa � F with a2 �	 0 � 1. We saw in the

proofof Theorem2.6thatSL
�
2 � F � containsthematrix

*
a 0
0 a � 1 + . Now*

1 � x
0 1 + *

a 0
0 a � 1 + *

1 x
0 1 + *

a � 1 0
0 a + 	 *

1
�
a2 � 1� x

0 1 + ;

this equationexpressesany elementof thecorrespondingtransvectiongroupasa
commutator.

Finally supposethat �F � 	 2 or 3. As above, it is enoughto considerthecase
n 	 3. This is easier, sincewehavemoreroomto manoeuvrein threedimensions:
wehave.0

1 � x 0
0 1 0
0 0 1

14 .0
1 0 0
0 1 � 1
0 0 1

14 .0
1 x 0
0 1 0
0 0 1

14 .0
1 0 0
0 1 1
0 0 1

14 	 .0
1 0 x
0 1 0
0 0 1

14 �
Lemma 2.9 LetΩ bethesetof pointsof theprojectivespacePG

�
n � 1 � F � . Then,

for α � Ω, the setof elationswith centre α, togetherwith the identity, formsan
abeliannormalsubgroupof Gα.

Proof This is moreconvenientlyshown for the correspondingtransvectionsin
SL

�
n � F � . But thetransvectionswith centrespannedby thevectora consistof all

mapsx () x � �
xf � a,, for f � A†; theseclearlyform anabeliangroupisomorphic

to theadditivegroupof a†.

Theorem 2.10 ThegroupPSL
�
n � F � is simpleif n ! 2 or if �F ��! 3.
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Proof let G 	 PSL
�
n � F � . ThenG is 2-transitive, andhenceprimitive, on the

setΩ of pointsof the projective space.The groupA of elationswith centreα
is an abeliannormalsubgroupof Gα, and the conjugatesof A generateG (by
Theorem2.6, sinceevery elation hasa centre). Apart from the two excluded
cases,G 	 G5 . SoG is simple,by Iwasawa’s Lemma.

2.5 Small fields

Wenow havethefamilyPSL
�
n � q� , for

�
n � q�:�	 �

2 � 2��� � 2 � 3� of finitesimplegroups.
(The first two membersare not simple: we observed that PSL

�
2 � 2� �	 S3 and

PSL
�
2 � 3� �	 A4, neitherof which is simple.) As is well-known, Galoisshowed

thatthealternatinggroupAn of degreen , 5 is simple.

Exercise2.6 Prove thatthealternatinggroupAn is simplefor n , 5.

Someof thesegroupscoincide:

Theorem 2.11 (a) PSL
�
2 � 4� �	 PSL

�
2 � 5� �	 A5.

(b) PSL
�
2 � 7�8�	 PSL

�
3 � 2� .

(c) PSL
�
2 � 9� �	 A6.

(d) PSL
�
4 � 2� �	 A8.

Proofsof theseisomorphismsareoutlinedbelow. Many of thedetailsareleft
asexercises.Therearemany otherwaysto proceed!

Theorem 2.12 Let G bea simplegroupof order
�
p � 1� p �

p � 1��� 2, where p is a
primenumbergreaterthan3. ThenG �	 PSL

�
2 � p� .

Proof By Sylow’sTheorem,thenumberof Sylow p-subgroupsis congruentto 1
mod p anddivides

�
p � 1� � p � 1��� 2; alsothis numberis greaterthan1, sinceG

is simple.Sotherearep � 1 Sylow p-subgroups;andif P is a Sylow p-subgroup
andN 	 NG

�
P� , then �N � 	 p

�
p � 1��� 2.

ConsiderG actingasa permutationgroupon thesetΩ of cosetsof N. Let ∞
denotethecosetN. ThenP fixes∞ andpermutestheotherp cosetsregularly. So
we canidentify Ω with theset

�
∞ 
;" GF

�
p� suchthata generatorof P actson Ω
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asthepermutationx () x � 1 (fixing ∞). WeseethatN is permutationisomorphic
to thegroup �

x () a2x � b : a � b � GF
�
p��� a �	 0 
-�

Moreconveniently, elementsof N canberepresentedaslinearfractionaltransfor-
mationsof Ω with determinant1, since

a2x � b 	 ax � a � 1b
0x � a � 1 �

SinceG is 2-transitive on Ω, N is a maximalsubgroupof G, andG is gener-
atedby N andanelementt interchanging∞ and0, which canbechosento bean
involution. If we canshow that t is alsorepresentedby a linear fractionaltrans-
formationwith determinant1, thenG will bea subgroupof thegroupPSL

�
2 � p�

of all suchtransformations,andcomparingorderswill show thatG 	 PSL
�
2 � p� .

We treatthecasep <=� 1
�
mod4� ; theothercaseis a little bit trickier.

The elementt mustnormalisethe stabiliserof ∞ and0, which is the cyclic
groupC 	 �

x () a2x 
 of order
�
p � 1��� 2 (having two orbits of size

�
p � 1��� 2,

consistingof the non-zerosquaresandthe non-squaresin GF
�
p� ). Also, t has

no fixed points. For the stabiliserof threepoints in G is trivial, so t cannotfix
morethan2 points;but the two-pointstabiliserhasoddorder

�
p � 1��� 2. Thust

interchangesthetwo orbitsof C.
Therearevariouswaysto show thatt invertsC. Oneof themusesBurnside’s

TransferTheorem.Let q beany primedivisorof
�
p � 1��� 2, andlet Q beaSylow

q-subgroupof C (andhenceof G). ClearlyNG
�
Q� 	 C $ t & , sot mustcentraliseor

invertQ. If t centralisesQ, thenQ
6

Z
�
NG

�
Q� , andBurnside’sTransferTheorem

impliesthatG hasa normalq-complement,contradictingsimplicity. So t inverts
everySylow subgroupof C, andthusinvertsC.

Now C $ t & is a dihedralgroup, containing
�
p � 1��� 2 involutions, one inter-

changingthe point 1 with eachpoint in the otherC-orbit. We may chooset so
that it interchanges1 with � 1. Thenthe fact that t invertsC shows that it inter-
changesa2 with � a � 2 for eachnon-zeroa � GF

�
p� . So t is the linearfractional

mapx () � 1� x, andwearedone.

Theorem2.11(b)follows,sincePSL
�
3 � 2� is a simplegroupof order�

23 � 1� � 23 � 2� � 23 � 22 � 	 168 	 �
7 � 1� 7 �

7 � 1��� 2 �
Exercise2.7 (a) Completethe proof of the above theoremin the casep 	 5.

HenceproveTheorem2.11(a).
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(b) Show thatasimplegroupof order60hasfiveSylow 2-subgroups,andhence
show thatany suchgroupis isomorphicto A5. Giveanalternative proof of
Theorem2.11(a).

Proof of Theorem2.11(d)ThesimplegroupPSL
�
3 � 2� of order168is thegroup

of collineationsof theprojectiveplaneoverGF
�
2� , shown below.

> > >> >>>? ? ? ? ? ?@ @ @ @ @
@ @

AAAAAA BBBBB
BB

Sinceits index in S7 is 30,thereare30differentwaysof assigningthestructure
of aprojectiveplanetoagivensetN 	 �

1 � 2 � 3 � 4 � 5 � 6 � 7 
 of sevenpoints;andsince
PSL

�
3 � 2� , beingsimple,containsno oddpermutations,it is containedin A7, so

these30planesfall into two orbitsof 15undertheactionof A7.
Let Ω beoneof theA7-orbits. Eachplanecontainssevenlines,sothere15 �

7 	 105 pairs
�
L � Π � , whereL is a 3-subsetof N, Π � Ω, andL is a line of Π.

Thus,eachof the C 73D 	 35 triplesis a line in exactly threeof theplanesin Ω.
We now definea new geometryE whose‘points’ aretheelementsof Ω, and

whose‘lines’ arethe triples of elementscontaininga fixed line L. Clearly, any
two ‘points’ lie in at mostone‘line’, anda simplecountingargumentshows that
in facttwo ‘points’ lie in auniqueline.

Let Π 5 beaplanefrom theotherA7-orbit. For eachpointn � N, thethreelines
of Π 5 containingn belongto a uniqueplaneof the setΩ. (Having chosenthree
lines througha point, thereare just two ways to completethe projective plane,
differingby anoddpermutation.)In thisway, eachof thesevenpointsof N gives
rise to a ‘point’ of Ω. Moreover, the threepointsof a line of Π 5 correspondto
three‘points’ of a ‘line’ in ournew geometryE . Thus, E contains‘planes’,each
isomorphicto theprojectiveplanePG

�
2 � 2� .

It follows that E is isomorphicto PG
�
3 � 2� . Themostdirectway to seethis is

to considerthesetA 	 �
0 
F" Ω, anddefinea binaryoperationonA by therules

0 � Π 	 Π � 0 	 Π for all Π � Ω;

Π � Π 	 0 for all Π � Ω;

Π � Π 5 	 Π 5G5 if
�
Π � Π 5 � Π 5�5 
 is a ‘line’.

ThenA is anelementaryabelian2-group. (Theassociative law follows from the
factthatany threenon-collinear‘points’ lie in a ‘plane’.) In otherwords,A is the
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additivegroupof arank4 vectorspaceoverGF
�
2� , andclearly E is theprojective

geometrybasedon thisvectorspace.
Now A7

6
Aut

� EH� 	 PSL
�
4 � 2� . (The last inequalitycomesfrom theFunda-

mentalTheoremof Projective Geometryandthe fact thatPSL
�
4 � 2� 	 PΓL

�
4 � 2�

sinceGF
�
2� hasno non-trivial scalarsor automorphisms.)By calculatingorders,

we seethatA7 hasindex 8 in PSL
�
4 � 2� . Thus,PSL

�
4 � 2� is a permutationgroup

on thecosetsof A7, thatis, a subgroupof S8, anda similarcalculationshows that
it hasindex 2 in S8. WeconcludethatPSL

�
4 � 2� �	 A8.

The proof of Theorem2.11(c) is an exercise. Two approachesareoutlined
below. Fill in thedetails.

Exercise2.8 Thefield GF
�
9� canberepresentedas

�
a � bi : a � b � GF

�
3� 
 , where

i2 	 � 1. Let

A 	 *
1 1 � i
0 1 + � B 	 *

0 1� 1 0 + �
Then

A3 	 I � B2 	 � I � �
AB� 5 	 � I �

Sothecorrespondingelementsa � b � G 	 PSL
�
2 � 9� satisfy

a3 	 b2 	 �
ab� 5 	 1 �

andsogeneratea subgroupH isomorphicto A5. ThenH hasindex 6 in G, and
theactionof G onthecosetsof H showsthatG

6
S6. Thenconsiderationof order

showsthatG �	 A6.

Exercise2.9 Let G 	 A6, andlet H bethenormaliserof a Sylow 3-subgroupof
G. Let G act on the 10 cosetsof H. Show that H fixesonepoint and actsis
isomorphicto thegroup�

x () a2x � b : a � b � GF
�
9��� a �	 0 


ontheremainingpoints.ChooseanelementoutsideH and,following theproofof
Theorem2.12,show thatits actionis linearfractional(if thefixedpoint is labelled
as∞). DeducethatA6

6
PSL

�
2 � 9� , andby consideringorders,show thatequality

holds.

Exercise2.10 A Hall subgroupof afinite groupG is asubgroupwhoseorderand
index arecoprime.Philip Hall provedthata finite solublegroupG hasHall sub-
groupsof all admissibleordersmdividing �G � for which

�
m���G ��� m� 	 1, andthat

any two Hall subgroupsof thesameorderin afinite solublegroupareconjugate.
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(a) Show thatPSL
�
2 � 5� fails to haveaHall subgroupof someadmissibleorder.

(b) Show thatPSL
�
2 � 7� hasnon-conjugateHall subgroupsof thesameorder.

(c) Show thatPSL
�
2 � 11� hasnon-isomorphicHall subgroupsof thesameorder.

(d) Show thateachof thesegroupsis thesmallestwith thestatedproperty.

Exercise2.11 Show thatPSL
�
4 � 2� andPSL

�
3 � 4� arenon-isomorphicsimplegroups

of thesameorder.
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