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Abstract

This is a brief introduction to graph homomorphisms, hopefully a
prelude to a study of the paper [1].

1 Homomorphisms

A homomorphism from a graph G to a graph H is a map from V G to V H
which takes edges to edges. (It may map a nonedge to a single vertex, a
nonedge, or an edge.)

Homomorphisms are a generalisation of graph colourings. A homomor-
phism from the graph G to the complete graph Kr (with vertices numbered
1, 2, . . . , r) is exactly the same as an r-colouring of G (where the colour of a
vertex is its image under the homomorphism), since adjacent vertices map
to distinct vertices of the complete graph. Thus homomorphisms generalise
colourings.

Example: Scheduling How to schedule the exams in the smallest number
of periods? Two exams taken by the same student cannot be scheduled at the
same time. So make a graph G whose vertices are the exams, two vertices
joined by an edge if some student is taking both exams. Then an exam
schedule in k periods exists if and only if the graph can be coloured with k
colours, that is, there is a homomorphism from G to the complete graph Kk.

Now suppose that a student is not permitted to take exams in consecutive
periods. Let Hk be the complete graph on k vertices with the k− 1 edges of
a path removed. Then the exams can be scheduled in k periods if and only
if there is a homomorphism from G to Hk.
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We see that there is a close connection between homomorphism and con-
straint satisfaction problems.

We say G → H if there is a homomorphism from G to H, and G ≡ H
if G → H and H → G. Then → is a preorder (it is reflexive because the
identity map is a homomorphism, and transitive because the composition
of homomorphisms is a homomorphism) and ≡ is the derived equivalence
relation (called homomorphism equivalence). The equivalence classes are
partially ordered by →; this is the homomorphism order. Sometimes we
abuse notation by referring to the order on individual graphs.

Since homomorphisms map edges to edges, we see that a homomorphic
image of a connected graph must be connected.

Let ω(G) and χ(G) denote the clique number and chromatic number of
the graph G. Now the clique number of G is the largest value of k for which
Kk → G, since the image of a complete graph under a homomorphism is a
complete graph of the same size. Also, a graph is k-colourable if and only if
it has a homomorphism to the complete graph Kk; so χ(G) is the smallest k
for which this holds.

Proposition 1.1 If G→ H, then ω(G) ≤ ω(H) and χ(G) ≤ χ(H).

Proof If φ : G → H is a homomorphism, then composing with homor-
phisms from or to Kk we see that

• Kk → G implies Kk → H;

• H → Kk implies G→ Kk.

Corollary 1.2 If G ≡ H, then ω(G) = ω(H) and χ(G) = χ(H).

2 Cores

A graph G is a core if it has the minimum number of vertices of any graph
in its homomorphism equivalence class.

Proposition 2.1 If G is a core, then every endomorphism of G is an auto-
morphism.
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Proof Let φ be an endomorphism of G, and let H be the induced subgraph
of G on (V G)φ. Then φ induces a homomorphism G → H, and inclusion
a homomorphism H → G. So G ≡ H. If φ is not onto, then G is not of
minimum size in its equivalence class.

We will see shortly that the converse is also true.

Proposition 2.2 Every homomorphism equivalence class contains a unique
core (up to isomorphism).

Proof It’s clear that any homomorphism equivalence class contains a core.
Moreover, two equivalent cores are isomorphic. For if G and G′ are cores
and G ≡ G′, then there are homomorphisms φ : G → G′ and φ′ : G′ →
G such that φφ′ and φ′φ are endomorphisms of G and G′; hence they are
isomorphisms. Now φ is a bijective endomorphism, so cannot decrease the
number of edges, and similarly for φ′; so φ and φ′ are isomorphisms.

In particular, the homomorphism order on equivalence classes of graphs
is the same as the homomorphism order on isomorphism classes of cores.

We say that G is a core of G′ if it is an induced subgraph of G′ which is
a core.

Proposition 2.3 Any graph has a unique core (up to isomorphism).

Proof Take an arbitrary graph H, and let G be the core of its equivalence
class. There is a homomorphism φ : G → H; the induced subgraph G′ on
(V G)φ satisfies G→ G′ → H, and |V G| = |V G′|, so G′ is another core, and
G′ is isomorphic to G.

Now we have the promised converse:

Proposition 2.4 A graph G is a core if and only if every endomorphism of
G is an automorphism.

Proof We saw the forward implication already. Conversely, suppose that
every endomorphism of G is an automorphism, and let H be a core of G.
Then by definition there is a homomorphism from G to H; followed by the
embedding of H in G, this is an endomorphism of G, and so an automor-
phism. So G = H.
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Proposition 2.5 If the clique number and chromatic number of G are both
equal to k, then the core of G is Kk.

Proof By our characterisations of clique and chromatic number in the first
section, we see that Kk → G and G → Kk, so G ≡ Kk. Now, if G is
equivalent to a graph H on fewer than k vertices, then we would have χ(G) ≤
χ(H) < k, contrary to hypothesis.

We see that bipartite graphs with at least one edge form a homomorphism
equivalence class with core K2.

Proposition 2.6 If G is vertex-transitive then so is its core.

Proof Let H be the core of G and choose homomorphisms φ : H → G
and ψ : G → H. Then φ is an embedding of H as induced subgraph of
G, and φ and ψ are isomorphisms between H and G|(V H)φ, so that φψ is
an automorphism of H. Now, for any automorphism α of G, φαψ is an
automorphism of H. We can choose α to map any vertex in (V H)φ to any
other; so the automorphism group of H is vertex-transitive.

Proposition 2.7 The core of an edge-transitive graph is edge-transitive;
the same is true for arc-transitivity and for (ordered or unordered) clique-
transitivity.

Proof As in the preceding result.

Question 1 What about other forms of transitivity?

Question 2 Is there a direct way to recognise vertex-transitive cores, or a
sufficient condition in terms of the automorphism group for a graph to be a
core?

A core need not be connected. For example, let G3 be the Grötzsch graph
on 11 vertices, with clique number 2 and chromatic number 4. It is not hard
to see that G3 is a core. (In fact, there is no need to show this; simply replace
G3 by its core in the construction below.)

Now let G be the disjoint union ofK3 and G3. There is no homomorphism
in either direction between K3 and G3, because of the relative sizes of their
clique and chromatic numbers. So every endomorphism of the disjoint union
maps the components to themselves; since the components are cores, such
an endomorphism is an automorphism, and so G is a core. This example is
typical:
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Proposition 2.8 The connected components of a core are cores of classes
forming an antichain in the homomorphism order. Conversely, if {G1, . . . , Gr}
is an antichain of cores, then the disjoint union of these graphs is a core.

Proof Let G1, . . . , Gr be the connected components. If Gi → Gj for i 6=
j, then combining this with the identity on the other components gives a
homomorphism which is not an automorphism, which is not possible. So
{G1, . . . , Gr} is an antichain. If any of these graphs Gi were equivalent to
a smaller graph G′

i, then the same argument would show that G would be
equivalent to a smaller graph. So G1, . . . , Gr are cores.

The converse is proved in the same way as in the example.

Corollary 2.9 The core of a vertex-transitive graph is connected.

Proof Note that there are two quite different ways to see this. We can use
the fact that the core is vertex-transitive, and the preceding proposition then
shows that it is connected; or observe that a disconnected vertex-transitive
graph is equivalent to one of its connected components, whose core is obvi-
ously connected.

Example There is a homomorphism from Cn+2 to Cn for any n: simply
“fold” two consecutive edges of the longer cycle onto a single edge of the
shorter. Now each odd cycle is a core, since it is not bipartite but all its
proper subgraphs are. Also, for odd n, there is no homomorphism from Cn

to Cn+2. So the odd cycles form an infinite descending chain between K2 and
K3 in the homomorphism order. (As we saw, all even cycles are equivalent
to an edge.)

3 Counting homomorphisms

We want to look at the question: How many homomorphisms are there from
a graph F to a graph G? Let Hom(F,G) denote the set of homomorphisms
from F to G. Now |Hom(Kr, G)| is r! times the number of r-cliques in G,
and so is non-zero if and only if ω(G) ≥ r; amd |Hom(G,Kr)| is the number
of r-colourings of G, and is non-zero if and only if r ≥ χ(G).

The homomorphisms from Kr to G, or from G to Kr, are thus counted
by the clique and chromatic polynomials of G. These are not enough to
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distinguish graphs. For example, any n-vertex tree has n − 1 edges and no
larger cliques, and has chromatic polynomial x(x− 1)n−1.

In 1967, Lovász [2] proved the following theorem.

Theorem 3.1 (Lovász) Let G and G′ be finite graphs, and suppose that
|Hom(F,G)| = |Hom(F,G′)| for all finite graphs F . Then G ∼= G′.

Proof The first step is to show that |Mon(F,G)| = |Mon(F,G′)| for all
finite graphs F , where Mon(F,G) is the set of monomorphisms from F to
G. Each homomorphism from F to G can be uniquely decomposed into a
canonical epimorphism from F to a graph H, followed by a monomorphism
fromH toG. (Call two vertices of F equivalent if their images under the given
monomorphism are equivalent. Then the vertices of H are the equivalence
classes, numbered according to their smallest member in the numbering of
the vertices of F ; two vertices of H are adjacent if some representatives in F
are adjacent.)

By induction we may suppose that |Mon(H,G)| = |Mon(H,G′)| for any
graph H with fewer vertices than F . Now |Hom(F,G)| is the sum of terms
|Mon(H,G)| over all graphs H which are images of canonical epimorphisms
from F . By induction all these terms agree except possibly when H = F , in
which case the remaining terms |Mon(F,G)| must also agree.

Hence |Mon(G,G′)| = |Mon(G,G)|, so there exists a monomorphism
from G to G′; and similarly a monomorphism from G′ to G. Their com-
positions either way round are automorphisms of G and G′. So they are
isomorphisms.

The theorem says that a graph G is determined by the sequence

(|Hom(F1, G)|, |Hom(F2, G)|, . . .),

where F1, F2, . . . is a list of all finite graphs. The authors of [1] use this to
define a metric on the space of finite graphs, so that two graphs are close to-
gether if the representing sequences are close on some initial segment. They
proceed to develop theoretical and practical consequences of this definition,
with spin-offs in complexity, statistical mechanics, and so on. We will hope-
fully learn more about this.
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