The Probabilistic Method

C. Y. Ku

June 6, 2003

1 Introduction

(1) Founder: Paul Erdős.
(2) To prove existence of a combinatorial structure with certain probabilities:
(i) construct appropriate probabilty space,
(ii) show a randomly chosen element in this space has the desired properties with positive probabilities.
(3) Isn't this just a counting proof in disguise? (theorectically yes, but in practise, the method is essential. It's hopeless to replace some of our proofs by counting arguments.)

2 Some background

Let X_{1}, \ldots, X_{m} be random variables (they are just functions on a given sample space). Suppose that $X=c_{1} X_{1}+\cdots+c_{m} X_{m}$ for some constants c_{i}, then

$$
\begin{align*}
\mathrm{E}[X] & =c_{1} \mathrm{E}\left[X_{1}\right]+\cdots+c_{m} \mathrm{E}\left[X_{m}\right], \tag{1}\\
\operatorname{Var}[X] & =\sum_{i=1}^{m} \operatorname{Var}\left[X_{i}\right]+\sum_{i \neq j} \operatorname{Cov}\left[X_{i}, X_{j}\right] \tag{2}
\end{align*}
$$

where $\operatorname{Cov}[Y Z]=\mathrm{E}[Y Z]-\mathrm{E}[Y] \mathrm{E}[Z]$. But if X_{i} and X_{j} are mutually independent for all $i \neq j$, then the second summand in (2) is 0 . Also if X is a random variable and $Y=a X$, we have

$$
\begin{align*}
\operatorname{Var}[X] & =\sum_{a}(a-\mu)^{2} \operatorname{Pr}[X=a] \tag{3}\\
\operatorname{Var}[Y] & =a^{2} \operatorname{Var}[X] . \tag{4}
\end{align*}
$$

3 Method 1: The Second Moment

The second moment method is a method which uses the following inequality due to Chebyschev:
Theorem 1 (Chebyschev's Inequality) For any positive λ,

$$
\operatorname{Pr}[|X-\mu| \geq \lambda \sigma] \leq \frac{1}{\lambda^{2}}
$$

Apparently this is an effective tool in number theory. We shall give a simple example below.
Let $f(n)$ be the largest integer k for which there is a set $\left\{x_{1}, \ldots, x_{k}\right\} \subseteq\{1, \ldots, n\}$ such that the sums $\sum_{i \in S} x_{i}, S$ is a subset of $\{1, \ldots, k\}$, are all distinct.

Theorem 2

$$
f(n) \leq \log _{2} n+\frac{1}{2} \log _{2} \log _{2} n+O(1)
$$

Proof Fix $\left\{x_{1}, \ldots, x_{k}\right\}$. Let $\epsilon_{1}, \ldots, \epsilon_{k} \in\{0,1\}$ be random variable such that for each i,

$$
\operatorname{Pr}\left[\epsilon_{i}=0\right]=\operatorname{Pr}\left[\epsilon_{i}=1\right]=\frac{1}{2} .
$$

a	0	1
$\operatorname{Pr}\left[\epsilon_{i}=a\right]$	$\frac{1}{2}$	$\frac{1}{2}$

Now let $X=x_{1} \epsilon_{1}+\cdots+x_{k} \epsilon_{k}$. We can think of X as a random sum. We first do some calculations. By applying equations (1)-(4):

$$
\begin{align*}
\mathrm{E}\left[\epsilon_{i}\right] & =\sum_{a} a \cdot \operatorname{Pr}\left[\epsilon_{i}=a\right], \\
& =0 \cdot \frac{1}{2}+1 \cdot \frac{1}{2} ; \\
\mathrm{E}[X] & =x_{1} \mathrm{E}\left[\epsilon_{1}\right]+\cdots+x_{k} \mathrm{E}\left[\epsilon_{k}\right], \\
\mathrm{E}[X] & =\frac{x_{1}+\cdots+x_{k}}{2} ; \tag{5}\\
\operatorname{Var}\left[\epsilon_{i}\right] & =\sum_{a}(a-\mu)^{2} \cdot \operatorname{Pr}\left[\epsilon_{i}=a\right], \\
& =\left(0-\frac{1}{2}\right)^{2} \cdot \frac{1}{2}+\left(1-\frac{1}{2}\right)^{2} \cdot \frac{1}{2} ; \\
& =\frac{1}{4} \\
\operatorname{Var}[X] & =\sum_{i=1}^{k} \operatorname{Var}\left[x_{i} \epsilon_{i}\right], \\
& =\sum_{i=1}^{k} x_{i}^{2} \operatorname{Var}\left[\epsilon_{i}\right], \\
& =\frac{x_{1}^{2}+\cdots+x_{k}^{2}}{4}, \\
& \leq \frac{n^{2} k}{4} . \tag{6}
\end{align*}
$$

giving,

$$
\sigma \leq \frac{n \sqrt{k}}{2}
$$

By Chebyschev's Ineqality, we have,

$$
\begin{align*}
\operatorname{Pr}[|X-\mu| \geq \lambda \sigma] & \leq \frac{1}{\lambda^{2}}, \\
\operatorname{Pr}\left[|X-\mu| \geq \lambda \frac{n \sqrt{k}}{2}\right] & \leq \frac{1}{\lambda^{2}} \tag{7}
\end{align*}
$$

Observe that the random sum X could only achieve a particular value in one unique way (by our definition of a set with distinct sums). It follows that the probability for X taking values between $\mu-\frac{n \sqrt{k}}{2}$ and $\mu+\frac{n \sqrt{k}}{2}$ is either 0 or 2^{-k}.

From (7), we deduce that

$$
1-\frac{1}{\lambda^{2}} \leq 2^{-k} n \sqrt{k}
$$

Solving for k yields the result.

4 Method 2: Lovász Local Lemma

Theorem 3 (Lovász Local Lemma) Let A_{1}, \ldots, A_{n} be events in arbitrary probability space such that for each i, the event A_{i} is mutually independent of all the other events but at most d. Suppose that for all $i, \operatorname{Pr}\left(A_{i}\right) \leq p$. If

$$
\begin{equation*}
e p(d+1)=1 \tag{8}
\end{equation*}
$$

then,

$$
\operatorname{Pr}\left(\bigwedge_{i=1}^{n} \bar{A}_{i}\right)>0
$$

We give an example using the local lemma to give a lower bound of the Ramsey number. Let $R(k, k)$ denote the smallest integer n such that for any 2 -colouring (colour the edges with red and blue) of the complete graph K_{n}, there is a monochromatic K_{k}.

Theorem 4 If $e\left(\binom{k}{2}\binom{n}{k-2}+1\right) 2^{1-\binom{k}{2}}<1$, then $R(k, k)>n$.
We first see that $R(k, k)>n$ if and only if there exists a 2-colouring of K_{n} for which there is no red and blue K_{k}. We want to show the existence of such a colouring by using the local lemma. Pick a random 2 -colouring of K_{n} (colour each edge independently and equally likely to be red or blue).

Let T to be the family of all k-subsets of $\{1, \ldots, n\}$. Then for $S \in T$, we define

$$
A_{S}=\text { the event that the induced subgraph on } S \text { is monochromatic. }
$$

It follows that $\operatorname{Pr}\left(A_{S}\right)=2 \times \frac{1}{2^{\binom{k}{2}}}=2^{1-\binom{k}{2}}$. Also now the required colouring exists if and only if $\operatorname{Pr}\left(\bigwedge_{T} \bar{A}_{S}\right)>0$.

But given A_{S}, we observe that the event $A_{S^{\prime}}$ is dependent on A_{S} if and only if the corresponding induced subgraphs share at least one common edge, that is, $\left|S \cap S^{\prime}\right| \geq 2$. Hence every A_{S} is mutually independent of all other events but at most $\binom{k}{2}\binom{n}{k-2}$, though we note that this bound is quite crude as we allow many repetitions (and even illegal configurations by choosing the same vertices more than once!); but who cares!

Taking $d=\binom{k}{2}\binom{n}{k-2}, p=2^{1-\binom{k}{2}}$, the result follows immediately from the local lemma. Splendid.

References

[1] N. Alon, J. H. Spencer, and Paul Erdős. The Probabilistic Method. John Wiley and Sons, Inc, 1991.

