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1 Introduction

(1) Founder: Paul Erdős.

(2) To prove existence of a combinatorial structure with certain probabilities:

(i) construct appropriate probabilty space,

(ii) show a randomly chosen element in this space has the desired properties with positive
probabilities.

(3) Isn’t this just a counting proof in disguise? (theorectically yes, but in practise, the method
is essential. It’s hopeless to replace some of our proofs by counting arguments.)

2 Some background

Let X1, . . . , Xm be random variables (they are just functions on a given sample space). Suppose
that X = c1X1 + · · ·+ cmXm for some constants ci, then

E[X] = c1 E[X1] + · · ·+ cm E[Xm], (1)

Var[X] =
m∑
i=1

Var[Xi] +
∑
i6=j

Cov[Xi, Xj] (2)

where Cov[Y Z] = E[Y Z]− E[Y ] E[Z]. But if Xi and Xj are mutually independent for all i 6= j,
then the second summand in (2) is 0. Also if X is a random variable and Y = aX, we have

Var[X] =
∑
a

(a− µ)2 Pr[X = a] (3)

Var[Y ] = a2 Var[X]. (4)
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3 Method 1: The Second Moment

The second moment method is a method which uses the following inequality due to Chebyschev:

Theorem 1 (Chebyschev’s Inequality) For any positive λ,

Pr[|X − µ| ≥ λσ] ≤ 1

λ2
.

Apparently this is an effective tool in number theory. We shall give a simple example below.

Let f(n) be the largest integer k for which there is a set {x1, . . . , xk} ⊆ {1, . . . , n} such that
the sums

∑
i∈S xi , S is a subset of {1, . . . , k}, are all distinct.

Theorem 2

f(n) ≤ log2 n+
1

2
log2 log2 n+O(1).

Proof Fix {x1, . . . , xk}. Let ε1, . . . , εk ∈ {0, 1} be random variable such that for each i,

Pr[εi = 0] = Pr[εi = 1] =
1

2
.

a 0 1

Pr[εi = a] 1
2

1
2

Now let X = x1ε1 + · · · + xkεk. We can think of X as a random sum. We first do some
calculations. By applying equations (1)-(4):
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E[εi] =
∑
a

a · Pr[εi = a],

= 0 · 1

2
+ 1 · 1

2
;

E[X] = x1 E[ε1] + · · ·+ xk E[εk],

E[X] =
x1 + · · ·+ xk

2
; (5)

Var[εi] =
∑
a

(a− µ)2 · Pr[εi = a],

= (0− 1

2
)2 · 1

2
+ (1− 1

2
)2 · 1

2
;

=
1

4

Var[X] =
k∑
i=1

Var[xiεi],

=
k∑
i=1

x2
i Var[εi],

=
x2

1 + · · ·+ x2
k

4
,

≤ n2k

4
. (6)

giving,

σ ≤ n
√
k

2
.

By Chebyschev’s Ineqality, we have,

Pr[|X − µ| ≥ λσ] ≤ 1

λ2
,

Pr[|X − µ| ≥ λ
n
√
k

2
] ≤ 1

λ2
. (7)

Observe that the random sum X could only achieve a particular value in one unique way (by
our definition of a set with distinct sums). It follows that the probability for X taking values

between µ− n
√
k

2
and µ+ n

√
k

2
is either 0 or 2−k.
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µ− n
√
k

2
µ+ n

√
k

2

-� n
√
k

6

X

From (7), we deduce that

1− 1

λ2
≤ 2−kn

√
k.

Solving for k yields the result. �

4 Method 2: Lovász Local Lemma

Theorem 3 (Lovász Local Lemma) Let A1, . . . , An be events in arbitrary probability space
such that for each i, the event Ai is mutually independent of all the other events but at most d.
Suppose that for all i, Pr(Ai) ≤ p. If

ep(d+ 1) = 1, (8)

then,

Pr(
n∧
i=1

Ai) > 0.

We give an example using the local lemma to give a lower bound of the Ramsey number. Let
R(k, k) denote the smallest integer n such that for any 2-colouring (colour the edges with red
and blue) of the complete graph Kn, there is a monochromatic Kk.

Theorem 4 If e(
(
k
2

)(
n
k−2

)
+ 1)21−(k2) < 1, then R(k, k) > n.

We first see that R(k, k) > n if and only if there exists a 2-colouring of Kn for which there
is no red and blue Kk. We want to show the existence of such a colouring by using the local
lemma. Pick a random 2-colouring of Kn (colour each edge independently and equally likely to
be red or blue).

Let T to be the family of all k-subsets of {1, . . . , n}. Then for S ∈ T , we define

AS = the event that the induced subgraph on S is monochromatic.

It follows that Pr(AS) = 2× 1

2(
k
2)

= 21−(k2). Also now the required colouring exists if and only if

Pr(
∧
T AS) > 0.
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But given AS, we observe that the event AS′ is dependent on AS if and only if the corre-
sponding induced subgraphs share at least one common edge, that is, |S ∩ S ′| ≥ 2. Hence every
AS is mutually independent of all other events but at most

(
k
2

)(
n
k−2

)
, though we note that this

bound is quite crude as we allow many repetitions (and even illegal configurations by choosing
the same vertices more than once!); but who cares!

Taking d =
(
k
2

)(
n
k−2

)
, p = 21−(k2), the result follows immediately from the local lemma.

Splendid. �
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