
Solutions to Exercises
Chapter 4: Recurrence relations and generating

functions

1 (a) There aren seating positions arranged in a line. Prove that the number
of ways of choosing a subset of these positions, with no two chosen positions
consecutive, isFn+1.

(b) If the n positions are arranged around a circle, show that the number of
choices isFn +Fn−2 for n≥ 2.

(a) Proof by induction. Ifg(n) denotes this number, then we haveg(1) = 2 =
F2, g(2) = 3 = F3. (For n = 2, we cannot occupy both positions; but all other
choices are possible.) Forn> 2, we separate the seating selections into those in
which the last position is unoccupied and those in which it is occupied. There are
g(n−1) of the first kind. If the last position is taken, then the one before it must
be free, and we have an arbitrary seating plan on the firstn−2 positions; so there
areg(n−2) of these. Hence

g(n) = g(n−1)+g(n−2) = Fn +Fn−1 = Fn+1,

and the inductive step is proved.

(b) Consider a particular position on the circle. If it is unoccupied, we can
break the circle at that point, and obtain a line withn−1 positions, which can be
filled in g(n−1) = Fn ways. If the position is occupied, then its neighbours on
either side are unoccupied, and (ifn≥ 3) we can remove the position and its two
neighbours, obtaining a line ofn−3 positions which can be filled ing(n−3) =
Fn−2 ways. The same holds ifn = 2, since there is just one seating plan with the
given position occupied, andF0 = 1. So we haveFn +Fn−2 seating plans in all.
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2 Prove the following identities:

(a)F2
n −Fn+1Fn−1 = (−1)n for n≥ 1.

(b)
n

∑
i=0

Fi = Fn+2−1.

(c) F2
n−1 +F2

n = F2n, Fn−1Fn +FnFn+1 = F2n+1.

(d) Fn =
bn/2c

∑
i=0

(
n− i

i

)
.

(a) Induction: the result holds forn = 1. Forn≥ 2, we have

F2
n −Fn+1Fn−1 = F2

n −(Fn+Fn−1)Fn−1 = (Fn−Fn−1)Fn−F2
n−1 =−(F2

n−1−FnFn−2),

so, if F2
n−1−FnFn−2 = (−1)n−1 thenF2

n −Fn+1Fn−1 = (−1)n.

(b) Induction. The result is true forn = 0 (the empty sum is zero). Assuming
it for n−1, we have

n

∑
i=0

Fi = (Fn+1−1)+Fn = Fn+2−1.

(c) Again, induction. The result holds forn = 1 by inspection. Assume it for
n; that is,

F2
n−2 +F2

n−1 = F2n−2,

Fn−2Fn−1 +Fn−1Fn = F2n−1.

Adding these equations and using the Fibonacci recurrence, we get

Fn−2Fn +Fn−1Fn+1 = F2n.

Using (a) twice, this implies thatF2
n−1 + F2

n = F2n. Now add this equation to the
second displayed equation using the Fibonacci recurrence to get

Fn−1Fn +FnFn+1 = F2n+1.

(d) Most easily, this follows from our original interpretation ofFn as the num-
ber of expressions forn as an ordered sum of 1s and 2s. Such an expression with
i 2s will haven−2i 1s, hencen− i summands altogether; there are

(n−i
i

)
ways to

choose the positions of the 2s in the sum. Now summing overi gives the result.
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3 Show thatFn is composite for allodd n> 3.

By 2(c), F2n+1 = Fn(Fn−1 + Fn+1); and if n> 1, then both factors are greater
than 1.

4 Show that
b(n−1)/2c

∑
i=0

Fn−2i = Fn+1−1

for n≥ 1.

The proof is by an induction which goes fromn−2 to n, so the initial cases
n = 1 andn = 2 must both be checked. Assuming the result forn−2, we have

b(n−1)/2c

∑
i=1

Fn−2i = (Fn−1−1)+Fn = Fn+1−1.

5 Prove that every non-negative integerx less thanFn+1 can be expressed in a
unique way in the form

Fi1 +Fi2 + . . .+Fir ,

where i1, i2, . . . , ir ∈ {1, . . . ,n}, i1 > i2 + 1, i2 > i3 + 1, . . . (in other words,
i1, . . . , ir are all distinct and no two are consecutive). Deduce Exercise 1(a).

Follow the hint. If we had any expression of this form using Fibonacci num-
bers belowFn, then we could if necessary replace the summands by larger ones
and add new summands to obtainFn−1 + Fn−3 + . . .= Fn−1 (by Question 4). So
the sum of the original expression was at mostFn−1. Hence any expression sum-
ming tox, with Fn≤ x< Fn+1, must includeFn. Now x−Fn < Fn+1−Fn = Fn−1,
so by induction there is a unique expression forx−Fn, and hence forx (since
the expression forx−Fn cannot involveFn−1, so does not contain consecutive
Fibonacci numbers).

Hence, the number of expressions of this form (that is, the number of ways of
choosing a subset of the indices 1,2, . . . ,n with no two consecutive) is equal to the
number of possible sums 0,1, . . . ,Fn+1−1, that is,Fn+1, as asserted in 1(a).

6 Fibonacci numbers are traditionally associated with the breeding of rabbits.
Assume that a pair of rabbits does not breed in its first month, and that it pro-
duces a pair of offspring in each subsequent month. Assume also that rabbits
live forever. Show that, starting with one newborn pair of rabbits, the number of
pairs alive in thenth month isFn.
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In the 0th and 1st months, one pair is alive, so the result is true forn = 0,1.
Assume it holds forn−1. Then, in the(n−1)st month,Fn−1 pairs of rabbits are
alive, of whomFn−2 were alive in the preceding month (and hence old enough to
breed), providingFn−2 newborn pairs in thenth month. Thus, the total number of
pairs in thenth month isFn−1 +Fn−2 = Fn.

7 Prove that the number of additions required to compute the Fibonacci number
Fn according to the ‘inefficient’ algorithm described in the text isFn−1.

Induction: check the result for smalln. Now Fn−1 takesFn−1 additions, and
Fn−2 takesFn−1−1 additions; one further addition is required to combine them,
giving in all (Fn−1)+(Fn−1−1)+1 = Fn+1−1 additions.

8 (a) Prove thatFm+n = FmFn+Fm−1Fn−1 for m,n≥ 0 (with the convention that
F−1 = 0).

(b) Use this to derive an algorithm for calculatingFn using onlyclogn arith-
metic operations.

(c) Given that multiplication is slower than addition, is this algorithm really
better than one involvingn−1 additions?

(a) Induction onm. Form= 0, the result is a tautology, and form= 1 it is the
Fibonacci recurrence. Form> 1 we have

F(m+1)+n = Fm+n +F(m−1)+n

= FmFn +Fm−1Fn−1 +Fm−1Fn +Fm−2Fn−1

= Fm+1Fn +FmFn−1,

using the convention thatF−1 = 0 and the fact that, then, the relationFm = Fm−1+
Fm−2 holds also form= 1.

(b) The trick is to calculate pairs(Fn−1,Fn) of Fibonacci numbers, observ-
ing that we can go efficiently from the pairs(Fm−1,Fm) and(Fn−1,Fn) to the pair
(Fm+n−1,Fm+n) using (a). A cleaner way to express this is in terms of matrices.

We have(Fn Fn+1)A = (Fn+1 Fn+2), whereA is the 2×2 matrix
(

0
1

1
1

)
. Hence

(Fn Fn+1) = (1,1)An. By the analogue for powers of Russian peasant multiplica-
tion (Chapter 2, Exercise 12(iii)), we can findAn in about 2 log2n matrix multi-
plications, each requiring eight integer multiplications and four additions (though
this can be improved).

(c) SinceFn is exponentially large, the number of its digits is proportional to
n. Hence a long multiplication involves a number of additions proportional ton,
and we have not really made much saving over a method involvingn additions.
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9 (a) Solve the following recurrence relations.

(i) f (n+1) = f (n)2, f (0) = 2.

(ii) f (n+1) = f (n)+ f (n−1)+ f (n−2), f (0) = f (1) = f (2) = 1.

(iii) f (n+1) = 1+
n−1

∑
i=0

f (i), f (0) = 1.

(b) Show that the number of ways of writingn as a sum of positive integers,
where the order of the summands is significant, is 2n−1 for n≥ 1.

(a) (i) Let g(n) = log2 f (n). Theng(n+ 1) = 2g(n), g(0) = 1; sog(n) = 2n

(Section 3.1), andf (n) = 22n
.

(ii) The characteristic equation (see Section 4.3) isx3 = x2 +x+1. This cubic
has three distinct real rootsα, β, γ, and so the general solution isf (n) = aαn +
bβn +cγn, wherea,b,c are determined by the three equationsa+b+c = 1, aα +
bβ +cγ = 1, aα2 +bβ2 +cγ2 = 1.

(iii) We have f (1) = 1, since the empty sum is zero. Forn≥ 1, we have

f (n+1) = 1+
n−1

∑
i=0

f (i) =

(
1+

n−2

∑
i=0

f (i)

)
+ f (n−1) = f (n)+ f (n−1),

and so by inductionf (n) is the Fibonacci numberFn.

(b) There is one expression consisting of the single numbern. Any other
expression ends with some positive numberj < n, preceded by an expression
with sumn− j; so the numberf (n) of expressions satisfies

f (n) = 1+
n−1

∑
j=1

f (n− j) = 1+
n−1

∑
i=1

f (i).

Just as in (a)(iii), we find thatf (n+ 1) = f (n) + f (n) = 2 f (n). Since f (1) = 1,
we havef (n) = 2n−1, as claimed.
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10 The numberf (n) of steps required to solve the ‘Chinese rings puzzle’ with
n rings satisfiesf (1) = 1 and

f (n+1) =
{

2 f (n), n odd,
2 f (n)+1, n even.

Prove thatf (n+ 2) = f (n+ 1) + 2 f (n) + 1. Hence or otherwise find a formula
for f (n).

If n is odd, thenf (n+ 2) = 2 f (n+ 1) + 1 and f (n+ 1) = 2 f (n); if n is even,
then f (n+2) = 2 f (n+1) and f (n+1) = 2 f (n)+1. So the result holds in either
case.

This is not a “pure” recurrence relation because of the added 1. But if we
setg(n) = f (n) + 1

2, theng(n+ 1) + 2g(n) = f (n+ 1) + 2 f (n) + 3
2 = g(n+ 2).

The characteristic equation isx2 = x+ 2, with solutions 2 and−1, sog(n) =
a2n + b(−1)n. The initial valuesg(1) = 3

2 andg(2) = 5
2 yield a = 2

3 andb =−1
6.

So f (n) = 2
32n− 1

6(−1)n− 1
2.

11 (a) Let s(n) be the number of sequences(x1, . . . ,xk) of integers satisfying
1≤ xi ≤ n for all i andxi+1 ≥ 2xi for i = 1, . . . ,k− 1. (The length of the se-
quence is not specified; in particular, the empty sequence is included.) Prove the
recurrence

s(n) = s(n−1)+s(bn/2c)

for n≥ 1, with s(0) = 1. Calculate a few values ofs. Show that the generating
functionS(t) satisfies(1− t)S(t) = (1+ t)S(t2).

(b) Let u(n) be the number of sequences(x1, . . . ,xk) of integers satisfying
1≤ xi ≤ n for all i andxi+1>∑i

j=1x j for i = 1, . . . ,k−1. Calculate a few values
of u. Can you discover a relationship betweens andu? Can you prove it?

(a) We haves(0) = 1, since only the empty sequence occurs. Forn> 0, divide
the sequences counted bys(n) into two classes: those not containingn, and those
containingn. There ares(n−1) of the first class. For the second, all terms other
thann are at mostn/2, so such a sequence is obtained from a sequence of numbers
with 1≤ xi ≤ bn/2c andxi+1≥ 2xi by adjoiningn; so there ares(bn/2c) of these.
The recurrence relation follows.

If S(t) = ∑s(n)tn, then we have

S(t) = tS(t)+(1+ t)S(t2);
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for the coefficient oftn on the right iss(n−1) + s(bn/2c), and the constant term
on both sides is equal to 1.

(b) The relationship isu(n)−u(n−1) = s(n)/2 for n≥ 2. The proof is quite
intricate, and depends on defining another sequencev(n) as follows: v(n) is the
number of sequences(x1, . . . ,xk) of positive integers which satisfyxi >∑i−1

j=1x j for

all i ≤ k and∑k
i=1xi = n. Now such a sequence must have last termxk > n/2, and

is obtained by taking a sequence with sumn−xk≤ b(n−1)/2c and appendingxk

to it. So we have the recurrence

v(n) =
b(n−1)/2c

∑
i=1

v(i).

It follows from this thatv(2n) = v(2n−1) = v(2n−2)+v(n−1) for all n> 0.
Now we claim thatv(2n) = s(n)/2 for all n≥ 1. This is proved by induction,

being true forn = 1. Assuming the result forn−1, we have

v(2n) = v(2n−2)+v(n−1)
= s(n−1)/2+s(bn/2c)/2
= s(n)/2,

and the induction goes through.
Now u(n)−u(n−1) is the number of sequences satisfying the specification

for u which have last termn. These are obtained by appendingn to a sequence
with sum strictly smaller thann; so we have

u(n)−u(n−1) =
n−1

∑
i=0

v(i)

= v(2n)
= s(n)/2.

Remark:Sequences satisfying this condition are calledsuperincreasing; they
arose in the first example of a public-key cryptosystem, the Merkle–Hellman
knapsack system.

The two sequencess andu occur as numbers M1011 and M1053 in theEncy-
clopedia of Integer Sequences, where further references can be found, or you can
find them in the online version here (fors) and here (foru).

12 Let F(t) be a formal power series with constant term 1. By finding a recur-
rence relation for its coefficients, show that there is a multiplicative inverseG(t)
of F(t). Moreover, if the coefficients ofF are integers, so are those ofG.
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Let F(t) = ∑ fntn andG(t) = ∑gntn, with f0 = 1. The relationF(t)G(t) = 1
is equivalent tog0 = 1 and the recurrence relation

gn =−
n

∑
i=1

fign−i

for gn in terms of earlier values. So the valuesgn are determined, and are integers
if the valuesfn are.

13 A permutationπ of the set{1, . . . ,n} is calledconnectedif there does not
exist a numberk with 1≤ k< n such thatπ maps the subset{1,2, . . . ,k} into
itself. Letcn be the number of connected permutations. Prove that

n

∑
i=1

ci(n− i)! = n!

Deduce that, ifF(t) = ∑n≥1n!tn andG(t) = ∑n≥1cntn are the generating func-
tions of the sequences(n!) and(cn) respectively, then 1−G(t) = (1+F(t))−1.

For a permutationπ, let i(π) be the least positive integerk such thatπ maps
the set{1, . . . ,k} into itself. (Such ak exists, since certainlyπ maps{1, . . . ,n} to
itself.) Thenπ is the composite of a connected permutation on{1, . . . , i(π)} and
an arbitrary permutation on{i(π)+1, . . . ,n} (this last set being empty ifi(π) = n).
Summing overi, we obtain the stated recurrence.

As in the preceding question, this recurrence is equivalent to(1+ F(t))(1−
G(t)) = 1.

14 Let

∏
n≥1

(1+ tn) = ∑
n≥0

ant
n.

Prove thatan is the number of ways of writingn as the sum ofdistinctpositive
integers. (For example,a6 = 4, since 6= 5+1 = 4+2 = 3+2+1.)

A term in the infinite product∏(1+ tn) is obtained by selectingtm from the
mth factor for a finite number of values ofn, and 1 from all the other factors. So
there is a contribution oftn for every expression ofn as a sum of distinct positive
integers.
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15 (a) In an election, there are two candidates, A and B; the number of votes
cast is 2n. Each candidate receives exactlyn votes; but, at every intermediate
point during the count, A has received more votes than B. Show that the number
of ways this can happen is the Catalan numberCn. Can you construct a bijection
between the bracketed expressions and the voting patterns in (a)?

(b) In the above election, assume only that, at any intermediate stage, A has
received at least as many votes as B. Prove that the number of possibilities is
nowCn+1.

(a) As in the Hint, letf (n) be the number of ways of counting. Now A leads
by just one vote after the first vote is counted. Suppose that this next occurs after
2i +1 votes have been counted. (It must happen again, since B eventually catches
A.) Then there aref (i) choices for the count between these points, since each
candidate receivesi votes and A is always strictly ahead. Also, there aref (n− i)
choices for the rest of the count; for if we pretend at this stage that A has just one
vote and B none, we are running the count satisfying the same conditions with
just 2(n− i) votes altogether. So we havef (n) = ∑n−1

i=1 f (i) f (n− i), which is the
Catalan recurrence.

(b) Again follow the hint: In the modified election where A gets an extra vote
at the start and B an extra vote at the end, there aren+1 votes for each candidate,
and A is alway strictly ahead. So there areCn+1 ways of doing the count under
this condition.

16 A clown stands on the edge of a swimming pool, holding a bag containingn
red andn blue balls. He draws the balls out one at a time and discards them. If
he draws a blue ball, he takes one step back; if a red ball, one step forward. (All
steps have the same size.) Show that the probability that the clown remains dry
is 1/(n+1).

Imagine that the clown wears a diving suit, and continues to draw balls even
after he gets wet. There are

(2n
n

)
ways in which the balls could be drawn. The

clown stays dry if and only if the number of red balls never exceeds the number
of blue ones; according to the voting interpretation, this isCn+1. The ratio is
1/(n+1).

For a harder exercise, find a direct proof of this exercise, and reverse the above
argument to deduce the formula for the Catalan numbers.

17 Prove that

lim
n→∞

(
Bn

n!

)1/n

= 0.
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The radius of convergence of the power series∑n≥0Bntn/n! is the reciprocal
of

limsup
n→∞

(
Bn

n!

)1/n

.

But the radius of convergence is infinite, since the series converges everywhere.
(In general, the radius of convergence is the distance from the origin to the nearest
singularity in the complex plane; if the sum function has no singularities, the
radius of convergence is infinite.) So the limsup is zero, which means (since all
the values are positive) that the limit is zero.

18 (a) Prove that the exponential generating function for the numbers(n) of
involutions on{1, . . . ,n} (Section 4.4) is exp(t + 1

2t2).
(b) Prove that the exponential generating function for the numberd(n) of

derangements of{1, . . . ,n} is 1/((1− t)exp(t)).

(a) The functionS(t) = exp(t + 1
2t2) is the unique solution of the differen-

tial equationS′(t) = (1+ t)S(t) with the initial conditionS(0) = 1. So it suffices
to check that the e.g.f. of the numberss(n) satisfies this differential equation.
(Clearly it satisfies the initial condition.) Now, if we putS(t) = ∑n≥0s(n)tn/n!,
then the coefficient oftn−1/(n−1)! in (1+ t)S(t) is s(n−1) + (n−1)s(n−2),
whereas the coefficient inS′(t) is s(n) (since differentiation of the e.g.f. corre-
sponds to a left shift of the sequence). By the recurrence relation in Section 4.4,
these two expressions are equal.

(b) We have

d(n) = n!

(
n

∑
i=0

(−1)i

i!

)
.

by (4.4.1). Hence

∑
n≥0

d(n)tn

n!
=

(
∑
i≥0

(−t)i

i!

)
·

(
∑
k≥0

tk

)
=

1
et(1− t)

.

(In the first line, we putk = n− i; then i andk run independently over the non-
negative integers.)
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19 TheBernoulli numbers B(n) (not to be confused with the Bell numbersBn)
are defined by the recurrenceB(0) = 1 and

n

∑
k=0

(
n+1

k

)
B(k) = 0

for n≥ 1. Prove that the exponential generating function

f (t) = ∑
n≥0

B(n)tn

n!

is given by f (t) = t/(exp(t)−1).
Show thatf (t) + 1

2t is an even function oft, and deduce thatB(n) = 0 for
all oddn≥ 3.

What is the solution of the similar-looking recurrenceb(0) = 1 and

n

∑
k=0

(
n
k

)
b(k) = 0

for n≥ 1?

The recurrence can be written as

n+1

∑
k=1

(
n+1

k

)
B(k) = B(n+1) for n≥ 2.

Multiplying by tn+1/(n+1)! and summing overn≥2, the two sides aref (t)exp(t)
and f (t) with the constant and linear terms omitted. Thusf (t)exp(t)−1−t + 1

2t =
f (t)−1+ 1

2t, whencef (t) = t/(exp(t)−1), as required.
Now f (t)+ 1

2t = 1
2t(exp(1

2t)+exp(−1
2t))/(exp(1

2t)−exp(−1
2t)) = 1

2t coth1
2t,

an even function.

The last recurrence obviously has the solutionb(k) = (−1)k.
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20 For evenn, let en be the number of permutations of{1, . . . ,n} with all cycles
even;on, the number of permutations with all cycles odd; andpn = n! the total
number of permutations. LetE(t), O(t) andP(t) be the exponential generating
functions of these sequences. Show that

(a)P(t) = (1− t2)−1;

(b) E(t) = (1− t2)−1/2; [H INT: Exercise 15 of Chapter 3]

(c) E(t).O(t) = P(t);

(d) en = on for all evenn.

Find a ‘bijective’ proof of the last equality.

(a) Since we are only considering even vales ofn, we have

P(t) = ∑
m≥0

(
(2m)!
(2m)!

)
t2m =

1
1− t2 .

(b) By Chapter 3, Exercise 16, the numbere2m of permutations of a(2m)-set
with all cycles even is((2m)!!)2. So we have

E(t) = ∑
m≥0

(
((2m)!!)2

(2m)!

)
t2m = (1− t2)−1/2,

the second equality being verified by expanding the last expression using the Bi-
nomial Theorem.

(c) This is an instance of a very general counting principle. IfF(t) andG(t) are
the e.g.f.s for labelled structures in two classesF andG , with F(t) = ∑ fntn/n!
and G(t) = ∑gntn/n!, then F(t)G(t) is the e.g.f. of structures consisting of a
partition of the point set with anF -structure on one part and aG-structure on the
complement. For, ifH is the class of such composite structures, then the number
of H -structures on ann-set is given by

hn =
n

∑
k=0

(
n
k

)
fkgn−k,

from which a simple calculation shows thatH(t) = ∑hntn/n! = F(t)G(t).
Now (c) follows on applying this result, whereF andG denote the classes

of permutations with all cycles even, resp., all cycles odd: given an arbitrary
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permutationπ on {1, . . . ,2m}, there is a unique partition of the set into two parts
on which the induced permutations satisfy these conditions; and both parts have
even cardinality.

(d) From (a), (b) and (c), we deduce thatO(t) = (1−t2)−1/2 = E(t); soon = en

for all n.

Here is an outline of the construction of a bijection: you should fill in the de-
tails. Given the cycle decomposition of a permutation of{1, . . . ,n}, we can rotate
each cycle so that the least element comes first, and then order the cycles according
to their least elements. Call this thecanonical formof the cycle decomposition.
We now define the bijections:

(a) Given a canonical formC1, . . . ,C2r , where each cycleCi has odd length,
for i = 1, . . . , r remove the last element of the cycleC2i and add it at the end of the
cycleC2i−1. (Some cycles may disappear in this process.) The resulting cycles all
have even length, and the expression is in the canonical form.

(b) Given a canonical formC1, . . . ,Cm, where each cycle has even length, pro-
ceed recursively as follows. Letx be the last element ofC1, andy the first element
of C2. (Takey = ∞ if C2 doesn’t exist, that is, if there is only one cycle.)

• If x> y, removex fromC1 and add it at the end ofC2; then processC3, . . . ,Cm.

• If x< y, removex fromC1 and add it as a new singleton cycle afterC1; then
processC2, . . . ,Cm.

The resulting cycles all have odd length and the expression is in canonical form.
It remains to show that these two maps are mutually inverse. See R. P. Lewis

and S. P. Norton,Discrete Mathematics138(1995), 315–318, for further details.

21 Show thatQUICKSORT sometimes requires all
(n

2

)
comparisons to sort a

list. For how many orderings does this occur? One such ordering is the case
when the list is already sorted — is this a serious defect ofQUICKSORT?

Suppose that we start with a sorted list. ThenQUICKSORT selects the first
element (which is the smallest), and partitions the remainder into the empty list
and all the other elements (withn−1 comparisons). One branch of the recursion
is trivial, but in the other we again have a sorted list, requiring (by induction)(n−1

2

)
comparisons. So

(n
2

)
comparisons are needed altogether.

The sorted list is not the only permutation requiring so many comparisons. As
long as each element is either smaller than or greater than all its successors, the
same uneven split will occur at eac stage. So there are 2n−1 “bad” permutations,
since there are two choices for each element except the last.
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This is a problem, but in practice not too serious. If the lists to be sorted
are truly random, then the proportion of bad permutations decreases faster than
exponentially. If we are likely to meet sorted or partially sorted lists quite often,
we can modify the algorithm by choosinga to be the middle item of the list, rather
than the first.

22 Let mn be the minimum number of comparisons required byQUICKSORT
to sort a list of lengthn. Prove that, for each integerk> 1, mn is a linear function
of n on the interval from 2k−1−1 to 2k−1, with

m2k−1 = (k−2)2k +2.

If n = 2k− 1, what can you say about the number of orderings requiringmn

comparisons?

The minimum number of comparisons will occur when the sublists are as
nearly equal as possible: both of length(n− 1)/2 if n is odd, or of lengths
(n−2)/2 andn/2 if n is even. So we have the recurrence

mn =
{

n−1+2m(n−1)/2, if n is odd,
n−1+m(n−2)/2 +mn/2, if n is even.

Suppose thatmn = an+ b for c≤ n≤ d. Then, for 2c+ 1≤ n≤ 2d + 1, we have
mn = n−1+ 2(a(n−1)/2+ b) = (a+ 1)n+ (2b−a−1). But mn is linear (in
fact identically zero) for 0≤ n≤ 1; by induction onk, it is linear on each interval
2k−1−1≤ n≤ 2k−1. If the value on this interval is given bymn = akn+bk, then
we havea0 = b0 = 0, ak+1 = ak + 1, andbk+1 = 2bk−ak−1. By induction, we
find thatak = k andbk =−2k+1 +k+2. Settingn = 2k−1, we have

m2k−1 = k · (2k−1)−2k+1 +k+2 = (k−2)2k +2,

as required.

To count the number of orders which require the minimum number of compar-
isons, note that the first step in the algorithm splits the list into sublists of lengthi
andn− i−1, say; now we require that each of these sublists can be sorted with the
minimum number of comparisons, and also that bothi andn−1− i lie in an inter-
val in whichmj is a linear function ofj, that is, one of the form[2d−1−1,2d−1].
However, the two sublists can be merged arbitrarily. So the numberf (n) of orders
requiring the minimum number of comparisons satisfies the recurrence

f (n) = ∑
(

n−1
i

)
f (i) f (n− i−1),
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where the sum is over alli such thati andn− i−1 lie in the same interval of the
form [2d−1−1,2d−1].

For example, ifn = 5 and the list contains 1, . . . ,5 in some order, then it re-
quires the minimum number 6 of comparisons to sort if and only if one of the
following holds:

• the first element is 3;

• the first element is 2, and 4 precedes 3 and 5;

• the first element is 4, and 2 precedes 1 and 3.

There are 40 such lists, out of 120. As in the previous question, the maximum
number of comparisons is 10, and 16 lists require this number. Check that the
numbers requiring 7,8,9 comparisons are 32, 24, 8 respectively. Now check that
the average agrees with the value calculated in the recurrence of Section 4.7.
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23 This exercise justifies the ‘Twenty Questions’ principle. We are givenN
objects and required to distinguish them by asking questions, each of which has
two possible answers. The aim of this exercise is to show that, no matter what
scheme of questioning is adopted, on average the number of questions required
is at least log2N. (For some schemes, the average may be much larger. If we ask
‘Is it a1?’, ‘Is it a2?’, etc., then on average(N +1)/2 questions are needed!)

A binary treeis a graph (see Chapter 2) with the following properties:

• there is a vertex (theroot) lying on just two edges;

• every other vertex lies on one or three edges (and is called aleaf or an
internal vertexaccordingly);

• there are no circuits (closed paths of distinct vertices), and every vertex
can be reached by a path from the root.

It is convenient to arrange the vertices of the tree on successivelevels, with the
root on level 0. Then any non-leaf is joined to twosuccessorson the next level,
and every vertex except the root has onepredecessor. Theheightof a vertex is
the number of the level on which it lies.

In our situation, a vertex is any set of objects which can be distinguished
by some sequence of questions. The root corresponds to the whole set (before
any questions are asked), and leaves are singleton sets. The two successors of a
vertex are the sets distinguished by the two possible answers to the next question.
The height of a leaf is the number of questions required to identify that object
uniquely.
STEP 1. Show that there are two leaves of maximal height (h, say) with the
same predecessor. Deduce that, if there is a leaf of height less thanh−1, we
can find another binary tree withN leaves having smaller average height. Hence
conclude that, in a tree with minimum average height, every leaf has heightmor
m+1, for somem.
STEP 2. Since there are no leaves at height less thanm, there are altogether 2m

vertices on levelm.
STEP 3. If there arep internal vertices on levelm, show that there are 2p leaves
of heightm+ 1, andN−2p = 2m− p of heightm; soN = 2m+ p, where 0≤
p< 2m.
STEP4. Prove that log2(2m+ p)≤m+2p/(2m+ p), and deduce that the average
height of leaves is at least log2N.

16



Follow the suggested proof.
Step 1: If v is a vertex of maximum height andw its predecessor, then the

other successorv′ of w would also be a leaf (else its own successors would be
higher thanv). If there is a leafx with height less thanh− 1, then remove the
two leavesv,v′ of heighth and add two new successorsy,y′ of x with height less
thanh, reducing the average height without changing the number of leaves. So,
in a tree of minimum height, no leaf has height less thanh− 1 (whereh is the
maximum height). Putm= h−1.

Step 2:If there are no leaves on levelk, then each vertex on this level has two
successors, and so the number of vertices on levelk+ 1 is twice the number on
level k. In our case, this holds fork = 0,1, . . . ,m−1, so there are 2m vertices on
levelm.

Step 3:Suppose that there arep internal vertices on levelm. Then there are
2p vertices on levelm+1, all of them leaves; and there are 2m− p leaves on level
m, giving 2m+ p altogether. Thus, ifN is the number of leaves, thenm andp are
determined byN: 2m is the largest power of 2 not exceedingN, andp = N = 2m.
(If N is a power of 2, we can take it to be 2m rather than 2m+1, to simplify things.)

Step 4:The average height of the leaves is

(2m− p)m+2p(m+1)
2m+ p

= m+
2p

2m+ p
.

By calculus, show that− log2(1−x)≤ 2x for 0≤ x≤ 1
2. (The two expressions

are equal whenx = 0 and whenx = 1
2; and their difference has a unique stationary

value in the interval, atx = 1− 1/(2log2), which is a minimum.) Apply this
inequality withx = p/(2m+ p), so thatm− log2(1−x) = m+ log2(1+ p/2m) =
log2(2m+ p). Thus, log2N≤m+2p/(2m+ p), and we are done.

24 Suppose that the two successors of each non-leaf node in a binary tree are
distinguished as ‘left’ and ‘right’. Show that, with this convention, the number
of binary trees withn leaves is the Catalan numberCn.

Let Tn be the number of binary trees withn leaves, with the left-right distinc-
tion. ThenT1 = 1 (the root is the unique leaf); and, forn> 1, a tree withn leaves
is specified by a left subtree withk leaves and a right subtree withn− k leaves,
where 1≤ k≤ n−1. HenceTn = ∑n−1

k=1 TkTn−k for n> 1. By (4.5.1) and induction,
Tn = Cn for all n.
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