Group action morphisms in backtrack search

Christopher W. Monteith

October 22, 2008

1 Recapitulate

1.1 Combinatorial isomorphism problems

- What: Amounts to deciding membership of orbits under a group action.
- Our case: Symmetric group S_{n}.
- Complicated problems.
- Practical solution through partition backtrack algorithms.
- Vaguely: determines a set of permutations to search through.
- My study: nauty algorithm.
- Complicated methods for complicated problems: just look at the literature!
- McKay and Leon.

1.2 My goals

- Write a survey: literature highly specialised or too arcane.
- Reveal more of the forest: many treatments get bogged down in algorithmic details.
- May lead to connections being made between different methods.

1.3 What we want from the algorithm

- Group S_{n} and S_{n}-space Ω; left action.
- Canonical map:

$$
\mu: \Omega \rightarrow \Omega
$$

s.t.

$$
(\forall \alpha \in \Omega)\left(\forall x \in S_{n}\right) \mu(\alpha)=\mu(x \alpha)
$$

and

$$
(\forall \alpha \in \Omega)\left(\exists y \in S_{n}\right) \mu(\alpha)=y \alpha
$$

- Constant on each orbit taking a value within the orbit.
- No direct comparison needed: $\alpha \simeq \beta \quad \Longleftrightarrow \quad \mu(\alpha)=\mu(\beta)$.
- Furthermore, with perms x and y that give $x \alpha=\mu(\alpha)=y \beta$, we have $y^{-1} x \alpha=\beta$.
- Automorphism group:

$$
\operatorname{Aut}(\alpha):=\left(S_{n}\right)_{\alpha} \text {. }
$$

1.4 Ordered Partitions: Π_{n}

- Used to "encode" sets of partitions: easily retrievable.
- Finite sequences: disjoint, non-empty sets of integers; union to $[n]$.
- Notn: $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right)$.
- Acted upon by S_{n} : pointwise.
- Each orbit contains a unique harmonious partition.
- Harmonising Function

$$
h: \Pi_{n} \rightarrow \Pi_{n}
$$

s.t.

$$
\left(\forall \pi \in \Pi_{n}\right)\left(\forall x \in S_{n}\right) h(\pi)=h(x \pi)
$$

and

$$
\left(\forall \pi \in \Pi_{n}\right)\left(\exists y \in S_{n}\right) h(\pi)=y \pi
$$

- Canonical map!
- refinement relation $\sqsubseteq: ~ \pi \sqsubseteq \sigma \Longleftrightarrow$ split cells in σ to obtain π.

2 Functions

2.1 Permutations defined by ordered partition

- Ordered partitions define a set of permutations.
- Set of all perms that harmonise a partition.
- Grab them! Define the function

$$
\begin{aligned}
\mathcal{B}: \Pi_{n} & \rightarrow \mathcal{P}\left(S_{n}\right) \\
\pi & \mapsto\left\{x \in S_{n} \mid x \pi=h(\pi)\right\}
\end{aligned}
$$

- h canonical map $\Rightarrow \mathcal{B}(\pi)$ is always non-empty.
- Prop: $\left(\forall \pi \in \Pi_{n}\right) \mathcal{B}(\pi)=y \operatorname{Aut}(\pi)$, where $y \pi=h(\pi)$.
- Prop: $\left(\forall \pi \in \Pi_{n}\right)\left(\forall x \in S_{n}\right) \mathcal{B}(x \pi)=\mathcal{B}(\pi) x^{-1}$.
- h constant on orbits: $h(x \pi)=h(\pi)$
- Let $y \in \mathcal{B}(\pi)$ giving $y \pi=h(x \pi)$
$-\therefore\left(y x^{-1}\right)(x \pi)=h(x \pi)$
- By prop: $\mathcal{B}(x \pi)=\left(y x^{-1}\right)$ Aut $(x \pi)$
- Standard: $\operatorname{Aut}(x \pi)=x \operatorname{Aut}(\pi) x^{-1}$
- Finally:

$$
\mathcal{B}(x \pi)=\left(y x^{-1}\right)\left(x \operatorname{Aut}(\pi) x^{-1}\right)=y \operatorname{Aut}(\pi) x^{-1}=\mathcal{B}(\pi) x^{-1} .
$$

- Only thing used is the canonical property!

2.2 Group action morphisms

- What is a group action morphism? Why do we want them?
- Let Ω and Γ be S_{n}-spaces
- Defn: S_{n}-morphism is function $\phi: \Omega \rightarrow \Gamma$ s.t.

$$
(\forall \alpha \in \Omega)\left(\forall x \in S_{n}\right) \phi(x \alpha)=x \phi(\alpha)
$$

- \mathcal{B} an example.
- Why? Two fold. Suppose that

$$
f: \Omega \rightarrow \mathcal{P}\left(S_{n}\right)
$$

s.t.

$$
\left(\forall x \in S_{n}\right)(\forall \alpha \in \Omega) f(x \alpha)=f(\alpha) x^{-1}
$$

- Prop: $\forall \alpha \in \Omega, \forall x \in S_{n}$

$$
f(\alpha) \alpha=f(x \alpha)(x \alpha)
$$

- Set at least as large as the orbit.
- Prop: Let $\alpha \in \Omega$; fix $x \in f(\alpha)$.

$$
x \operatorname{Aut}(\alpha) \subseteq f(\alpha)
$$

- We can retrieve the elements of $\operatorname{Aut}(\alpha)$ from $f(\alpha)$.
- Nauty constructs and searches such a set. Hopefully a small one.

2.3 Split, Choose, Refine

- Some important S_{n}-morphisms.
- Split: take an ordered partition; force an element into a singleton cell.

$$
\mathcal{S}: \Pi_{n} \times[n] \rightarrow \Pi_{n}
$$

- Important: $\mathcal{S}(\alpha, \pi) \sqsubset \pi$.
- Choose: Choose a non-singleton cell from a coarse ptn.

$$
\mathcal{C}: \Omega \times \Pi_{n} \backslash \Phi_{n} \rightarrow \mathcal{P}([n])
$$

- Refine: Split zero or more cells in place.

$$
\mathcal{R}: \Omega \times \Pi_{n} \rightarrow \Pi_{n}
$$

- Important: $\mathcal{R}(\alpha, \pi) \sqsubseteq \pi$.
- All domains and codomains form S_{n}-spaces.
- All three functions must be S_{n}-morphisms.

3 Tree function

- Function

$$
\mathcal{T}: \Omega \times \Pi_{n} \rightarrow \mathcal{P}\left(\Omega \times \Pi_{n}\right)
$$

s.t.

$$
\mathcal{T}(\alpha, \pi)=\{(\alpha, \mathcal{R}(\alpha, \pi))\}
$$

if $\mathcal{R}(\alpha, \pi)$ is fine; otherwise,

$$
\mathcal{T}(\alpha, \pi)=\{(\alpha, \mathcal{R}(\alpha, \pi))\} \bigcup\left(\bigcup_{v \in \mathcal{C}(\alpha, \mathcal{R}(\alpha, \pi))} \mathcal{T}(\alpha, \mathcal{S}(\mathcal{R}(\alpha, \pi), v))\right)
$$

- Prop: \mathcal{T} is an S_{n}-morphism:
$\forall(\alpha, \pi) \in \Omega \times \Pi_{n}, \forall x \in S_{n}$

$$
x \mathcal{T}(\alpha, \pi)=\mathcal{T}(x \alpha, x \pi)
$$

- Prop: At least one (β, σ) in $\mathcal{T}(\alpha, \pi)$ such that σ is fine.

4 Harvesting what we need

4.1 Grabbing Permutations

- Turn the tree set into a set of permutations.
- Define

$$
\begin{aligned}
\mathcal{L}: \mathcal{P}\left(\Omega \times \Pi_{n}\right) & \rightarrow \mathcal{P}\left(S_{n}\right) \\
A & \mapsto\left\{x \in S_{n} \mid(\exists(\alpha, \pi) \in S) \mathcal{B}(\pi)=\{x\}\right\}
\end{aligned}
$$

- Prop: \mathcal{L} is an S_{n}-morphism:
$\forall A \in \mathcal{P}\left(\Omega \times \Pi_{n}\right), \forall x \in S_{n}$

$$
\mathcal{L}(x A)=\mathcal{L}(A) x^{-1} .
$$

- Cor: $\mathcal{L} \circ \mathcal{T}$ is an S_{n}-morphism:
$\forall(\alpha, \pi) \in \Omega \times \Pi_{n}, \forall x \in S_{n}$

$$
\mathcal{L} \circ \mathcal{T}(x \alpha, x \pi)=\mathcal{L} \circ \mathcal{T}(\alpha, \pi) x^{-1}
$$

(Morphisms compose to morphisms)

- $\mathcal{L} \circ \mathcal{T}$ is just an instance of f earlier.

4.2 Canonical Map

- For our canonical map:
$\forall(\alpha, \pi) \in \Omega \times \Pi_{n}, \forall x \in S_{n}$

$$
\mathcal{L} \circ \mathcal{T}(\alpha, \pi)(\alpha, \pi)=\mathcal{L} \circ \mathcal{T}(x \alpha, x \pi)(x \alpha, x \pi) .
$$

- So select a unique representative from the set

$$
\mathcal{L} \circ \mathcal{T}(\alpha, \pi)(\alpha, \pi)
$$

(constant across entire orbit).

4.3 Automorphism Group

For our automorphism group: Fix x in $\mathcal{L} \circ \mathcal{T}(\alpha, \pi)$; we have

$$
x \operatorname{Aut}((\alpha, \pi)) \subseteq \mathcal{L} \circ \mathcal{T}(\alpha, \pi) .
$$

4.4 Let's be realistic

- Need the set $\mathcal{L} \circ \mathcal{T}(\alpha, \pi)$ as small as we can get it.
- \mathcal{R} is the key to better performance.
- Other "pruning" is possible when we get into algorithmic mode: uses auts that have already been found.
- Base and strong generating set methods need to be introduced.

5 Where to?

There are some opportunities to generalise:

- What if we are not acting on Ω with S_{n} ?
- Group action morphisms are sufficient - but are they necessary?
- More on these next week.

