Solutions to Exercises
Chapter 4: Recurrence relations and generating
functions

1 (a) There aren seating positions arranged in a line. Prove that the number
of ways of choosing a subset of these positions, with no two chosen positions
consecutive, i$n 1.
(b) If the n positions are arranged around a circle, show that the number of
choices id +F,_> forn> 2.

(a) Proof by induction. I§(n) denotes this number, then we hay@) =2 =
F, 9(2) =3=Fs. (Forn= 2, we cannot occupy both positions; but all other
choices are possible.) Far> 2, we separate the seating selections into those in
which the last position is unoccupied and those in which it is occupied. There are
g(n—1) of the first kind. If the last position is taken, then the one before it must
be free, and we have an arbitrary seating plan on thenfirs? positions; so there
areg(n— 2) of these. Hence

g(n) = g(n_ 1) + g(n - 2) =Fy+Fo1=Fng1,

and the inductive step is proved.

(b) Consider a particular position on the circle. If it is unoccupied, we can
break the circle at that point, and obtain a line with 1 positions, which can be
filled in g(n— 1) = K, ways. If the position is occupied, then its neighbours on
either side are unoccupied, andr{if> 3) we can remove the position and its two
neighbours, obtaining a line of— 3 positions which can be filled ig(n— 3) =
Fn_2 ways. The same holds iif= 2, since there is just one seating plan with the
given position occupied, arfeh = 1. So we havé, + F,_2 seating plans in all.



2 Prove the following identities:

() I:n2 —Fop1Fno1=(-1)"forn> 1.

n
() S R =Fyo—1.

2,
(C©F2 | +F2=Fon,  Fo1Fn+FiFnit = Fonst.
/2] 70

() Fo = ( _ )

" i;) I

(a) Induction: the result holds for= 1. Forn > 2, we have

Fn2 - I:nJranfl = l:nz_ (Fn‘|‘ anl)anl - (Fn - anl) I:n - Fnz_l = —(Fnz_l— FnFn72)7

S0, ifF2 | —FaFn2 = (-1)" 1 thenF2 — Fp 1 Foog = (=)
(b) Induction. The result is true for= 0 (the empty sum is zero). Assuming
it for n— 1, we have

n
Z)Fl =F1—1)+FR=FR2—1
i=
(c) Again, induction. The result holds for= 1 by inspection. Assume it for
n; that is,
I:n272 + I:nzfl = PFonoo,
FroFh-1+FaFn = Fonoas
Adding these equations and using the Fibonacci recurrence, we get
Fn2Fn+ anan+1 = Fon.

Using (a) twice, this implies thd?2 ; + F2 = F,. Now add this equation to the
second displayed equation using the Fibonacci recurrence to get

Frn-1Fn + FaFns1 = Ponsa.

(d) Most easily, this follows from our original interpretationfgfas the num-
ber of expressions far as an ordered sum of 1s and 2s. Such an expression with
i 2s will haven— 2i 1s, hencer— i summands altogether; there 4fe') ways to
choose the positions of the 2s in the sum. Now summing iogies the result.

2



‘3 Show thatm, is composite for albdd n> 3.

By 2(c), Font1 = Fn(Fn—1+ Fnt1); and if n > 1, then both factors are greater
than 1.

4 Show that

[(n—1)/2]
Fno2i = I:n+1 -1
2,

forn>1.

The proof is by an induction which goes fram- 2 to n, so the initial cases
n= 1 andn = 2 must both be checked. Assuming the resultfer2, we have

L(n—1)/2]
Z Froi=Fr-1—1)+F=Fs1—1
i=

5 Prove that every non-negative integeless thark,,. 1 can be expressed in a
unigue way in the form

FI1+FI2+-~-+FIM
whereiy,ip,...,iy € {1,...,n}, i1 >i2+1, i >iz3+1, ...(in other words,
i1,...,Ir are all distinct and no two are consecutive). Deduce Exercise 1(a).

Follow the hint. If we had any expression of this form using Fibonacci num-
bers belowr,, then we could if necessary replace the summands by larger ones
and add new summands to obt&in 1+ F,—3+... = F,— 1 (by Question 4). So
the sum of the original expression was at nf§st 1. Hence any expression sum-
ming tox, with F, < X < Fy1, must includeq,. Now X — Ry < Fri1 — Fn = o1,
so by induction there is a unique expressioner F,, and hence fox (since
the expression fox — F, cannot involveF,_1, so does not contain consecutive
Fibonacci numbers).

Hence, the number of expressions of this form (that is, the number of ways of
choosing a subset of the indice®]l .., n with no two consecutive) is equal to the
number of possible sumsQ..., R, 1 — 1, thatis,F,. 1, as asserted in 1(a).

6 Fibonacci numbers are traditionally associated with the breeding of rabbits.
Assume that a pair of rabbits does not breed in its first month, and that it pro-
duces a pair of offspring in each subsequent month. Assume also that rabbits
live forever. Show that, starting with one newborn pair of rabbits, the number of
pairs alive in then™ month isF,.




In the Oth and 1st months, one pair is alive, so the result is trua fo0, 1.
Assume it holds fon— 1. Then, in then— 1)st month,F,_ pairs of rabbits are
alive, of whomF,_» were alive in the preceding month (and hence old enough to
breed), providindg-,_» newborn pairs in theth month. Thus, the total number of
pairs in thenth month isk,_1 + Fy_2 = F.

7 Prove that the number of additions required to compute the Fibonacci number
F, according to the ‘inefficient’ algorithm described in the texiis- 1.

Induction: check the result for small Now F,_; takesF, — 1 additions, and
F._» takesF,_1 — 1 additions; one further addition is required to combine them,
givinginall (F,— 1)+ (Fy-1—1) +1 = Fy+1 — 1 additions.

8 (a) Prove thaEn. n = FnFn + Fm-1Fy—1 for m,n > 0 (with the convention that
F_1=0).

(b) Use this to derive an algorithm for calculatiRgusing onlyclogn arith-
metic operations.

(c) Given that multiplication is slower than addition, is this algorithm really
better than one involving — 1 additions?

(a) Induction orm. Form= 0, the result is a tautology, and for= 1 it is the
Fibonacci recurrence. Fon > 1 we have

Fmin+n = FmintFmo1)4n
- Fan + I:mfll:nfl + mean + meZanl
= Fni1Fn+FmFn-1,

using the convention th&t ; = 0 and the fact that, then, the relatiBg = Fn_1+
Fm—2 holds also fom = 1.

(b) The trick is to calculate pairé~,_1,F,) of Fibonacci numbers, observ-
ing that we can go efficiently from the paifByn_1, Fm) and (F,—1, F,) to the pair
(Fm+n—1, Fmtn) using (a). A cleaner way to express this is in terms of matrices.

We have(F, Fri1)A = (Fas1 Fnt2), whereA is the 2x 2 matrix ((1’ i) Hence

(Fn Fre1) = (1,1)A". By the analogue for powers of Russian peasant multiplica-
tion (Chapter 2, Exercise 12(iii)), we can fidd in about 2logn matrix multi-
plications, each requiring eight integer multiplications and four additions (though
this can be improved).

(c) SinceF, is exponentially large, the number of its digits is proportional to
n. Hence a long multiplication involves a number of additions proportional to
and we have not really made much saving over a method invotvadgitions.
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9 (a) Solve the following recurrence relations.
() f(n+1) = f(n)? f(0)=2.
@) fn+)=f(n)+f(n—-1)+f(n-2), f(0)=f(1) = f(2) =1.

i)y f(n+1)= 1+E;f(i), f(0) = 1.

(b) Show that the number of ways of writimgas a sum of positive integers,
where the order of the summands is significantis'Zor n > 1.

(@) (i) Letg(n) =log, f(n). Theng(n+1) = 2g(n), g(0) = 1; sog(n) = 2"
(Section 3.1), and (n) = 22",

(ii) The characteristic equation (see Section 4.3fis: X2+ x+ 1. This cubic
has three distinct real roots, B3, y, and so the general solution f§n) = aa" +
bB" -+ cy", wherea, b, c are determined by the three equatiarsb+c= 1, aa +
bB+cy=1,a0%+bp%+cy? = 1.

(iii) We have f (1) = 1, since the empty sum is zero. For 1, we have

f(n+1_1+%f <1+%f >+fn 1) = f(n)+f(n—1),

and so by inductiorf (n) is the Fibonacci numbét,.

(b) There is one expression consisting of the single numbeAny other
expression ends with some positive numbet n, preceded by an expression
with sumn— j; so the numbef (n) of expressions satisfies

n—1

=1+ f(n—j) :1+Ellf(i)

=1

Just as in (a)(iii), we find that(n+ 1) = f(n) + f(n) = 2f(n). Sincef(1) =1,
we havef (n) = 2"1, as claimed.



10 The numberf (n) of steps required to solve the ‘Chinese rings puzzle’ with
nrings satisfief (1) = 1 and

[ 2f(n), nodd,
1:(nJrl)_{Zf(n)Jrl, neven.

Prove thatf (n+2) = f(n+ 1)+ 2f(n) + 1. Hence or otherwise find a formula
for f(n).

If nis odd, thenf(n+2) = 2f(n+1)+ 1 andf(n+1) = 2f(n); if nis even,
thenf(n+2) =2f(n+1) andf(n+1) = 2f(n) + 1. So the result holds in either
case.

This is not a “pure” recurrence relation because of the added 1. But if we
setg(n) = f(n) + 3, theng(n+1) +2g(n) = f(n+1) +2f(n) + 3 = g(n+2).

The characteristic equation i€ = x+ 2, with solutions 2 and-1, sog(n)
a2"+b(—1)". The initial valuegy(1) = 3 andg(2) = 3 yielda= % andb= —
Sof(n)=22"—(-1)"-3.

ol

11 (a) Lets(n) be the number of sequences,...,Xk) of integers satisfying
1<x <nforalliandx.,;>2x fori=1,....k—1. (The length of the se¢
guence is not specified; in particular, the empty sequence is included.) Prove the
recurrence

174

s(n) =s(n—1) +s([n/2|)

for n > 1, with s(0) = 1. Calculate a few values sf Show that the generating
functionS(t) satisfieg 1 —t)S(t) = (1+t)(t?).

(b) Letu(n) be the number of sequences, ..., x«) of integers satisfyin
1<x <nforalliandxj1 > lezlxj' fori=1,...,k—1. Calculate a few values
of u. Can you discover a relationship betwesamdu? Can you prove it?

2

(a) We haves(0) = 1, since only the empty sequence occurs.rFor0, divide
the sequences counted §y) into two classes: those not containingand those
containingn. There ares(n— 1) of the first class. For the second, all terms other
thann are at mosh/2, so such a sequence is obtained from a sequence of numbers
with 1 <x; < [n/2] andxi+1 > 2x by adjoiningn; so there ars(|n/2]) of these.
The recurrence relation follows.

If S(t) =5 s(n)t", then we have

S(t) = tS(t) + (141)S(t?);



for the coefficient ot" on the right iss(n— 1) +s(|n/2]), and the constant term
on both sides is equal to 1.

(b) The relationship isi(n) —u(n— 1) = s(n)/2 for n > 2. The proof is quite
intricate, and depends on defining another seque(meas follows: v(n) is the
number of sequences,, ..., xx) of positive integers which satisky > z'j;ll x; for
alli <kandyX ;% = n. Now such a sequence must have last tegm n/2, and
is obtained by taking a sequence with samxy < [ (n—1)/2] and appendingy
to it. So we have the recurrence

[(n-1)/2]
v(n) = ; v(i).

It follows from this thatv(2n) = v(2n—1) =v(2n—2)+v(n—1) for alln > 0.
Now we claim that/(2n) = s(n)/2 for alln > 1. This is proved by induction,
being true fom = 1. Assuming the result far— 1, we have

v(2n) = v(2n—2)+v(n—1)
= s(n—1)/2+9s(|n/2])/2
s(n)/2,
and the induction goes through.
Now u(n) —u(n—1) is the number of sequences satisfying the specification

for u which have last ternm. These are obtained by appendim¢p a sequence
with sum strictly smaller than; so we have

n—1

uin)—u(n—1) = _Z}v(i)
= \I/ZZn)
= s(n)/2.

Remark:Sequences satisfying this condition are callegerincreasingthey
arose in the first example of a public-key cryptosystem, the Merkle—Hellman
knapsack system.

The two sequencesandu occur as numbers M1011 and M1053 in &ecy-
clopedia of Integer Sequenceaghere further references can be found, or you can
find them in the online versian here (ferand here (fou).

12 Let F(t) be a formal power series with constant term 1. By finding a recur-
rence relation for its coefficients, show that there is a multiplicative inv@é(sg
of F(t). Moreover, if the coefficients df are integers, so are those®f
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LetF(t) =3 fot" andG(t) = 3 gnt", with fo = 1. The relatior(1)G(t) = 1
is equivalent taggp = 1 and the recurrence relation

n
On=— > fiOni
n i;Inl

for gn in terms of earlier values. So the valugsare determined, and are integers
if the valuesf, are.

13 A permutationtt of the set{1,...,n} is calledconnectedf there does nat
exist a numbek with 1 < k < n such thatrt maps the subsdtl, 2, ...k} into
itself. Letc, be the number of connected permutations. Prove that

ilci(n—i)! =nl!

Deduce that, i (t) = 5> nit" andG(t) = 3 ,-1 cnt" are the generating func-
tions of the sequencés!) and(c,) respectively, then L G(t) = (1+F(t)) L.

For a permutatiorm, leti() be the least positive integ&rsuch thatrt maps
the set{1,...,k} into itself. (Such & exists, since certainlgmaps{1,...,n} to
itself.) Thenttis the composite of a connected permutatior{@n..,i(m)} and
an arbitrary permutation ofi(m) +1,...,n} (this last set being emptyiifrt) = n).
Summing over, we obtain the stated recurrence.

As in the preceding question, this recurrence is equivalefit toF (t))(1—
G(t)) =1.

14 Let

[ (1+t" = Z)ant”.
n>1 n>

Prove that, is the number of ways of writing as the sum oflistinct positive
integers. (For exampleg =4, since 6=5+1=4+2=3+2+1.)

A term in the infinite producf](1-+t") is obtained by selecting" from the
mth factor for a finite number of values of and 1 from all the other factors. So
there is a contribution df' for every expression af as a sum of distinct positive
integers.



15 (a) In an election, there are two candidates, A and B; the number of \votes
cast is 2. Each candidate receives exaatlyotes; but, at every intermediate
point during the count, A has received more votes than B. Show that the number
of ways this can happen is the Catalan nun@erCan you construct a bijection
between the bracketed expressions and the voting patterns in (a)?
(b) In the above election, assume only that, at any intermediate stage,| A has
received at least as many votes as B. Prove that the number of possibilities is
nowCp1.

(@) As in the Hint, letf (n) be the number of ways of counting. Now A leads
by just one vote after the first vote is counted. Suppose that this next occurs after
2i + 1 votes have been counted. (It must happen again, since B eventually catches
A.) Then there aref (i) choices for the count between these points, since each
candidate receivasvotes and A is always strictly ahead. Also, there Bfle—i)
choices for the rest of the count; for if we pretend at this stage that A has just one
vote and B none, we are running the count satisfying the same conditions with
just 2(n—i) votes altogether. So we ha¥¢n) = ' f(i) f(n—i), which is the
Catalan recurrence.

(b) Again follow the hint: In the modified election where A gets an extra vote
at the start and B an extra vote at the end, ther@aré votes for each candidate,
and A is alway strictly ahead. So there &g 1 ways of doing the count under
this condition.

16 A clown stands on the edge of a swimming pool, holding a bag contairing
red andn blue balls. He draws the balls out one at a time and discards them. If
he draws a blue ball, he takes one step back; if a red ball, one step forward. (All
steps have the same size.) Show that the probability that the clown remajns dry
is1/(n+1).

Imagine that the clown wears a diving suit, and continues to draw balls even
after he gets wet. There a(é]“) ways in which the balls could be drawn. The
clown stays dry if and only if the number of red balls never exceeds the number
of blue ones; according to the voting interpretation, thi€is;. The ratio is
1/(n+1).

For a harder exercise, find a direct proof of this exercise, and reverse the above
argument to deduce the formula for the Catalan numbers.

17 Prove that
B, 1/n
lim (—) =0
n—oo n|




The radius of convergence of the power sefigsoBnt"/n! is the reciprocal

of
. Bn 1/n
"Tf£p<ﬁ> ~

But the radius of convergence is infinite, since the series converges everywhere.
(In general, the radius of convergence is the distance from the origin to the nearest
singularity in the complex plane; if the sum function has no singularities, the
radius of convergence is infinite.) So the limsup is zero, which means (since all
the values are positive) that the limit is zero.

18 (a) Prove that the exponential generating function for the nurafrgrof
involutions on{1,...,n} (Section 4.4) is exft + 1t?).

(b) Prove that the exponential generating function for the nundiey of
derangements dfl,...,n}is 1/((1—t)exp(t)).

(@) The functionS(t) = exp(t + %tz) is the unique solution of the differen-
tial equationS(t) = (1+1t)S(t) with the initial condition§(0) = 1. So it suffices
to check that the e.g.f. of the numbes(®) satisfies this differential equation.
(Clearly it satisfies the initial condition.) Now, if we p&t) = 5 ,-os(n)t"/n!,
then the coefficient of"~1/(n—1)! in (1+t)S(t) iss(n— 1)+ (n—1)s(n—2),
whereas the coefficient i§(t) is s(n) (since differentiation of the e.g.f. corre-
sponds to a left shift of the sequence). By the recurrence relation in Section 4.4,
these two expressions are equal.

(b) We have _
d(n)=n! (Z)(_'—'D) :

2 () ()
1

d1-1)

by (4.4.1). Hence

(In the first line, we puk = n—1i; theni andk run independently over the non-
negative integers.)
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19 TheBernoulli numbers Bn) (not to be confused with the Bell numbesg)
are defined by the recurrenB¢0) = 1 and

n 1
3 <”+ )B(k) —0
&\ K
for n> 1. Prove that the exponential generating function

fy=S

n>0

is given byf(t) =t/(exp(t) —1).

Show thatf (t) + 4t is an even function of, and deduce thd(n) = 0 for
all oddn > 3.

What is the solution of the similar-looking recurrer%®) = 1 and

ki (E) b(k) = 0

forn>1?
The recurrence can be written as
n+1
> (n+1) B(k) = B(n+1) forn> 2.
k=1 k

Multiplying by t"*1/(n+1)! and summing oven > 2, the two sides aré(t) exp(t)
andf (t) with the constant and linear terms omitted. TH@S exp(t) —1—t+3t=
f(t) — 1+ 3t, whencef (t) =t/(exp(t) — 1), as required.

Now f(t) + 3t = t(exp(5t) +exp(—3t))/(exp(5t) —exp(—3t)) = stcothit,
an even function.

The last recurrence obviously has the solutidk) = (—1) .
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20 For evem, let e, be the number of permutations i, . .., n} with all cycles
even;on, the number of permutations with all cycles odd; gmd= n! the total
number of permutations. L&(t), O(t) andP(t) be the exponential generatipg
functions of these sequences. Show that

@P(t) = (1-t5)7%

(b) E(t) = (1—t2)~Y2; [HINT: Exercise 15 of Chapter 3]
(©) E(1).0(t) = P(t);

(d) &, = o, for all evenn.

Find a ‘bijective’ proof of the last equality.

(a) Since we are only considering even vales,ole have

2m)"\ on 1
P(t)zméo <W)t2 =

(b) By Chapter 3, Exercise 16, the numlegg, of permutations of &2m)-set
with all cycles even ig(2m)!1)2. So we have

£ = Y <((2m)”)2)t2m:(1—t2)‘1/2,

o (2m)!

the second equality being verified by expanding the last expression using the Bi-
nomial Theorem.

(c) This is an instance of a very general counting principl€.(th andG(t) are
the e.g.f.s for labelled structures in two clasgesind G, with F(t) = 5 fat"/n!
andG(t) = Yy gnt"/n!, then F(t)G(t) is the e.g.f. of structures consisting of a
partition of the point set with aff -structure on one part andgstructure on the
complement. For, iff{ is the class of such composite structures, then the number
of # -structures on an-set is given by

N /n
hn = ( ) fOn—k.
2, \k

from which a simple calculation shows thaft) = S hyt"/n! = F(1)G(t).
Now (c) follows on applying this result, wherg and G denote the classes
of permutations with all cycles even, resp., all cycles odd: given an arbitrary
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permutatiorrton {1,...,2m}, there is a unique partition of the set into two parts
on which the induced permutations satisfy these conditions; and both parts have
even cardinality.
(d) From (a), (b) and (c), we deduce tigt) = (1—t%)~ Y2 =E(t); soon =&,
for all n.

Here is an outline of the construction of a bijection: you should fill in the de-
tails. Given the cycle decomposition of a permutatiod bf .., n}, we can rotate
each cycle so that the least element comes first, and then order the cycles according
to their least elements. Call this tlkanonical formof the cycle decomposition.

We now define the bijections:

(a) Given a canonical forr@y,...,Cyr, where each cycl€; has odd length,
fori=1,...,r remove the last element of the cy€lg and add it at the end of the
cycleCyi_1. (Some cycles may disappear in this process.) The resulting cycles all
have even length, and the expression is in the canonical form.

(b) Given a canonical forr@y, .. .,Cy, where each cycle has even length, pro-
ceed recursively as follows. Letbe the last element &f;, andy the first element
of Cy. (Takey = « if C, doesn't exist, that is, if there is only one cycle.)

e If x>y, removexfromCy and add it at the end @h; then proces€s, ... ,Cn.

e If x <y, removexfromC; and add it as a new singleton cycle aftgr then
proces<,,...,Ch.

The resulting cycles all have odd length and the expression is in canonical form.
It remains to show that these two maps are mutually inverse. See R. P. Lewis
and S. P. NortorDiscrete Mathematic$38(1995), 315-318, for further details.

21 Show thatQUICKSORT sometimes requires afl}) comparisons to sort|a
list. For how many orderings does this occur? One such ordering is the case
when the list is already sorted — is this a serious defeQUWICKSORT?

Suppose that we start with a sorted list. THRAICKSORT selects the first
element (which is the smallest), and partitions the remainder into the empty list
and all the other elements (with— 1 comparisons). One branch of the recursion
is trivial, but in the other we again have a sorted list, requiring (by induction)
(",1) comparisons. S¢§) comparisons are needed altogether.

The sorted list is not the only permutation requiring So many comparisons. As
long as each element is either smaller than or greater than all its successors, the
same uneven split will occur at eac stage. So there are“dad” permutations,
since there are two choices for each element except the last.

13



This is a problem, but in practice not too serious. If the lists to be sorted
are truly random, then the proportion of bad permutations decreases faster than
exponentially. If we are likely to meet sorted or partially sorted lists quite often,
we can modify the algorithm by choosiago be the middle item of the list, rather
than the first.

22 Let my be the minimum number of comparisons requireddyICKSORT
to sort a list of lengtm. Prove that, for each integkr> 1, m, is a linear function
of non the interval from 1 — 1 to X— 1, with

My = (k—2)2¢+2.

If n=2K—1, what can you say about the number of orderings requimng
comparisons?

The minimum number of comparisons will occur when the sublists are as
nearly equal as possible: both of length— 1)/2 if n is odd, or of lengths
(n—2)/2 andn/2 if nis even. So we have the recurrence

_[n=142my_1)/2, if nis odd,
T\ N—14+Mp_2) 2+ My, if niseven.

Suppose thatn, =an+bforc<n<d. Then,forz+1<n<2d+1, we have
my=n—-1+2(aln—1)/2+b) = (a+1)n+ (2b—a—1). Butm, is linear (in
fact identically zero) for 6< n < 1; by induction ork, it is linear on each interval
2k-1_1 <n< 2K—1. If the value on this interval is given by, = axn+ by, then
we haveag = by = 0, ax. 1 = ax + 1, andby 1 = 2by — ax — 1. By induction, we
find thata, = k andby, = —2Kt1 + k+ 2. Settingn = 2¢— 1, we have

My g =k- (2X—1) =21 f k2= (k—2)2+2,
as required.

To count the number of orders which require the minimum number of compar-
isons, note that the first step in the algorithm splits the list into sublists of length
andn—i—1, say; now we require that each of these sublists can be sorted with the
minimum number of comparisons, and also that bathdn— 1—i lie in an inter-
val in whichmy is a linear function of, that is, one of the forni2d-1 — 1,24 — 1].
However, the two sublists can be merged arbitrarily. So the nurifpgrof orders
requiring the minimum number of comparisons satisfies the recurrence

n—1

f(n)= Z( i )f(i)f(n—i—l),

14



where the sum is over allsuch thai andn—i— 1 lie in the same interval of the
form [20-1 1,29 —1].

For example, in =5 and the list contains,1..,5 in some order, then it re-
quires the minimum number 6 of comparisons to sort if and only if one of the
following holds:

e the first element s 3;
e the first elementis 2, and 4 precedes 3 and 5;
e the first elementis 4, and 2 precedes 1 and 3.

There are 40 such lists, out of 120. As in the previous question, the maximum
number of comparisons is 10, and 16 lists require this number. Check that the
numbers requiring,B,9 comparisons are 32, 24, 8 respectively. Now check that
the average agrees with the value calculated in the recurrence of Section 4.7.
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23 This exercise justifies the ‘Twenty Questions’ principle. We are giMe

n

objects and required to distinguish them by asking questions, each of which has
two possible answers. The aim of this exercise is to show that, no matter what
scheme of questioning is adopted, on average the number of questions required

is at least logN. (For some schemes, the average may be much larger. If w
‘Isit a1?’, ‘Is it ax?’, etc., then on averad®l + 1) /2 questions are needed!)
A binary treeis a graph (see Chapter 2) with the following properties:

e there is a vertex (theot) lying on just two edges;

e every other vertex lies on one or three edges (and is calledfar an
internal vertexaccordingly);

e there are no circuits (closed paths of distinct vertices), and every \
can be reached by a path from the root.

It is convenient to arrange the vertices of the tree on succelesigks with the

root on level 0. Then any non-leaf is joined to tawccessorsn the next level,

and every vertex except the root has gnedecessorTheheightof a vertex is
the number of the level on which it lies.
In our situation, a vertex is any set of objects which can be distingu

e ask

ertex

shed

by some sequence of questions. The root corresponds to the whole set |(before
any questions are asked), and leaves are singleton sets. The two successors of a
vertex are the sets distinguished by the two possible answers to the next question.

The height of a leaf is the number of questions required to identify that @
uniquely.
STEP 1. Show that there are two leaves of maximal heidhts@y) with the
same predecessor. Deduce that, if there is a leaf of height les$ thanwe
can find another binary tree witlh leaves having smaller average height. He
conclude that, in a tree with minimum average height, every leaf has heigh
m+-1, for somem.

STEP 2. Since there are no leaves at height less thatiere are altogethef2

vertices on levein.
STEP 3. If there arep internal vertices on leveh, show that there arefdeaves
of heightm+ 1, andN — 2p = 2™ — p of heightm; soN = 2™+ p, where 0<
p<2m,

bject

nce

~+

STEP4. Prove thatlog(2™+ p) < m+2p/(2™+ p), and deduce that the average

height of leaves is at least Igly.

16



Follow the suggested proof.

Step 1:If vis a vertex of maximum height and its predecessor, then the
other successor of w would also be a leaf (else its own successors would be
higher thanv). If there is a leafx with height less tham — 1, then remove the
two leavesy, V' of heighth and add two new successgty’ of x with height less
thanh, reducing the average height without changing the number of leaves. So,
in a tree of minimum height, no leaf has height less thanl (whereh is the
maximum height). Pun=h—-1.

Step 2:If there are no leaves on leviglthen each vertex on this level has two
successors, and so the number of vertices on level is twice the number on
level k. In our case, this holds fdc=0,1,...,m— 1, so there are®vertices on
levelm.

Step 3:Suppose that there ageinternal vertices on leveh. Then there are
2p vertices on levein+ 1, all of them leaves; and there ar&-2 p leaves on level
m, giving 2"+ p altogether. Thus, iN is the number of leaves, themandp are
determined byN: 2™ is the largest power of 2 not exceediNgandp = N = 2™
(If N is a power of 2, we can take it to b& 2ather than ?*1, to simplify things.)

Step 4:The average height of the leaves is
(2M— p)m+2p(m+1) 2p

By calculus, show that log,(1—x) < 2xfor0<x < % (The two expressions
are equal wher = 0 and wherx = %; and their difference has a unique stationary
value in the interval, ak = 1—1/(2log2), which is a minimum.) Apply this
inequality withx = p/(2™+ p), so thatm—log,(1— x) = m+log,(1+ p/2™) =
log,(2™+ p). Thus, logN < m+2p/(2M+ p), and we are done.

24 Suppose that the two successors of each non-leaf node in a binary tree are
distinguished as ‘left’ and ‘right’. Show that, with this convention, the number
of binary trees witm leaves is the Catalan numb@y.

Let T, be the number of binary trees withleaves, with the left-right distinc-
tion. ThenTy = 1 (the root is the unique leaf); and, for> 1, a tree withn leaves
is specified by a left subtree withleaves and a right subtree with- k leaves,
where 1< k< n-1. Hencel,, = ZE;%Tan—k forn> 1. By (4.5.1) and induction,
Tn = C, for all n.
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