Noteson Complexity

Peterd. Cameron



Preface

Thesenoteshave beendevelopedfor thefirst partof the courseMAS223, Com-
plexity and Optimisationin Operations Reseath, at QueenMary, University of
London.Thedescriptionfor this partof the coursereads:

The coursebegginswith anoutline of compleity theory which gives
a more precisemeaningto the statementhat someproblems(such
asminimal spanningtree) are easyto solve whereasothers(suchas
travelling salesmanarehard.

Thekey objectivesfor this partof the courseare:

Decisionproblems;how to expressa problemwith an integer solutionas
decisionproblem.

The O ando notation;arrangingfunctionsin orderof valuefor large argu-
ment.

Input datarepresentatioandsimplealgorithmsfor arithmetic,matrix, and
graphproblems.

Turing machinesability to translateinstructionsinto the actionof the ma-
chine.

Solutionsof decisionproblemson deterministicandnondeterministiclur-
ing machines. Definition of P andNP. Interpretationof NP in termsof
certificates.

PolynomialtransformationsNP-completenessExamplesof NP-complete
problems.

Randomisednd approximationalgorithms. The classRP andits relation
to P andNP.

The notesprovide a self-containedntroductionto decision,optimisationand
countingproblems;Turing machinesthedefinitionsof compleity classesnclud-
ing P andNP andtherelationsbetweerthem.All of theabove key objectvesare
coveredhere. The notesalso include a numberof worked exercises,mary of
which weresetashomevork problemsn thecourse.

Thetextbookfor this partof the coursewas

M. R. Gargy andD. S. JohnsonComputes and Intractability: A Guideto
the Theoryof NP-Completenes&reeman1979.



il
Anotherusefulreferencgwith a differentemphasis)s

Dominic Welsh,Codesand Cryptagraphy, Oxford University Press1988.

Thereis no shortageof materialavailableonthe World Wide Weh In addition
to websitesmentionedn the text, you may wish to look at an on-line courseon
computabilityandcomplexity by Paul Dunne(Universityof Liverpool)at

http://lwww.csc.liv.ac.uk/ ~ ped/teachadmin/algor/comput.ht mi

and someappletsdemonstratingzarious heuristicsfor the Travelling Salesman
Problemby StepharMertens(University of Magdelurg) at

http://itp.nat.uni-magdeburg. de/ ~mertens/TSP/TSP.html

Peter]. Cameron
March2001
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Chapter 1

Intr oduction

Someproblemsareeasy somearehard.

In this coursewe don't studyproblemswhich areconceptuallyhard,suchas
proving Fermats Last Theorem.Insteadwe look at problemswhich aresimple
in principle,but hardbecaus®f theamountof calculationrequiredor thenumber
of caseghathave to bechecled.

We areinterestedn the numberof stepsrequiredto solve the problem,and,
more particularly how this numbergrows as a function of the “size” n of the
problem.Theimportanceof this canbeseenfrom anexample.Supposehat| can
solve problemsof size 100 on my currentcomputer Next year | will geta new
computerwhich is twice asfastand hastwice asmuchmemory If the number
of stepsis proportionalto n, | will be ableto solve problemsup to size200; if it
is proportionalto n?, up to size 140; but if it is proportionalto 2", | will only be
ableto do the next case,101. Thereis a big differencebetweenpolynomialand
exponentialgrowth!

1.1 Minimal connector travelling salesman

We beagin with two examplesthatwill be usedoftenduringthe course.Suppose
thatn townsaregiven,andwe know thedistanceébetweereachpair of towns. (An
examplewith n= 12is givenon the next page.)Now herearetwo problemsthat
we mightwantto solve:

e Theminimal connectorproblem we have to install a communicatiorsys-
temlinking all the towns. We wantthe total lengthof cableinstalledto be
assmallaspossible.

e Thetravellingsalesmarproblem asalesmarasto travel to all thetowns,
visiting eachtown onceandreturningto his startingpoint. We want the

1
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total distanceravelledto beassmallaspossible.

Although thesetwo problemslook quite similar, we will seethat the minimal
connectoproblemis “easy”, but thetravelling salesmamproblemis “hard”. There
is nodifficulty in principlein solvingthetravelling salesmamroblem-we could
simply look at all possiblecyclic toursthroughthe towns — but the numberof
possibilitiesto checkgrowsveryrapidly, andfor evenamoderatenumberof towns
it is not practicableto checkall possibilities.

First we attackthe minimal connectomproblemin a simple-mindedvay. We
first choosethe shortespossibldink betweerany two towns. We continuedoing
this until all the towns are connectedgexceptthat, if two towns alreadyhave an
indirectconnectionwe do not needto link themagain. Thus,for example,if we
have alreadychoseredgesAB, BC andCD, thereis no needto includeAD.
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| [l B] ¢] D] E] F| G| H] 1] J] K[| L]

A || 676|813 | 947|916 | 240 | 233 | 861 | 169| 373| 304 | 832
B 166 | 312| 253|631 | 470 | 269 | 737| 924 | 758 | 188
C 383 | 195|781 | 620| 396 | 884 | 1094| 908| 253
D 399|959 | 786 | 201 | 1001 | 1201| 1080 | 114
E 901| 723 | 449 | 995| 1197| 1011| 291
F 163|874 | 106| 314| 127 | 821
G 695| 267 | 475| 288 | 639
H 916 | 1116| 983| 122
I 208 | 135| 885
J 304 | 1067
K 943

Tablel.1: Distancesn km

More formally, the procedure(known as the greedyalgorithm for minimal
connectof worksasfollows:

e Arrangethe pairsof townsin alist L in orderof increasingdistancesTake
anemptylist T.

e Repeathefollowing stepuntil theedgesn T connectall thetowns:

— Take thefirst pairin thelist L, say{ts,t2}.

— If thetwo townst; andt, in this pair arenot connectedy a sequence
of edgesn T, addtheedge{t;,tx} to T.

— Deletethe pair {t,t>} from L.
e Returnthelist T.

Let’'swork this algorithmon our example.Thelist L begins
106(FI), 114(DL), 122(HL), 127 (FK), 135(IK), 163(FG),166(BC),
169(Al), 188(BL), 195(CE),201(DH), 208(1J), 233(AG), 240(AF),
253(BE), 253(CL), 267 (Gl), 269(BH), 291 (EL), 304 (AK), 304 (JK),
312(BD), 314(FJ),373(AJ), 383(CD), 396 (CH), 399(DE), 449 (EH),
470(BG),475(JG),...
Sowe choossdirsttheedged-1, DL, HL, FK. WedonotchoosdK, sincel and
K arealreadyconnectedvia F. Continuing,we chooseFG, BC, Al, BL, CE. We
donotchooseDH. We choosdJ. Thenevery additionaledgeis skippedover until
we reachBG, at which point we have connectedill the towns andthe algorithm
terminates.
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Whatis the outputof this algorithm?Clearlythefinal list T of edgesconnects
all the towns. The solutioncontainsno cycles, sinceto createa cycle we would
have to addan edgejoining two towns alreadyconnectedThus,the solutionis a
tree It is not obviousthatit is a minimal connectorbut in factthis is the case,
aswe prove later. It is alsoclearthatthisis an“efficient” algorithm(we will also
make this moreprecisdater).

We seethat this algorithm begins by producinga numberof disconnected
pieces,which later coalesce.We canavoid this by a small modificationto the
algorithm, which also can be shavn to producea minimal connector This is
Prim’s algorithm:

e LetL bethelist of all pairsof towns(sortedby increasingdistance)andT
theemptylist.

e Takethepairin L atleastdistanceadditto T.
¢ Repeathefollowing stepuntil theedgesn T connectall thetowns:

— Takethefirst pairin thelist L having thepropertythatoneof its towns
liesonanedgein T andtheotherdoesnot; say{ts,tz}. Add {ts,t>} to
T.

e Returnthelist T.

Exercisel.1.1 Work throughthis algorithmin theexample,andshaw thatit finds
thesameminimal connectomasthegreedyalgorithm(thoughtheedgesarechosen
in adifferentorder).

Solution Thedistancesn increasingorderare
106 (FI), 114(DL), 122 (HL), 127(FK), 135(IK), 163(FG), 166 (BC),
169(Al), 188(BL), 195(CE),201(DH), 208(1J), 233(AG), 240(AF),
253(BE), 253(CL), 267(Gl), 269(BH), 291 (EL), 304 (AK), 304 (JK),
312(BD), 314(FJ),373(AJ), 383(CD), 396 (CH), 399(DE), 449 (EH),
470(BG), 475(JG),...

Thegreedyalgorithmchoosesn ordertheedged-I, DL, HL, FK, FG,BC, Al,
BL, CE,1J, BG, atwhich pointwe have connecteall thetownsandthealgorithm
terminates.

Prim’s algorithmchoosedirst FI, thenFK, FG, Al, 13, BG, BC, BL, DL, HL,
andCE (eachedgechoseris theshortesbetweeronetown alreadyconnecteénd
onenew town).

Theedgesarethe sameonly the orderis different.
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Let ustry thesametechniquefor thetravelling salesmanAdaptingtheabove,
we havethegreedyalgorithmfor travellingsalesmanWe assumehatthenumber
n of towns s greaterthan 2, elsethereis not much choiceaboutthe travelling
salesmarsitinerary.

e LetL bethelist of all pairsof towns(sortedby increasingdistance)andT
theemptylist.

e Takethefirst pairin L; addit to T. At thisandall subsequergtagesxcept
the last,theedgesin T will form a path,sowe cantalk aboutthe endsof
the path.

e Repeathefollowing stepuntil theedgesn T connectall thetowns:

— Takethefirst pairin thelist L having the propertythatoneof its towns
is anendof the pathT andthe otheris not on the path; say {t,t2}.
Add {t1,t;} to T.

e Addto T the edgejoining its two endpointscreatinga cycle. Returnthe
list T.

Althoughthislooks superficiallysimilar to Prim’s algorithm,andit doesproduce
an itinerary for the travelling salesmanijt doesnot producea tour of smallest
length.

In our example, theedgesarechosernin theorder

FI, FK, Al, AG, KJ, BG, BC, CE,EL, DL, DH, HJ,

giving thetour AGBCELDHJKFIA of length3492.
However, the tour AHDLECBGFKJIA haslengthonly 3269. (In factthisis
theshortespossibletour, ascanbe confirmedby checkingall the possibilities.)

Facedwith thedifficulty of the problem,we mustbe preparedo compromise.
Thereare variouskinds of compromisethat we could make in an optimisation
problem: we could be contentwith an efficient algorithm that doesone of the
following:

e it guaranteeto find a solutionwhichis nottoo far from the optimal,

e it makessomerandomchoicesandguaranteeto find the optimalwith not-
too-smallprobability;

¢ it makessomerandomchoices,andguarantees$o find a solutionwhich is
nottoo far from the optimalwith not-too-smallprobability.
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As an exampleof the first compromisewe give an algorithmwhich, underan
assumptiorwhichis physicallyreasonabldjndsatravelling salesmarourwhich
is guaranteedo be “not too bad”. This is the twice-round-the-teealgorithmfor
thetravellingsalesman

e Find a minimal connector(e.g. usingthe greedyalgorithmor Prim’s algo-
rithm).

e Find atour visiting all the towns andreturningto its startingpoint, using
eachedgeof thetreetwice. (We will discusdaterhow thisis done.)

e Takethistour, andmodify asfollows: At eachstage go directly to the next
town on thetour which hasnot yet beenvisited. Returntheresult.

In our example thetourin the secondstageof the algorithmcanbe choserto
be AIJIFKFGBCECBLDLHLBGFIA, andthe final travelling salesmars tour is
thenAlIJFKGBCELDHA, with length3404,nottoo far from optimal!

A list of distancesetweenpairs of towns is saidto satisfythe triangle in-
equalityif, for any threetownsx, y,z, we have

d(x,y)+d(y,2) > d(x,2);

in otherwords, going directly from x to z is no further thandetouringviay. We
will shaw laterthat,if the distancesatisfythetriangleinequality thenthelength
of thetourfoundby thealgorithmis lessthantwice theminimumpossibldength.

Finally, we discusshow to constructthetour in the secondstageof the algo-
rithm, in the casewherethe towns arerepresenteth the plane(for example,on
a map). Take the minimal connectorandreplaceeachedgeby a pair of edges.
Now, if we enteratown by anedge,we leave it by oneof the edgesmmediately
adjacenin the anticlockwisesense.Sincethe minimal connectoris a tree, after
exploring the branchalongthis edge,we returnto the town alongthe otheredge
of this pair, whenwe againmove to thenext edgesn theanticlockwisesense So,
whenwe leave the town alongthe pair of edgesby which we originally entered,
all edgeghroughthattown have beenusedtwice.

1.2 Graphs, treesand circuits

In this sectionwe introducethe notationandterminologyof graphtheory in order
to statethe problemsmoreprecisely

A graphconsistsf a setV of verticesanda setE of edges eachedgebeing
incidentwith a pair of vertices.We denotethegraphG with vertex setV andedge



1.2. GRAPHS,TREESAND CIRCUITS 7

——e

Figurel.2: A graph

setE by the orderedpair (V,E). Figurel1.2 shavs a graph,in the usualpictorial
representationyith verticesrepresentetdy dotsandedgedy lines.
Notethatour definitionallows two featuresvhich aresometimeglisalloved:

e Theremaybesereraledgesncidentwith the samepair of vertices.We call
suchedgesmultiple edges We saw in the twice-round-the-trealgorithm
thatmultiple edgeshave their uses!

e Theremaybe anedgewith the propertythatthe two verticesincidentwith
it areequal.Suchanedgeis calledaloop.

A graphwithout loops and multiple edgesis called a simplegraph (A graph
which may containthemis sometimegeferredto asa geneml graph or multi-
graph) An importantexampleof a simple graphis the completegraph K, the
graphwith n verticesandoneedgeincidentwith eachpair of vertices. (Thatis,
theedgesetE consistof all 2-elemensubset®f thevertex setV.)

An edge-weightedgraphis a graphwith a numberd(e) associatedvith each
edgee. Thetotal weightof anedge-weightedjraphis the sumof the weightsof
theedgesTheweightsd(e) arenon-ngative realnumberswhich mayrepresent
distancesgapacitieof pipelines,costsof building communicatiorinks, etc.

A walkin agraphis asequence

(V07 €1,V1,€2,V2,...,Vn-1,€n, Vn)7

wherevg, Vv1,...,V, arevertices,ey, ..., e, areedgesande is incidentwith vi_1
andy; fori =1,...,n. We saythatit is awalk from vp to v,,. Two classe®f walks
areparticularlyimportant:

o If all theverticesaredifferent,thewalk is calleda path

e If all the verticesare differentexceptthatv, = vp (andalso,if n= 2, the
two edgesaredifferent),thenthewalk is calleda circuit.

If two verticesarejoinedby awalk, thenthey arejoinedby a path. For, if the
vertex v occursmorethanonceon the walk, we candeletethe part of the walk
betweenthefirst andlastoccurrenceof v andobtaina shorterwalk. After doing
thisfinitely mary times,we will obtaina path.
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Proposition1.2.1 Let G = (V,E) be a graph. Definea relation~ onV by the
rule thatv ~ Vif thereis a pathfromv to V. Then~ is an equivalenceelation.

Proof Therelation~ is reflexive (sincev is joinedto itself by the pathwith one
vertex andno edges) andsymmetric(since,if we have a pathfrom v to w, then
reversingit givesa pathfrom wto v). We have to prove thatit is transitve.
Sosupposeghatv ~ V andVv ~ V', sothatthereis apathP = (v, X,V) fromv
to vV, andapathP’ = (V,X’,V/) from V' to V', whereX andX’ aresequencesf
edgesandvertices. Then (v, X,V, X'V} is awalk from v to V. By the remark
beforethe proof, thereis a pathfrom v to V/; sov ~ V. This completeghe proof.

Theequialenceclasse®f therelationin the precedingpropositionarecalled
theconnectedomponentsf thegraphG; andwe saythatG is connectedf it has
just oneconnecteccomponent.n otherwords,a graphis connectedf thereis a
pathbetweerary two of its vertices.

A forestis a graphwith no cycles;atreeis a connectedorest. (Sothe con-
nectedcomponent®f forestsaretrees.)Notethataforestis asimplegraph,since
loopsandmultiple edgeggiveriseto circuitsof lengthl and?2 respecitiely.

Proposition 1.2.2 Supposehat a foresthasn verticesm edges,andr connected
componentsThenn=m+r.

Proof A foresthasthe propertythat, if one edgeis removed, the numberof
connectecdomponentincreasedy 1 (seebelaw). Usingthisfact,theproposition
is easilyprovedby inductionon m, the numberof edges:

o If thereareno edgestheneachconnectedomponents asinglevertex, so
r =n, m= 0, andtheinductionstarts.

e Supposedhatthe propositionis true for forestswith m— 1 edgesandlet G
beaforestwith medgesn vertices,andr componentsRemaing anedge
givesagraphwith m— 1 edgesandr + 1 componentsBy induction,

n=(m-1)+(r+1) =m+r,
andwe aredone.

Now let e beanedgeof aforest,C theconnectedomponentontaininge. Let
v andw betheverticesincidentwith e. Now eachvertex of C is joinedto eitherv
or w by a pathnot containinge. (Supposéehatx is joinedto v by a pathincluding
e. Thene mustbethelastvertex in the path,elsev would occurtwice. Deletingv
ande givesa pathfrom x to w notusinge.) Sowhene is deletedC splitsinto at
mosttwo componentsBut it mustsplit: for if v andw werejoined by a pathnot
containinge, thenaddinge would producea circuit, contradictinggthe assumption
that G is a forest. The othercomponentsre unafectedby the deletionof e. So
thenumberof componentincrease$y one,asclaimed.
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Proposition 1.2.3 Let G = (V, E) bea connectedyraph. Thenthere is a subsetS
of E such that (V,S) isatree

Proof We give analgorithmfor finding suchatree.
¢ Initialise by settingS= E.

¢ While thegraph(V, S) containsacircuit, deletefrom E ary edgewhich lies
in atleastonecircuit.

e ReturnthesetS.

The algorithmclearly producesa graphcontainingno circuit. To show thatit is
connectedwe obsene that the original graphis connectedand prove that the
edge-deletiosteppreseresconnectednesset thedeletededgebeincidentwith
v andw. Sincee liesin acircuit, thereis a pathP from v to w not usinge. So,if a
pathfrom x to y usese, we canreplacee by P to find awalk from x to y not using
e, andthenshortenthis walk to a pathasusual.

A treewith the propertiesgivenin this propositionis calleda spanningtree
of thegraphG. If G is aweightedgraph,thena spanningreeof G with smallest
possibletotal weightis a minimalconnector

If agraphconsistf acircuit, thenremoving ary edgegivesriseto aspanning
tree.

Let G = (V,E) beagraph.A Hamiltoniancircuit in G is a circuit containing
all theverticesof V (eachexactly once).ClearlyagraphcontainingaHamiltonian
circuit is connected.The corverseis false,andthereis no simpletestknown for
recognisingHamiltoniangraphs(thosecontainingHamiltoniancircuits). As we
will seethisisahardproblem.

Exercisel.2.1 Prove thatK, is Hamiltonianif andonly if n# 2.

Solution Any circuit passingthroughall verticesin ary orderis Hamilto-
nian,sinceeachpair of verticesis joinedby anedge.

Exercisel.2.2 Is the graphshown in Figure 1.3 (the so-calledPeteisengraph)
Hamiltonian?
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Figurel.3: ThePetersemraph

Solution ThePetersemraphdoesnothave aHamiltoniancycle. Youshould
follow theargumentbelon onthedrawing of thegraph.

Considetthefive edgegoining theouterpentagoro theinnerpentagramAny
Hamiltoniancircuit muststartandendeitherin the outeror in theinnercycle,and
somustuseanevennumberof theseedges.

Supposédhata cycle usestwo of the crossingedges.Thenit mustfollow the
outercycle betweertheir outerendsandtheinnercycle betweertheirinnerends.
But if the outerendsarefour stepsapart,thenthe inner endsare not morethan
threestepsapart.Sono cycle canbeformedusingtwo crossingedges.

Supposéhat a cycle usesfour crossingedges.We cansupposehatthe one
notusedis theverticaledgein thefigure. Thenthetwo verticeson this edgemust
bereachedy two edgesof the outerandinnercycles. This givesus eightof the
tenedgesf thecycle, andclearlythereis noway to join themupto form acycle.

If the graphG is weighted,a Hamiltonian circuit is known as a travelling
salesmartour, andthe travelling salesmarour of minimum possibleweightis
theminimaltravellingsalesmariour. (We think of weightsasdistancedetween
verticesin this context.)

In thefirst sectionwe lookedfor minimal connector@ndtravelling salesman
toursin weightedcompletegraphs(thatis, every pair of verticesforms an edge
andhasaweight).

We canreversethe procedure Let G be anarbitraryconnectedgsimplegraph
with n vertices.Weightthe edgesof thecompletegraphKp by therule that{v, w}
hasweightl if it is anedgeof G, or 2 if not.
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e A minimal connectoffor K, hasweightn — 1 andis a spanningreefor G.

e G is Hamiltonianif andonly if a minimal travelling salesmartour for K,
haslengthn.

If G is itself a weightedgraph,we canusethe sametrick, choosinga very
large weightfor non-edgesto reducequestionsaboutG to questionsaboutK,.

Exercisel.2.3 Let G beasimplegraph.Give eachedge{v,w} of K, theweight
1if it isanedgeof G, and2 if not.

(a) Prove thatthe weight of a minimal connectorfor K, is n+r — 2, wherer is
thenumberof connectedomponentsf G.

(b) Prove thatthe weight of a minimal travelling salesmartour for K, is n+s,
wheres is thesmalleshumberof edgesvhoseadditionto G givesa Hamil-
toniangraph.

Solution In this questionwe have two thingsto do in eachpart: construct
a connectoror travelling salesmarnour of the specifiedweight,andshow thatno
smallerweightis possible.

(a) Choosea spanningreein eachconnecteccomponenbf G. In eachcom-
ponentwe have one fewer edgesthanvertices,so altogethemwe will have n—r
edgeswith total weightn—r. Now enlage this to a spanningtreefor K,. We
have to addr — 1 moreedgesgeachof weight 2 (sincethey do not belongto G),
giving aconnectoof weightn—r +2(r —1) = n+4r — 2.

Now take any minimal connectorfor K,,. Sinceit is atree, its edgeswhich
belongto G will form a forest, with at leastas mary componentsaas G; say s
componentswheres > r. Thus,we usen— s edgesof G. Theremainings— 1
edgesarenotin G, andhave weight2(s—1). The total weightis thusn—s+
2(s—1)=n+s—2>n-r+2. Sotheweightof a minimal connectoiis indeed
n—r+2.

(b) Supposethat addings edgesto G gives a Hamiltoniangraph. Thena
travelling salesmartour canbe constructedusingat mosts of theseedgesandat
leastn — s edgesf G; its total weightis at mostn — s+ 2s=n+s.

Ontheotherhand atravelling salesmamour of weightn+t would useat most
t edgesotin G, andclearlytheiradditionto G would form a Hamiltoniangraph.

1.3 Proofs

In this sectionwe give the proofsof two resultsfrom thefirst section:the greedy
algorithmalwaysfindsa minimal connectorand,if thetriangleinequalityholds,
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thenthe twice-round-the-trealgorithm always finds a travelling salesmartour
whoselengthis lessthantwice the minimum.

Theorem 1.3.1 Thegreedyalgorithm, appliedto any weightedcompletegraph,
alwaysfindsa minimalconnector

Proof The greedyalgorithm finds a subgraphwhich is connected(this is the
terminationcondition)andhasno cycles(this is the conditionfor an edgeto be
added) thatis, aweightedspanningree,with edgesetS (say). We have to shav
thatSis aspanningreeof smallestweight.

Letep, ey,...,e, 1 betheedgesn S in theorderin which the GreedyAlgo-
rithm chooseshem.Notethat

sinceif d(ej) < d(g) for j > i, thenat the ith stage,e; would join pointsin
differentcomponentsandshouldhave beenchoserin preferencdo g,.

Supposefor a contradiction thatthereis a spanningtree of smallerweight,
with edgesfy,..., f, 1, orderedsothat

d(fl) <...< d(fn—l)-

3 d)< 3 de).

Choosek assmallaspossiblesothat

_id(fi) < _id(a)-

Note that k > 1, sincethe greedyalgorithm choosedirst an edge of smallest

weight. Thenwe have
k—1 k—1
d(f) > 5 d(a);
2=

d(f1) < - < d(fi) < d(&0).

Now, at stagek, the greedyalgorithm choosese ratherthan ary of the edges
f1,..., fx of strictly smallerweight; so all of theseedgesmustfail the condition
thatthey join pointsin differentcomponent®f (V,S), whereS= {ey,...,ex 1}
It follows thatthe connecteccomponent®f (V,S), whereS = {f,..., fk}, are
subset®f thoseof (V,S); so(V,S) hasatleastasmary componentgs(V, S).

But this is a contradictionsinceboth (V,S) and (V, S) areforests,andtheir
numbersof componentsare n— (k— 1) and n — k respectiely; it is falsethat
n—k>n-—(k—1).

Thus,

hence
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Theorem 1.3.2 Supposeéhat the edge weightsin a completegraph satisfythe
triangle inequality Thenthe twice-round-the-teealgorithm alwaysfindsa trav-
elling salesmariour whoseengthis lessthantwice the minimum.

Proof The algorithm producesa travelling salesmartour, as we alreadyob-
sened. Let| betheweightof aminimal connectorandL theweightof aminimal
travelling salesmarour.

We have | < L, sincedeletingan edgefrom a Hamiltoniancircuit gives a
spanningree.

In the secondstepof the algorithm, we double every edgeof the tree, and
produceatour (with repeatedrertices)of length2l.

In thelaststep,we take various“short cuts”: insteadof following the original
tour from v throughverticesxy, ..., Xy to w, we go straightfrom v to w. But an
easyinductionbasedn the Trianglelnequalityshavs that

d(V,X]_) +d(X1,X2) +- '+d(Xm7W) > d(V7W)7

sotheseshortcutsdon't increasehe weightof thetour. Soif thefinal weightis
L', wehavel’ < 2l < 2L, andwe aredone.

Exercisel.3.1 Provethat,if the Trianglelnequalityholds,then
d(V,X]_) + d(X17X2) +oeot d(Xm7W) > d(V’W)a

for any verticesv,w, X, - . ., Xm.

Solution The proofis by inductionon m. Assumingthe resultwith m— 1
replacingm, we have

d(v,x1) +d(x1,%2) + - + d(Xm-1,Xm) > d(V, Xm),
andby hypothesis,
d(VaXm) ‘}—d(Xm’W) 2 d(V,W)-
Theresultfollows.
Exercisel.3.2 Show that, if L is the weight of a minimal travelling salesman
tour, thenthe twice-round-the-trealgorithm producesa tour of weight at most

2(L—t), wherewe cantake t to be eitherthe nth smallestedgeweight, or the
seconcsmallestwveightof anedgethroughary particularvertex v.
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Solution Let M betheweightof theminimal connectar Thenthealgorithm
producesatravelling salesmanour of weightat most2M.

Now removing ary edgefrom a travelling salesmartour gives a spanning
tree,whoseweightis thusnot smallerthanM. Supposeve remove the edgeof
largestweight x in the tour. Thenat leastn edgesof the completegraphhave
weight smallerthanx, sox > t, wheret is the nth smallestedgeweight. Thus
M<L-—x<L-t.

Similarly, if we pick avertex vandremove theedgeof thetravelling salesman
tour containingv and of larger weight x, thenx is at leastthe secondsmallest
weightof anedgethroughv, andthe amgumentproceedssbefore.

This chapterendswith somethinga bit different. We often usethe principle
that, if oneof N possibilitiescanbe determineduniquelyasa resultof n binary
choicesthenN < 2", (Thisis sometimegalledthe“TwentyQuestions’principle,
afterthe panelgamein which the panellistsareallowedto asktwenty questions
with “yes” or “no” answersand have to identify someobject. Since220 is a
little greaterthana million, in theoryoneof a million objectscanbe identified.
Thefollowing exerciseshows thatthereis a ternaryversionaswell, whereeach
guestionis allowedto have oneof threepossibleanswers.

Exercisel.3.3 (a)l havetwelve coins,which areidenticalexceptthatoneof the
coinsis eitherlighter or heavier thantheothers.l have abalancewhich can
comparethe weight of two setsof coins. Shaw that, in threeweighings,|
candeterminewhich coin is different,andwhetherit is lighter or heavier
thantheothers.

(b) Eachweighingcanhave threeresults(left-handsideheaier, right-handside
heavier, or exactbalance).Soin threeweighingsl candistinguish3® = 27
possibilities. If 1 had 13 coinsCy,...,Ci3, | might expectto be ableto
determinavhich of thepossiblecases C; light”, “C; heavy” (for 1 <i < 13)
or “ all coinsthe same”,sincethereare2- 13+ 1 = 27 possibilities. (This
argumentshavsthatwe certainlycant dealwith morethan13 coinsin just
threeweighings.)

Is therea scheméfor determiningwhich coin out of 13is differentin only
threeweighings?

Solution (a) Thefollowing threeweighingscanbe checledto work:

Cs,C6,Cs,C9  against Cg,C10,C11,C12,
C2,C3,C4,C10 against Cg,Cq,C11,Cyo,
C1,C3,C6,C7  against Cy,Co,Cy0,Cr2.



1.3. PROOFS 15

(b) If we have 13 coins,thenthereare 27 possibilities(eachcoin could be
eitherlight or heavy, or they might all be the same)to be determinedby three
weighingseachwith threepossibleoutcomes Since3® = 27, this would only be
possibleif thefirst weighingreducedhe numberof possibilitiesto 9, the second
weighingto 3, andthethird weighingto just one.But considerthefirst weighing,
andsupposéhatwe put m coinsin eachpan. If theleft-handpanis heavier, then
we have 2m possibilities(acoinin theleft-handpanmaybeheavy, or acoinin the
right-handpanmay be light). Thereis no integer m satisfying2m = 9, however,
sotheweighingis notpossible.
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Chapter 2

Problems,algorithms, computations

In thissectionwe make preciseghenotionthatfindingaminimal connectois easy
while finding a minimal travelling salesmarour is hard. As saidearlier thereis
nodifficulty in principlein eithercaseput we know how to find a solutionquickly
in thefirst caseandwe don't know how (andsuspecthatit is not possible)n the
second.

Our measureof the compleity of a problemwill be theamountof computa-
tionresourcesequiredo solveit, or (moreprecisely)how thisgrovsasafunction
of the amountof datarequiredto specifythe problem. Variousresourcesanbe
consideredfor example:

e time the numberof computationaktepsrequiredto solve the problemon
anidealisednodelof acomputer;

e space the maximumnumberof bits of informationthathave to be heldin
memoryduringthe computation;

e processos, the numberof processorsised(in the caseof a parallelalgo-
rithm);

e randomnessthe numberof coin tossesrequiredby a “randomised’algo-
rithm.

In this coursewe only consideltime asa compleity measure.

Of course the exactnumberof stepstaken by a computationdependson the
precisemodel of computationthatwe use. We will take a very simplemodel,a
Turing madine However, the mostadwancedchip ever madecanonly do the
equialentof a boundechumberof Turing machinestepsin a singleclock cycle.
Evenin theory the speed-umivenby a moresophisticateanodelis only a poly-
nomialfactor So,if we arenottoo preciseaboutthe exactnumberof stepsthen
the computationamodelusedis not crucial.

17
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Note: Thereis onecomputationamodelto which this remarkdoesnot apply.
Thisis aquantumcomputer Althougha quantumcomputercannotcomputeary-
thingwhich couldnotbecomputednaTuring machinejt canperformexponen-
tially mary Turing machinestepsn asinglecycle. However, quantumcomputers
have notyet beenbuilt!

2.1 Decision,counting, optimisation

As we saw, the problemsof decidingwhethera graphis Hamiltonianandof find-
ing thelengthof aminimaltravelling salesmanourin aweightedcompletegraph
arevery similar. But thereis oneimportantdifferencebetweerthem:

e thefirst is a decisionproblem “Is the graphHamiltonian?”,to which the
answerls simply “yes” or “no” (onebit of information);

e theseconds anoptimizationproblem “How long is the shortestravelling
salesmarour?”,to which theansweris anumber

We couldalsovary the decisionproblemto:

e arelatedcountingproblem “How mary Hamiltoniancircuits doesa given
graphhave?”,to whichtheanswelis againanumber

Thesethreetypesof problemsare more closelyrelatedthanthey appear A
decisionproblemis oftenaspeciakcaseof acountingproblem.(To decidewhether
G is Hamiltonian,we couldcountthenumberof Hamiltoniancircuitsin G andsee
whetherthenumberis zeroor not.) A decisionproblemmayalsobea specialkcase
of anoptimizationproblem.(As we noted,to decidewhetherG is Hamiltonianor
not, we give weight 1 to eachedgeof G andweight2 to eachnon-edgethenG is
Hamiltonianif andonly if the shortestravelling salesmarour haslengthn.)

In the otherdirection,supposehatwe have anoptimizationor countingprob-
lem, to which the solutionis known to be a non-neyative integer strictly smaller
thanN, for somenumberN. (The solutionto a countingproblemis always a
non-neatve integer; and,for example,the numberof Hamiltoniancircuitsin a
graphonn verticeswill certainlynotbegreatethann! . In thetravelling salesman
problem,if all edgeweightsarenon-neative integersnot exceedingM, thenthe
lengthof theshortestouris anintegerat mostnM.)

In this situation,we cansolve the optimizationproblemby solving at most
log,(N) decisionproblemsof the form “Is the answerat leastK?”, for various
integersK. For, whenwritten in base2, the solutionhas(at most)log,(N) binary
digits, andthesecanbe determinecdbneat a time (from largestto smallest)by a
sequencef questionf theabove type.
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For example,if theanswelis known to beatmost64 andis actually27,we ask
“Is theanswerat leastK?” for K = 32, 16, 24, 28, 26, 27, receving theanswers
No, Yes, Yes, No, Yes,¥s; theseanswersreveal that the numberis 011011in
base?.

We will usually assumethat the solutionto any optimizationproblemis an
integer. Usuallytherewill beana priori upperboundwhich is at mostthe expo-
nentialof a polynomialin the sizeof theinput data,sowe canreducethe problem
to a polynomialnumberof decisionproblems.

2.2 Input and output

Problemswith more input data,for example problemsinvolving larger graphs,
will take longerto solve; justreadingtheinputwill take longer Sowe will mea-
surethe compleity of a problemby how long it takesto solveit asa function of
the numberof bits of input. (We arrangethatthe probleminputis encodedasa
stringof bits.)

The preciseway in which the encodingis donewill affect the function. For
example,agraphcanbedescribedn variousways.Let usassumehatthevertices
arenumberedasvop, Vi, ..., Vh_1.

e If the graphis simple, we could give it asan incidencematrix, ann x n
matrix with (i, j) entry 1if {vj,v;} is anedge,or 0 otherwise.This matrix
containsn? bits of information.

e This canbe improvedslightly; sincea;; = ajj anda; = 0 for all i, j, it is
enoughto give theentriesa;j with i < j. Thisreduceghe numberof bitsto
n(n—1)/2, slightly lessthanhalf thenumberwe hadpreviously.

e We could give a list of n lists, theith list consistingof all numbersj for
which vj is adjacentto vi. This is slightly lessefficient in general,since
eachnumberj liesin theinterval [0,n— 1] andthereforetakeslog, n bitsto
write down in base2 notation,sowe mightrequireasmary asn?log, n bits
in general.Havever, if the graphhasonly a few edgesthenthis methodis
better For example,if eachvertex is joinedto exactly threeothers thenthe
numberof bits requiredis 3nlog, n.
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Figure2.1: A graph

Considerthegraphshown in Figure2.1. Theincidencematrix is

0
1

0
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\

andthelists of neighboursare:

BC
ACDE
ABDF
BCEF
BDFG
CDEG
EF

OTMMmMmOO0O >

You canseean exampleof a moderatelylarge graphon the Weh Thisis a
fragmentof the mathematicatollaboration graph whoseverticesare all math-
ematicianstwo verticesadjacentf they have written a joint article. Onevery
prolific mathematiciarwas Paul Erdds, who diedin 1996. He had over 500 co-
authors At thewebsite
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http://www.acs.oakland.edu/ ~grossman/erdoshp.html

you canfind theverticesof the collaborationgraphat mosttwo stepsfrom Erdds
(thesenumberover 5000), with all edgesinvolving at leastone mathematician
adjacentio Erdds. The graphis givenby the “lists of neighbours”’method. (A
similar databaséor the Kevin Bacongame at

http://www.cs.virginia.edu/or acle /

doesnot make thelists availablebut simply looks up shortespathsto Kevin Ba-
con.)

All thatwe requirein the representatioof input datais thatit is not too in-
efficient. For example,animportantproblem(relatedto cryptography)s that of
decidingwhethera givenpositiveintegern is prime. Theinputis thenumbem. It
couldbe givenasa string of n ones,but this is very inefficient; we could instead
write n in base2, needingonly aboutlog,(n-+ 1) bits. (It is simpleto testin n
stepswhethern is prime; to doit in (log n)" steps/for ary fixedk, is muchmore
challenging!)

2.3 Orders of magnitude

We introducesomestandarchotationfor the orderof magnitudeof a function of
apositive integern. Let f(n) andg(n) betwo suchfunctions,wherewe assume
thatg(n) is never zero.
e We saythat f(n) = O(g(n)) (read” f(n) is big Oh of g(n)”) if thereis a
positive constantC suchthat f (n) < Cg(n) for all sufficiently largen.

e Wesaythatf(n) =o(g(n)) (read" f (n) islittle Ohof g(n)”) if f(n)/g(n) —
Oasn— oo,
Notethatwe couldreplaceall sufficiently largen” by “all n” in the definition of
f(n) = O(g(n)), atthe expenseof increasinghe constant bit.
This notationis usefulfor comparingtherateof growth of functionsin a sim-
ple way. For example,if

Zn3+6n2+3n if nis odd,
f(n) = 2n34+5n24+7n+4 if niseven
15 '
thenf(n) = O(n3).
Typically we usea very simplefunctionfor g. For example,if f is arny poly-
nomialof degreed, then f (n) = O(n).

Exercise2.3.1 Prove thatthereis no constantc suchthatn! = O(c"). (In other
words,thefunctionn! grows fasterthanary exponentialfunction.)Is n! = O(n")
true?
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Solution We areasledto provethattheinequalityn! < Ac" is falsefor large
enoug, for ary constant#\ andc. We obserethat,if ¢1 < ¢z, thenAscf < Axc)
holdsfor largeenoughn for ary positive constant®\; andA,. Takinglogarithms,
we requirethat

nlogc; +logA; < nlogc, + logAy,
andthisis trueaslongas
logA1 —logA;
logc, —loge;
Soit is enoughto prove thatthe inequalityfails for givenc andsomevalueof A.
We mayassumehatc is aninteger.

But clearly, for ary integerc, we haven! > clc" ¢ = (c!/c®)c" for n > c, since
all factorsin theproductapartfrom 1, ..., c aregreaterthanc.

For thelastpart,notethat

nN=1.-2---n<n-n---n=n",

socertainlyn! = O(n") holds.

Exercise2.3.2 A function g on the naturalnumbersis saidto grow fasterthan
anotherfunction f if g(n) > f(n) for all sufiiciently largen (thatis, all n > ng, for
somenumbemyp). Arrangethefollowing functionsin increasingspeedf growth:

1019, 10019, 10nlogn, NV, 10101, 101%l0gn, n'°9" 10™° n! .

Solution Weusethefactthatlogn grows slowerthanarny powerof n, andan
exponentialfunction of n grows fasterthanary power of n. Also, n! grows faster
thanary exponentialfunction of n. But n! is smallerthann” = €"°9" so grows
slowerthane™ for any o > 1.

For posersof n, we canignoreary constantsandorderthemby theexponent:
thus,101%°n comesbefore10t%nt0, which comesbefore10n1™.

How abouta functionlike nv™? Thisis equalto eV"°9" sogrows slowerthan
e*", sincetheexponent,/nlogn grows slowerthancn (becauséogn grows slower

thanc,/n).

Sofinally theorderis

10logn, 10'’n, 10nlogn, 101010, 1000, plogn pvi nr 107

2.4 Examples

In this section,we give a few examplesin aninformal style. Thesecanof course
bedonemoreformally.
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Addition of integers Theusualoperationof integeraddition,appliedto two n-
digit integersrequiresonly O(n) operationsHereis descriptionof how to addthe
integerswhosebaseb representationarex,_1 ...Xg andyn_1...Yo. Herediv and
mod arefunctionsgiving usthequotientandremaindein anintegerdivision,and
:= theassignmentperator

e Leti:=0andc:=0. (Herei will bethe numberof the digit on whichwe
areoperatingandc the“carry”.)

e Whilei < n-1,dothefollowing:
— Letu:=x+Y;+¢c; letz :=umodbandc:= udivb.
— Leti:=i+1.

e At the conclusionof thisloop, we have i = n, andthereareno moredigits
toadd.If c# 0, thenputz, :=c.

Although x; +y; + ¢ appeardo involve two additions,it is easyto seethatc
is eitherQ or 1. Sothe operationin this stepcanbe doneby looking up tablesof
“addition carryingzero” and“addition carryingone”. Only n suchlookupsand
assignmentarerequired.

Multiplication of integers To multiply two n-digit integersby theusualmethod,
we have to do n? multiplicationsand O(n?) additions,sincea typical digit z of
the productis givenby

Z = XoYi +X1Yi—1+ -+ XYo + carry

if i < n. We canimprove on this by breakingthe integersinto smallerparts. We
will usebase2 here.For example,if we write

X = U122 4 uy, y=v12"2 4 v,
then
Xy = W22+ wy 22 4wy,
where
W2 = UpVs,
Wi = UpVo+ Ugvi = Wa+Wp— (U1 — Ug) (V1 — Vo),
Wop = UpVo.

Thusmultiplicationof two n-bit numbergequireshreemultiplicationsof n/2-bit
numberdogethemwith O(n) additionsandsubtraction®f digits.
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Let T(n) be the numberof stepsrequiredto multiply two n-bit numbersby
this method.We have

T(n)=3T(n/2)+O(n).

Fromthisrecurrenceelationwe find that
T(n) = Anl°9%/1°92_ O(nlogn).

(If it happenshatn = 2, thenwefind thatT (n) = 3T (1) + kO(n); now k= log, n
andso3¥ = nl°93/1092 andkO(n) = O(nlogn). If nis notapower of 2, thenround
upto thenext power of 2 above.)

Sincelog3/log2 = 1.59.. ., this is considerablybetterthanthe O(n?) steps
requiredby the elementarymethod. Still furtherimprovementsare possible.So
theobviousalgorithmis notalwaysthe best!

Finding the determinant Let A beann x n matrix. How hardis it to find the
determinanbf A?
Oneway to find the determinants to usetheformula

det(A) = %Sigr(o-)alo(l)aZG(Z) “++ 8ng(n), (2.1)

gc

where§, is thesetof all permutation®f {1,...,n} andsignis thesignof theper
mutation. Thisis clearlyvery bad: therearen! termsto be calculatedgachterm
involving n— 1 multiplications,so the numberof stepsis morethanexponential
inn.

For example,let

>

I
~ AP
S G AN
© o w

Equation2.1 gives
detA) =1.5.9+2.6.743.48-16.8—249-357=0.

Thecofactorexpansionis no better:the determinants the sumof n cofactors,
eachan(n— 1) x (n— 1) determinantIn ourexample,

5 6
8 9

4 6

del(A):l-‘ 7 9

27 sl 4

7 8

whichinvolvescalculatingthreesmallerdeterminants.
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But by usingelementaryow operationgGaussiarelimination),it is possible
to calculatethe determinantn O(n®) operationsin theexample,

1 2 3 1 2 3
defA)=|0 -3 —6|=|0 -3 —6|=0.
0 -6 -12| |0 0 0O

Of coursetheadwantageof n® overn! is notclearfor n= 3.
TheO(n3) canbefurtherimprovedusingatrick somevhatlik e thatfor multi-
plication.

The permanenbf a matrix is the function worked out by the formulafor the
determinantn Equation(2.1), but leaving out the signfactor:

det(A) = % A16(1)320(2) ** no(n) » (2.2)

gc

For example,if Ais asabove,then
perA) =159+26.7+34.8+1.6.8+2.49+3.5.7=450

The permanenis importantin mary matchingproblems. Here thereis no
linear algebrato help us, and nothingmuchbetterthanevaluatingall termsand
summingis known. However, we will seethatdecidingwhetherthe permanenis
zerois sometimegasier

Exercise2.4.1 Show thatary algorithmfor thedeterminanbf ann x n matrix (or
evenfor decidingwhetherthe matrix is non-singularyequiresatleastn® steps.

Solution It is easyto find two n x n matriceswhich agreein all positions
exceptone,with the propertythatonehasnon-zerodeterminanandthe otherhas
zerodeterminantSowe cannotell whetherthedeterminants zeroor notwithout
atleastreadingall n? entries!

Connectedness Givenagraph,we cancheckefficiently whetherit is connected.
Thealgorithmgivenheredoesnt quitedothat. It beginswith adirectedgraph(one
in which eachedgeis givenadirection,sothatit hasn initial vertex andaterminal
vertex), anda vertex s of the graph(the source),and determineswvhich vertices
canbe reachedby directedpaths(following the arravs) from s. If the graphis
undirectedthenwe convertit into a directedgraphby replacingeachedge{x, y}
with apair of edgegx,y) (from xtoy) and(y, x) (fromy to x). Now anundirected
graphis connectedf ndonly if, from ary givenstartingvertex s, thereis a pathto
every vertex.
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We saythatw is an out-neighbourof v if thereis an edge(v,w), andanin-
neighbourif thereis anedge(w, V).

Thealgorithmworksasfollows. Duringthecourseof thealgorithm,we assign
numberdo theverticesthenumberassignedo v will betheleastnumberof steps
requiredto reachv from s. The algorithmis a versionof “breadth-firstsearch”.
Therearetwo globalvariablesa non-ngative integeri (recordingthe numberof
thestage)andaBooleanf (whichtells usif we have finished).

e Begin by settingi := 0, f := false, andassigninghenumberO to s.
e While f = false, dothefollowing:

— Setf :=true.

— Run throughthe verticeswhich have beenassignedthe numberi.
Wheneer sucha vertex hasanout-neighbourvhich hasnotyet been
assigned numberassign + 1 to it andset f := false.

— Seti :=i+1.

e Whenwe reachthis stage,no new assignmentbave beenmadeat the last
pass.Terminatethe algorithmandreturnthevertex assignments.

Thenumberassignedo eachvertex v is, asclaimed,theleastnumberof steps
from sto v. We prove this asfollows. First, thereis a pathfrom sto v of lengthi.
This is clearif i = 0, sinces s the only vertex assigned. If i > 0, thenv is an
out-neighbouof a vertex u to which i — 1 wasassigned.By induction, we can
reachu in i — 1 stepswhencewe canreachv in i steps.

We mustalsoshaw thatthereis no shorterpath. Supposehatthisis false,and
let v be chosenso thatthe shortestpathfrom s to v is smallerthanthe numberi
assignedo v, and(subjectto this) thati is minimal. Clearlyi > 0. But if u is the
penultimatevertex onapathfrom v to w, thenthenumberassignedo u is equalto
its distancefrom s (whichis lessthani — 1), andthe algorithmassignsa number
lessthani to v, acontradiction.

The agumentabove shavs thatfrom the assignmentsve canfind a shortest
pathfrom sto v by backtrackinglf i is assignedo v, thenchooseary in-neighbour
of vtowhichi— 1is assignedandwork backin this mannemuntil sis reached.

Exercise2.4.2 Apply this algorithmto the graphshawvn in Figure2.1, with each
edgeorientedin bothdirections.
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Solution Thetable showns assignmentandvertex labelsafter eachpassof
thealgorithm:

f |[ABCDETF G
false
false
false
false
true

AWN R OI—
ooooo
e
e
N NN
N NN
N NN

3
3

Network flow A networkconsistsof a weighteddirectedgraph(having non-
negative weights)with two distinguishedrerticess (the sourceandt (thetarget).
A flowin a network is a function f from the setE of edgesto the non-ngative
realnumberssatisfying

e 0< f(e) <wf(e) for eachedgee;

e for ary vertex v # s t,

f(x,v) = z f(vy).

(x,v)eE (wy)€E

In otherwords,theflow in eachedgecannotexceedits capacityandtheflow into
andout of ary vertex otherthanthe sourceor targetmustbalancgsothatthe net
flow outof suchavertex is zero).

It is easilychecledthat, for any flow, the netflow out of sis equalto the net
flow intot; thisnumberis calledthevalueof theflow. We areinterestedn finding
aflow whosevalueis aslargeaspossible.

If all theedgecapacitiesrepositiveintegers(andarenottoolarge),thenthere
is anefficientalgorithmto solve the problem.It worksasfollows.

We defineaflow-augmentingathto beadirectedpathwhich useshefollow-
ing two typesof edges:

Typel: ary edgee = (x,y) for whichtheflow in eis lessthanthe capacity;

Type2: ary edgeein whichtheflow is non-zeroput usedn thereversedirection
—thatis, if e= (x,y) hasnon-zerdflow, thenthe pathis allowedto usethe
“edge” (¥, X).

Now supposehatwe have aflow f with the propertythateachf (e) is aninteger.
(We call sucha flow integral.) The following stepattemptsto augmenthe flow
(thatis, to increasats value).

Calculatethe setS of all verticesx for which thereexists a flow-augmenting
pathfrom sto x. (Thatis, find the verticeswhich canbereachedrom s usingthe
above two typesof edges.)Therearetwo possibilities:



28 CHAPTERZ2. PROBLEMS, ALGORITHMS, COMPUTATIONS

()t € S In this case take a flow-augmentingoathfrom s to t, andmodify the
flow by increasingoy onetheflow in eachedgeof thefirst typeonthepath,
anddecreasindy onetheflow in eachedgeof the secondype. It canbe
checled thatwe obtaina new flow f’ whosevalueis onegreaterthanthe
valueof f.

(b)t ¢ S Inthiscaselet T bethecomplementargetto S. Thense Sandt € T.
Moreover, if C isthesetof edgedrom Sto T, theneachedgein C carriesits
full capacityin theflow f. ThesetC is calledacut, sinceits removal leaves
no pathfrom stot. Now no flow canhave valuelargerthanthe capacityof
ary cut (seebelow). Sothe existenceof the cutC whosecapacityis equal
to thevalueof f demonstratethatno flow with largervalueis possible.

SupposehatC is ary cut,consistingof theedgedrom Sto thecomplementary
setT, and f ary flow, with valuev. Theflow outof sis equalto v; sinceall other
verticesof Shave equalflow in andout, the netflow out of Sis equalto v. That
is, theflow out of S (which mustusethe edgesof C) minusthe flow into S must
beequalto v. Sothe capacityof C mustbeatleastv.

Now thealgorithmcanbegiven.

e Startwith thezeroflow.

e Repeatedlyattemptto augmentthe flow until no further augmentations
possible.

e At this point, returntheflow f andthe cutC definedin case(b) above.

Becausedhevalueof f is equalto the capacityof C, therecannotbe a flow with
largervalue.

Thenumberof timesthatwe canaugmentheflow is not greatetthanthe sum
of the capacitiesof all the edgessois at mostninyz, wheren; is the numberof
edgesandn; the largestcapacityof anedge.Searchingor the flow-augmenting
pathtakesat mostn; steps.Sothewhole procedureunsin atmostn%nz steps.

Sowe have given an algorithmicproof of the following two importanttheo-
rems.

Theorem 2.4.1(Max-Flow Min-Cut Theorem) In anynetworkwith positivein-
teger capacitiesthe maximunvalueof a flowis equalto the minimumcapacityof
acut.

Theorem 2.4.2(Integrity Theorem) In anynetworkwith positiveinteger capac-
ities, there is anintegral flow with maximumvalue Sud a flow canbefoundin a
numberof stepspolynomialin the numberof verticesand the maximuncapacity
ofanedge.
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Example Considerthe network shavn in Figure2.2, in which all edgeshave
capacityl.

Figure2.2: A network

In the first passof the algorithm,we might choosethe augmentingpathsad,
andintroduceaflow of 1in eachof theedgeqs, a), (a,c), (c,t). At thenext stage,
thereis anaugmentingpathsbcad (notethatwe usetheedge(a, c) in thewrong
direction,sincethis edgecarriesa positive flow). Sowe introducea flow of 1 in
(s,b), (b,c), (a,d) and(d,t), andreduceto zerotheflow in theedge(a, c). Now
thereare no augmentingpathsleaving s at all; so we have a flow of maximum
value(namely2), andthe edgeqs,a) and(s,c) form a cutwith capacity?.

In practice,ratherthanimplementingthe algorithmfor Max-Flow asgiven,
it is moreefficient to begin by guessinga flow, reducingthe capacitiesof edges
accordingly andthenimplementingthe algorithm. The larger the value of the
flow we guessthefewer iterationsof thealgorithmareneeded.

Exercise2.4.3 Find a maximalflow and a minimal cut in the network in Fig-
ure 2.3. (The numberswritten on the edgesepresentapacitiesandarrows give
directions.)

Solution We beggin by guessinga flow. If we assignflow values
8,3,2,4,2,1,6,0,1,2,2,9

totheedges
sa sh ab,ad,ac, cbh,be dc, ce de dt, et

respectrely, we have aflow of valuell. In searchingor anaugmentingpath,we
obsene thatsacé consistsof edgesall in the positive directionandall carrying
lessthancapacity Sowe increasdheflow in theseedgesobtaining

9,3,2,4,3,1,6,0,2,2,2,10
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Figure2.3: Anothernetwork

with value12. Now, in searchingor anaugmentingpath,we find thatwe canuse
the edgesa, but all outletsfrom a areblocked; we canusesh thenbc (which is
carryingaflow of 1 in thereversedirection),thence. This givesanew flow

9,4,2,4,3,0,6,0,3,2,2,11

with value13. Thistimein searchingor anaugmentingpathwe find thatwe can-
notleavetheset{s, a, b}, sotheedgedeadingoutof this set,namely {ad, ac, be},
form a cut with capacityl3, demonstratinghat we have the maximumpossible
flow.

Vanishing permanent Let A= (&;;) beann x n matrix with non-ngative en-
tries. Remembethat the permanentf A is the sumof all the termsin the de-
terminantbut without the alternatingsigns. We saw that, althoughcalculating
thedeterminants “easy”, calculatingthe permanents thoughtto be “hard”. We
will give an efficient algorithmfor the simplerquestionof decidingwhetherthe
permanenbf A is zero,by reducingthis questionto a network flow problem.

Constructa network N(A) asfollows. Thevertex setis
V= {S7r17"'7rn7C11"'7Cn7t}7
wheres is the sourceandt thetarget;theedgesareasfollows:

e anedge(s,ri) for1<i<n;
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e anedge(ri,c;j) if andonly if & # 0;
e anedge(cj,t) for1 < j <n.
Eachedgehascapacityl.

Proposition 2.4.3 The permanentf A is non-zeo if and only if the maximum
valueof aflowin N(A) is equalto n.

Proof Consideringhe edgesout of s, we seethatthe valueof a flow cannotbe
greaterthann, andis equalto n if andonly if it usesevery edgeoutof s.

Supposehat the maximumvalue of a flow is equalto n. By the Integrity
Theorem,the flow realisingthis value can be taken to be integral; andit uses
every edgeout of s andevery edgeinto t. Now the flow hasvaluel from each
ri to somec;, andclearlythe mapo takingi to j is a permutationof {1,...,n}.
Thus,gq) # 0fori =1,...,n, andwe getanon-zeratermin the expressiorfor
the permanentSinceall entriesarenon-ngative, the permanenis non-zero.

Corversely if the permanents non-zerothenatleastoneterm,saytheterm
Q10(1)0(2) * * @no(n)» IS NON-zero.Thenthereis aflow of valuen, usingtheedges
(s,1i), (ri,Cq(i)), @and(ci,t) for 1 <i < n.

Propositior2.4.3hasanapplicationto thefamous'marriageproblem”. We are
givenn womenandn men,with theinformationthatsomecouplesarecompatible
(thatis, they would be preparedo marry),andothersarenot. Canwe arrangethe
n marriagesuchthatall marriedcouplesarecompatible?

Somereadersnaybefamiliarwith Hall’sMarriageTheorenmfrom GraphThe-
ory or Combinatoricscourses. Accordingto this theorem,the compatiblemar
riagescanbe arrangedf andonly if, for arny setof k women,thereareat leastk
mencompatiblewith somewomanin the set.

More formally, a systemof distinct representativesor SDR for short, for a
family (A :i=1,...,n) of setsis afamily (g : i =1,...,n) of elementshaving
the properties

e g € A fori=1,...,n(thissaysthata is arepresentativeof thesetA));
e g # a; fori # j (thissaysthatthea; aredistinct).
Now the statemenof Hall's Theoremis asfollows.

Theorem 2.4.4 LetAy,...,A, besubsetof a setS. For anysetl of indices(that
is, for anysubset of {1,...,n}), let

Al =JA.

iel
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Thenthefamily (A : i =1,...,n) of setshasa systenof distinctrepresentative#
andonlyif
A = 1]

for everysubset of {1,...,n}.

This is a very importantand useful theorem. However, sincethereare 2"
subsetf {1,...,n}, checkingthe conditionsdirectly would be very slow! But
we cando better We restrictto the casewhereS hasexactly n elementgthatis,
in theapplication thereareasmary boys asgirls).

Defineann x n matrixM = (m;), where

1 ifieA;,
M= {O if not. J
This is sometimescalled the incidencematrix of the family of sets. Thenthe
permanenbdf M is non-zeraif andonly if thereexistsa SRD for the family; that
is, if andonly if compatiblemarriagescan be arranged. By Proposition2.4.3,
thereis anefficientalgorithmto decidewhetherthis holdsor not. More generally
ary SDR correspond$o a non-zerotermin the permanentso the permanents
equalto thenumberof SDRs.Thenext exampleillustrates.

Exercise2.4.4 Four womenA, B,C,D and four menW, X,Y,Z are friends. A
would be happy to marryW, X orY; B would be hapgy with W or X; C would be
happy with W or Y; andD would be happy with W or Z. Usethe network flow
algorithmto decidewhetherit is possibleto marrythe womento the mensubject
to theseconstraints.

In how mary differentwayscanthe marriagedearranged?

Solution Thenetwork is asfollows. All edgesaredirectedfrom left to right
andhave capacityl.
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Now, eitherby runningthe network flow algorithm,or by inspection thereis
aflow of value4, usingtheedgessA sB, SC, sD, AW, BX, CY, DZ, Wt, Xt, Yt, Zt,
whichis clearlymaximal.So (A,W), (B, X), (C,Y) and(D, Z) form acompatible
pairingor matching.

Thenumberof matchingss thepermanenodf thematrixrepresentinghecom-
patibilities,namely

N S
ORrR Pk
=
O O o

1 0 01

It is easyto seethateachof theonesin thefirst row canonly occurin onenon-zero
termcontributing to the permanentasshowvn:

PR R
OOk R
Ol O R
E=E=X=)
N
ORIk
Ol O R
EReNeoNo)
= S
OOl K
Or Ol
EReNeoNe)

Sothe permanents equalto 3, andtherearethreecompatiblematchings.These
areexactly givenby thethreetermsshowvn, namely

e (AW), (B,X), (C,Y) and(D,Z)
e (AX), (B,W), (C,Y) and(D,Z)

e (AY), (B,X), (C,W) and(D,Z).

Sorting Oneof thecommonesjobsthatcomputergdo is sortingdata givena
list of dataitems,in anunknonvn permutationof the correctorder the taskis to
restorethelist to thecorrectorder We assumeéhattheitemsin thelist areintegers
andwe arerequiredto sorttheminto increasingordet but similar remarksapply
to ary sortingtask. (Indeed,in discussinghe GreedyAlgorithm for the Minimal
ConnectorandTravelling Salesmamproblemsn Chapterl, we sav theadwantage
of sortingthelist of pairsof townsin orderof increasingdistance.)

Eachcomparisoror movementof datacanbebrokendown into moreelemen-
tary machinestepsthenumberof suchstepswvhichis atmostsomepolynomialin
thenumberof digits of thenumberscomparedSowe will simply countthe num-
berof comparisonsequiredby analgorithmin orderto estimatethe compleity
of thetask.Let n bethe numberof itemsin thelist to be sorted.

Therearen! possibleorderingsof thelist. By theendof a successfusort,we
have effectively identifiedwhich oneof thesepossibilitiesactuallyoccurred.So
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the numberof comparisonsequiredis not more thanlog,n! ~ nlog,n. (As a
resultof k yes-noquestionsyve canidentify oneof at most2 possibilities.)

Thesimplestsortingalgorithmis Bubblesort we makerepeateghasseshrough
the list, andwhenever we find two elementsout of order we interchangdhem.
Note that eachelementcan move at most one placein eachpass. So, if the
largestelementoccursin positioni, we will needat leastn— i passestequiring
(n—1i)(n— 1) comparisonsWe seethat

e therearemary orderingsthatrequireatleast(n — 1)? comparisons;
e Onaverageatleastn(n—1)/2 comparisonsirerequired.

Clearly, thisis not very goodcomparedo our lower bound!
Several bettersortingalgorithmsareknown. Oneof the simplestto describe
is Quicksort which worksasfollows:

e Let x bethefirst elementof the list, andsplit the remainderof thelist into
sublistsL, R consistingof elementdessthanandgreatethanx respectrely
(thisrequiresn — 1 comparisons).

e Recursvely sortL andR.
e Return[L (sorted)x, R (sorted)].

It canbe shavn thatthis takesaboutcnlogn comparison®n average.Thereare
still someorderswhich requireaboutcr? comparisongparadoxicallyif the list
is alreadysorted ,we requirethe maximumnumbermn(n — 1) /2 of comparisons!),
but therearestratgyiesto avoid this problem.

Sortingis avitally importantpracticalproblem,andany advancewhich shaves
abit of time from a sortingalgorithmis worth pursuing.However, from the point
of view thatwe take in this course the differencein compleity betweerBubble-
sortandQuicksortis of no significancegithercanbe performedin time polyno-
mial in thesizeof theinputdata.Sowe regardsortingasan“easy” problemfrom
acomputationapoint of view.

Exercise2.4.5 Another sorting algorithm is Mergesort which operatesas fol-
lows:

e Divide the givenlist L into two nearly equalpartsL; and L, (containing
|n/2] and[n/2] itemsrespectiely).

e SortlL; andLo.

e Merge the sortedlists, by startingwith an emptylist M andrepeatingthe
following operation:
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Let a; anday bethefirst entriesin L; andLy; removethesmaller
of L1 andL, fromits list andaddit to thefinal list;

until L; andL, areempty ReturnM.

Shaw thatthelargestnumberF (n) of comparisonsequiredby Mergesortsatisfies
F(n)=n—1+F(|n/2])+F([n/2])
anddeducehatF (n) = O(nlogn).

Solution Sorting L1 and L, takes at mostF(|n/2|) + F([n/2]) compar
isons,andtherewill be someorderingsfor which this numberis required. The
melge steprequiresat mostn — 1 comparisonssinceonceoneof L1 andL; is
empty no morecomparisongrerequired.Clearlythis boundis alsoattained.So
we have provedtherecurrencdor F.

To shaw that F(n) = O(nlogn), it sufficesto prove this whenn is a power
of 2. For supposeéhatF (n) < cnlogn whenn is a power of 2, andlet m be the
leastpower of 2 notsmallerthann. Then

F(n) < F(m) < cmlogm < 2cnlog(2n),

asrequired.
Now for powersof 2, we canprove by inductionamorepreciseresult,namely

F(24 = (k—1)2¢+1

for k> 1. For we clearly have F(1) = 1, sotheresultholdsfor k = 1. Now,
assuminghatit holdsfor k, we have

F2h) = (29— 1)+ (k=124 1) + (k- 1)2"+ 1) = k21 1,

andtheinductive stepis done.

A morechallengingexercise which you mightlik e to try yourself,is to shov
that,if 0 <t < 2% thenF (2€+t) = (k— 1)2+1+t(k+1). In otherwords,F
grows linearly betweenrary two successie powersof 2.

Exercise2.4.6 | amanindustrialistwho needshe solutionto the “widget prob-
lem” for designinggizmos.| amavery busy man,andcanonly afford to wait for
oneweekfor a solutionto the problemin ary particularcase.

(a) The standardalgorithmfor the widget problemsolvesan instanceof sizen
of the widget problemby runningthroughall n! permutationsof the con-
stituentparts.My supercomputerangenerate permutatiorin onenanosec-
ondandtestit in four nanosecond¢Onenanosecond 10-2 second.How
large aninstanceof the widgetproblemcanl solve?
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(b) A new algorithmfor the problemhasbeendevisedwhich only involveslook-
ing through 10000 possiblepermutationsinsteadof all nl. Thesecon-
figurationsare more complicatedto generatepachtakesonemicrosecond
(= 107° second).They canstill betestedn four nanoseconddf | usethe
new algorithm,how largeaninstancecanl solve?

Solution Thenumberof secondsn aweekis 7 x 24 x 60 x 60 = 604800.

(a) Generatingandtestingonepermutatiortakes5 x 10~9 secondssothe num-
ber of permutationsve cancheckis 604800 (5 x 107°) = 1.2 x 10'4. So
thenumbem mustsatisfy

nl < 1.2x 10

orn<16.

(b) This time, generatingand testingone permutationtakes 1.004x 10-° sec-
onds,sothenumberwe cancheckis 60480 (1.004x 10 6) = 6.02x 10,
Sothenumbem mustsatisfy

10000° < 6.02x 101,

orn< 844.



Chapter 3
Complexity: P and NP

In this sectionwe give a formal definition of a Turing machine of the computa-
tional compleity of adecisionproblem,andthe compleity classe$ andNP.

3.1 Turing machines

In this sectionwe describeTuring machines,our basic model of computation.
Although Turing machinesappearratherlimited, it is believedthat no methodof
computationis morepowerful. Thisis the Church—Turing thesis which states:

Any problemwhich canbe solved on ary mechanicatomputational
device canbesolvedon a Turing machine.

Of coursehisis notamathematicatheoremyather it is a statemendf whatcom-
putationmeans Certainlyno device ever constructear evenimagined(including
aquantumcomputerhasever violatedthis thesis.

Similarly, ary computingdevice which currentlyexistshasthepropertythatit
is “not muchfaster’thana Turing machine:moreprecisely for any suchdevice
D, thereis a polynomial p suchthat,if D solvesthe problemin n stepsa Turing
machinesolvesit in p(n) steps.(Thisis notanactof faith for thefuture;it would
befalsefor aquantumcomputeif onewerebuilt.)

A Turing madiinehastwo componentsaread/writeheadandatape.Thetape
is a line of unit squaresinfinite in both directions,andthereis a finite alphabet
A= {a,...,an} suchthateacheachsquareof the tapeeitheris blank or hasa
symbolfrom A written onit. We assumehatonly a finite numberof squaresare
not blank. Thusthe informationstoredis finite, but we do not put ary limit on
the numberof bits we canstore.For easeof expositionwe assumehat“blank” is
representetly a specialsymbolf3 € A. Oftenwe take the othersymbolsto bethe
binarydigits 0 and1. Figure3.1shovstheidea.

37
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Xj € {ala"'van}

Figure3.1: A Turingmachine

The headmovesover thetape,sothatat ary givenclock cycle it is scanning
onesquareof thetape. It alsocanbein ary oneof afinite setof internal states
S={si,...,5}. Usuallywe assumehatthereis a distinguishedstarting state
thereis no harmin alsoassuminga stoppingstate aswe shallsee.

The actionof the machineis specifiedby giving a list of instructions Each
instructionhastheform

If theheadis in states andit is scanninga squarecontainingsymbol
aj, thenit shoulddo oneof thefollowing actions:

e moveonesquardeft;
e Mmoveonesquareight;
e changehesymbolonthesquareo ay;

andchangento states.

Eachsuchinstructioncanberepresentetly aquadruplesajLs, sajRs, orsajags.
The Turing machineis completelyspecifiedby thelist of quadruples.

A Turing machineis deterministic(for short,a DTM) if, for ary s € Sand
ary aj € A, thereis at mostone quadruplein the list beginning saj; it is non-
deterministiqfor short,aNDTM) otherwise.

Supposethat a DTM is startedwith the headin states scanninga square
carryingsymbola;. If thereis a quadruplebeginning sa;j, the machinetakes
theappropriateaction. At thenext clock cycle, it is in anew statescanninga new
symbol,andtheprocessepeatslf thereis norelevantquadruplen theinstruction
list, themachinehalts Only computationsvhich halt canactuallyberegardedas
producingaresult,sowe areinterestedn these.

If the machinedoeshalt, we may assumehatwhenit doessoit is in a dis-
tinguishedstoppingstatesy not usedfor any otherpurpose.This is achieved by
listing all pairssa; which do not occurat the startof any quadrupleandadding
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for eachanew quadruplesajajsy (thatis, “leave the symbolscannedsit is and
move into statesy”). Sinceno quadruplebegins sy, the new machinewill now
haltin this state.

For a NDTM, the differenceis that the machinemay have a choice of in-
structionsat somestage.In this casejn a particularcomputationjt choosesne
instructionto obey. Sowe have a branchingtree of possiblecomputationpaths.
Somepathsmay leadto the machinehalting, while othersleadto it continuing
forever. Again, we areonly interestedn computatiorpathswhich halt; againwe
may assumehatthe machinehaltsin a distinguishecdalting state.

Example Thefollowing list of quadrupleslefinesa Turingmachinewhichdoes
thefollowing job. If we write anumbern onthetapein base2, andput the head
in aninitial statesy scanningthe blank squareimmediatelyto the right of the
number it replaces by n+ 1 andreturnsto its startingsquarebeforehaltingin

statesy. Checkthis by trackingits operationon a numberof your choice.

SoBLsy
$110s;
s0Ls;
$101s3
s1B1s3
S30Rss
31Rss
S3BPsH

Table3.1: A Turing machineprogram

A coupleof obsenationsarein order First, we have not specifiedhow the
machineshouldactif it is not setup accordingto the specification.Indeed,if it
startsin statesy not scanninga blank, it doesnothing;andif it startsscanninga
blank not immediatelyto the right of a binary string, it changeghe blankto its
left to a 1 andthenhalts.

Secondot all state-symbopairsoccurin quadruples.If the machineis in
statesp, it expectsto be scanninga zero: the only way states, arisesin normal
operationis whenthe machinehaschanged 1 to a 0 andis aboutto move left.

Exercise3.1.1 Considerthe Turing machinedefinedby the following seventeen
guadruplesThestatesaresy, 1, S, SH, t1, . - -, t7, andthetapesymbolsare3 (blank),
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Oandl.

soBLts  s1PRtz xPLts

t1B0s1 toflsy  telOt7

$10Rs  to11t3 t70Ltg

s11Rg t31Rt3  t501s;
t3BLty  teBls;
t41Bts
tspLs,
S1ls,

(a) Shaw that,if themachineis in statesy scanninga blank squarewith a blank
squareto its left, thenit writes 0 in the squareto the left andreturnsto the
startingsquarean states; in threemoves.

(b) Show that,if themachineis in states; scanninga blanksquarewith a blank
squareto its right, thenit halts on the startingsquarein statesy in two
moves.

(c) Shaw that,if themachinds in states; scanningablanksquarewith astringof
1sof lengthn (followedby a blank)to its right, thenit eraseshe rightmost
1 andreturnsto its startingsquaren states, in O(n) moves.

(d) Show that, if the machineis in states, scanninga blank squarewith the
numbern written in base2 immediatelyto its left, thenit replaces with
n+ 1 andreturnsto its startingsquarein states; in O(logn) steps. (You
maywish to comparehetriplesin thethird columnabove with anexample
from lectures.)

(e) Now supposeahatthe machinestartsin statesy scanninga blanksquarewith
n onesimmediatelyto its right (andthe restof the tapeblank). Shav that
it terminateson its startingsquaren statesy in O(n?) steps.Describethe
configurationonthetapewhenthe machinehalts.

Solution For simplicity | will write ...ajaz[s]as. .. to denotethatthe tape
hasthesymbols...ajaraz. .. written on it andthe machines in states scanning
thesquarewith a, written.

(a) Thefirst threeinstructionsshav that

- BBlSo]... = ... B[t)B... —...0[s]B... = ...OB[s]...

(b) Thefirst two instructionsin the secondcolumnshaow that

. BlsulB...— ... BBtz]... — ...B[su]B. ..
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(c) In two stepswe have
o Bls]111...113. .. — ... B1t]11...11B... — ... B1[t3]11...11B. ..

Now while the machineis in statets scanninga 1, it movesright. This happens
timesuntil we have

~.-B111...11B3[t5]. .-
Thenext stepsare

P11 A1[tg]. .. — ... 111 AB[ts)B. .. — ... P11L. .. 1[s,]BB. ..

At this point therearen — 1 oneson the tape,andthe machinemovesright for
n— 1 stagego reach

...B[s2]111...1pB. .

in 2n+ 4 stepsaltogether

(d) Considerthe numbern written in base2. Supposehatthe longestrun of
onesstartingat the right (the units digit) is k (this includesthe possibility that
k = 0, if the numberhasunits digit zero. Theneitherthe numberin base2 is
11...1 (k ones)whichis equalto

ko2 4241 =0k_1

orit is x011...1= N+ 2K— 1, whereN is representetby the string x. Notethat
n> 2k— 1, sothatk < log,n+ 1.

Now supposehat we startwith the secondcase,namely*011...1103[s;]...
Onesteptakesusto x011...11]ts]B.... Thenwe have

«011...11[tg]B. .. — +011...10t7]B... — x011...1[tg|op. ..

In otherwords,in two stepsthe machinechangesa 1 to a 0 andmovesleft. So
after 2k stepswe have x0[tg|0...00B. ... Next

*0[ts]0...00B... — x1[51]0...008...

following which the machinemovesright for k stepsto reachx10...003[s]...
Thebinarynumber«10...00is equalto N 4+ 2K = n+ 1, andthe total numberof
stepstakenis 1+ 2k+ 1+ k = 0(log, n).

In the other case,wheren = 2K — 1, the operationis the sameexceptthat
insteadof changinga 0 to a 1 the machinechanges 3 to a 1 giving the number
10...00= 2X = n+ 1. Thenumberof stepsis the same.

(e) Let usdenoteby {n} thenumbem in base2 written on thetape. Starting
with BB[sp]1...1B... (with n onesin the string), the machinefirst writesa 0 to
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theleft (afterthreesteps).We canwrite this configurationas{0}p[s;]1...1pB....
Now, after O(n+ log,n) steps,it removesa 1 from the string to the right and
increaseg0} to {1}, resultingin {1}B[s1]1...1pB... (with n— 1 onesin thestring).
After a similar time, it becomed2}B[s1]1...1B... (with n— 2 ones). Thatis, it
repeatedlyemovesl from the stringandincreaseshe numberwritten to the left
by one. After doing this n times(which takestime nO(n+ log,n) = O(n?)), we
reach{n}pB[s;]B.... Thenby (b), two morestepstake usto {n}B[s4]B... andthe
machinehalts. Sothe operationof the machinecanbe describedasfollows:

If startedn statesy onablanksquarewith astringof onesto theright
andtherestof thetapeblank,it countstheones(anderaseshem)and
writes the numberof onesin base? to the left, thenhalts; all thisin
time O(n?).

Exercise3.1.2 Outlinethe constructiorof a Turing machinewhich, whenstarted
on a blank squarewith the numbern written in basel0 to its left on the tape,
decideswhethern is divisible by 3. [Hint: How would you decidewhethern is
divisible by 3?7 How would you do this if you could only remembeia very small
amountof informationwhile you dothesum?]A detailedlist of quadrupless not
required but you shouldexplainthe principlesthatyour machineuses.

Solution The basictestis thata numbern is divisible by 3 if andonly if
the sumof its digits is divisible by 3. To testthis, we don't have to remember
the sum of the digits, but only the summodulo 3, andwe canusethree Turing
machinestateg(saytp, t1,t2) to do this. So,if the machineis in statet; scanning
the digit j, it shouldmove one squareto the left and move into statety, where
k=i+j (mod3). Whenit finishesreadingthe numberand reachesa blank
squarejt returnstheanswer‘yes” if it is in statetg and“no” otherwise.

The following setof quadrupleswill do the job. For a change we usetwo
haltingstatessyes andsyo, to signify theanswer

SoPLto

toOLty tolLt; to2Lto to3Ltg todlt; tpbLty tpbLty to7Lt; to8Lty to9Lltp
t10Lt; t11lty t12Ltg t33Lt; t14Lty t15Ltg t16Lt; t17Lt, t18Ltg t19Ltg
toOLty tollty tr2Lty to3Lty trdlty to5Lt; to6Lty tr7Ltg to8Lt; to9Lts

toBBsvEs t1BBsno t2BBsno

This machineis clearly optimally efficient: by thetime it hasfinishedreadingall
thedigits, it hasworked outtheanswer

We canimagineimproving theefficiency of a Turingmachinen variousways.
We couldallow it to changethe symbolandmove the headin a singleoperation.
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We couldallow it to move severalsquaredeft or right, insteadof justone. (How-
ever, therearegoodreasonswvhy the lengthof a jump shouldbe bounded.The
finite numberof state-symbopairscannotencodenfinitely mary jump lengths,
andphysicallythedistancemovedin oneclock cycleis boundedecaus¢hehead
cannotmovefasterthanthespeedf light.) We couldreplacetheone-dimensional
tapewith a multi-dimensionahrray;we could equipthe headwith its own mem-
ory in the form of a stack. We could even allow seseral communicatingheads
(with restrictionsas for jumps). It can be shovn that none of theseimprove-
mentsenlagesthe classof computationsvhich canbe performed;and,although
they speedup computationsomevhat, they do not changethe definitionsof the
classe$ andNP, to which we turn next.

3.2 PandNP

We saythat a deterministicTuring machinesolvesa decisionproblemP if the
following is true. Supposehatthe input for P is written (in binary notation)on
thetape,andthe machineis in the startingstatescanninghe blank squargust to
theleft of thedata.Thenit haltswhenthereis only onenon-blanksquarethehead
is scanninghis squareandis in the halting state;andthe symbolin the squards
1if theanswetrto thedecisionproblemis “yes”, or O if it is “no”.

A non-deterministiduring machinesolvesthe problemif, with the sameini-
tial conditions,thereis at leastone computationapathwhich leadsto the same
result.

It follows from the Church—Tring thesisthat, if a decisionproblemhasa
mechanicabr algorithmicsolution,thenthereis a (deterministic)Turing machine
which solvesit. Now we areinterestedn how mary stepssucha Turing machine
takes.It followsfrom ourcommentghat,if we countthenumberof “elementary”
stepstaken by our algorithm, the the numberof Turing machinestepsis not too
muchgreater

We distinguishbetweera problemX andaninstanceof X. Justknowing thata
particularquestionspecifiedoy 100bits of data,canbesolvedin 2000000Turing
machinesteps,givesus no informationabouthow hardthe generalquestionis:
the compleity might be 100000, or n3, or even 22V, Accordingly, we definethe
compl«ity of adecisionproblemXx to bethefunction f = fyx definedasfollows:

e Thesizeof aninstanceof X is thenumberof bits of datarequiredto specify
thatinstance.

e f(n) is thesmallestinteger N suchthatthereexists a deterministicTuring
machinewhich solvesary instanceof X of sizenin atmostN steps.
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Thenwe saythat X is polynomial-timesolvable or belongsto the classP, if
fx(n) = O(n¥) for someintegerk.

We take the view herethatproblemsin P arethosewhich are“easy”
or tractable andproblemsnotin P are“hard” or intractable

Note that this definition refersto the “worst case”of the problem. It may
be that a typical probleminstancecan be solved very quickly, but thereare a
few recalcitrantinstancesvhich take muchlonger (Somepeoplearguethatan
“averagecase”’complity is moremeaningful. It is certainlytrue thatthereare
mary importantproblemswherethe averagecaseis mucheasierthanthe worst
case.)

Note also that the definition says“there exists a Turing machine”, that is,
“there exists an algorithm”. So, to showv that a problem X is polynomial-time
solvable,all we have to dois to exhibit analgorithmwhich will solvethe polyno-
mial in a polynomialnumberof steps.Our earlierargumentsshow thatit is not
evennecessaryo translatethe algorithminto a Turing machinewe canbe quite
informal aboutthe definition of steps.Soall the problemsin the final sectionof
the precedingchapterarein P. However, to shav thata problemis notin P is
usuallymuchmoredifficult: we have to shav thatthereis no possiblealgorithm
which canguaranteeo solve the problemin a polynomialnumberof steps.

Analogouslywe saythataproblemis non-deterministipolynomial-timesolv-
able or belongsto NP, if thereis a non-deterministicTuring machinewhich has
anacceptingcalculationfor any positiveinstanceof the problemandtakesat most
nk stepsfor somek, wheren is the sizeof theinput.

Sincenon-deterministicomputationsare quite hardto think about,we give
anothelinterpretation.To specifya computatiorpathof a non-deterministidur-
ing machinewe haveto give someadditionalinformationwhichtellsthemachine
whichinstructionto executeat eachpointwhereanambiguityarises. We canturn
this into a deterministiccomputationasfollows. We give all the requiredinfor-
mationin adwance,so that the machineis presentedwvith both the datafor the
problemandsomeadditionaldataforming a “certificate”. Now we requirethat
themachinecanperformadeterministiccomputationusinginformationfrom the
certificateaswell asthe problemdata,andterminatewith the answer‘yes” pre-
ciselyin the casewherethe solutionto the problemis “yes”.

For example theproblem“Givenagraph,doesit have aHamiltoniancircuit?”
isin NP. Thecertificateis justthe Hamiltoniancircuit. You canthink aboutit like
this:

e aproblemisin P if it canbesolvedquickly;
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e aproblemisin NP if aproposedolutioncanbe checledquickly, usingthe
certificateto do the checking.For example,l canquickly corvinceyouthat
agraphis Hamiltonian just by shaving you a Hamiltoniancircuit.

A featureof this definition is that, whereasthe negation of a problemin P
is alsoin P (sincewe canjust performthe calculationfor the original problem
andthennegatethe final answerin onemorestep),the negationof a problemin
NP is not necessarilyn NP. Although| canquickly corvince you thata graph
is Hamiltonian,| will have a muchharderjob corvincing you thata graphis not
Hamiltonian!

Exercise3.2.1 Shav that the following decisionproblemin in NP. You may
argueinformally; you arenot requiredto constructa Turing machineto solve the
problem.

Compositenumber

InstanceA positive integern in base2 notation.

Problem:ls n composite?

Solution To show thatthe problemis in NP, we have to show thatthereis a
certificatefor arny positive instanceof the problem,suchthatgiventhe certificate,
the correctnes®f the positve answercanbe verifiedin a polynomialnumberof
steps.

Giventhatthenumbem is compositewe take the certificateto bea numbem
suchthatl < m< nandmdividesn. The sizeof the input datais the numberof
bits necessaryo write nin base2, whichis [log, n+ 1]. Thesizeof thecertificate
mis smallerthanthis, andthe division sumcanbe donein a polynomialnumber
of steps.

Any problemwhichis in P is in NP: just usethe emptycertificate. SoP C
NP. SinceNP containamary problems(suchasthe Hamiltoniancircuit problem)
which areregardedas“hard” (andwhereno polynomial-timealgorithmhasever
beenfound, despitea lot of effort), it is widely believedthatP # NP. Thisis the
outstandingopenproblemof compleity theory

On 24 May 2000, the Clay Mathematicallnstitute announcedseven prizes,
eachworth onemillion U.S. dollars,for the solutionof seven of the major prob-
lemsin contemporarynathematicsThefirst problemonthelist is thatof deciding
whetherP # NP. Seethe Web pageat

http://www.claymath.org/prize _problems/p _vs _np.htm

for moreinformation.
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3.3 Polynomial transformations

Let X and?9” bedecisionproblems.

We say that thereis a polynomialtransformationfrom X to 9" if, for ary
instanceX of X of sizen, thereis a Turing machinewhich calculatesaninstance
Y of & in anumberof stepswhich is boundedoy a polynomialin n, andhasthe
propertythat the answerq“yes” or “no”) to the two instancesX andY arethe
same.

More precisely we canassumehat the Turing machinebegins scanningthe
squargustto theleft of theinput datafor theinstanceX; it writesthe input data
for theinstancey onthetape,deleteghedatafor X, andhaltsscanninghesquare
immediatelyto theleft of thedatafor Y.

Sincethe machineonly takes a polynomialnumberof steps,the size of the
instanceY is boundedoy a polynomialin thesizen of instanceX.

As usual,we don't have to be soformal in practice. To showv the existence
of a polynomialtransformationfrom X to ¢, it sufficesto give analgorithmto
translateary instanceof X into aninstanceof Y with thesamesolution,andargue
informally thatthe algorithmrunsin polynomialtime.

As anexample let usconsidetthetwo problemsHC (Hamiltoniancircuit) and
TSP(Travelling SalesmarProblem)specifiedasfollows:

HC (Hamiltoniancircuit)
Instance:A graphG.

Problem:DoesG have a Hamiltoniancircuit?

TSP (Travelling salesman)

Instance:A weightedcompletegraph,whereweightsarepositive integers,anda
positiveintegerL.

Problem:Is thelengthof a shortestravelling salesmariour at mostL?

Thisis theway in whichwe will specifydecisionproblems.

Thereis a polynomialtransformatiorfrom HC to TSR which we saw in the
first chapter GivenagraphG on n vertices we assignweightsto the edgesof the
completegraphK, by the rule thatw(e) = 1 if e is anedgeof G, andw(e) = 2
otherwise. Thenthe shortesttravelling salesmartour haslength (at most) n if
andonly if Gis Hamiltonian.Clearlythistransformatiorof graphsnto travelling
salesmanlatacanbe performedefficiently.
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The mostimportantconsequencef the definitionis the following.

Proposition 3.3.1 Supposéhat there is a polynomialtransformationfrom X to
Y. 1f 9 isin P, thenX isin P; andif 9 isin NP, thenX isin NP.

Proof We are giventhatthereis a Turing machineT; which transformsanin-
stanceX of X of lengthn into aninstanceY of 9 with the sameanswerin time
atmostp(n), wherep is a polynomial. The sizeof Y is at mostq(n), whereq is
polynomial,aswe remarledabove.

If 9 isin P, thenwe arealsogiventhatthereis a Turing machineT, which
solvesY in time polynomialin its size,thatis, r(q(n)), wherer is a polynomial.
Now let T be the Turing machinewhich simulatesthe operationof T; until it
halts,andthenthe operationof T,. (Take T, and T, to have disjoint setsof states,
andthenidentify the halting stateof T; with theinitial stateof T,.) Theresulting
machinesolvesX correctlyin time p(n) +r(q(n)), whichis polynomialin n.

The argumentfor NP is similar, usinga non-deterministicTuring machinein
placeof T, to solveY.

Intuitively, regardingpolynomial-timeas“easy”, thismeans:

If thereis a polynomialtransformationfrom X to 9/, then X is no
harderthan?.

Also, we notethe following. If X isin P, and9 is arny problemfor which
the answeris not always“yes” andnot always“no”, thenthereis a polynomial
transformatiorfrom X to 9. Simply take two instancesp andY; of 9, oneof
which hasanswer‘yes” andthe otherhasanswer‘no”. Givenary instanceX of
X, we cansolweit in polynomialtime andthenwrite onthetapethedatafor either
Yo or Y1 dependingon whattheanswerto X is.

In particular ary non-trivial problemin P hasa polynomialtransformatiorto
ary othet

3.4 Cook’sTheorem; NP-completeness

As we have said,we regardproblemsin P aseasy The classNP containsmary
problemswhich are commonlyregardedas hard, suchasthe Travelling Sales-
man. The remarksat the endof the last sectionshow thatthe problemsin P are
all equivalentwith respectto polynomialtransformationandform the “easiest”
problemsin NP.

Cook’s Theoemshows thatthereis anothersubclasof NP whosemembers
arethe“hardest’problemsin NP (andagainareall equivalent). Theseproblems
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arecalledNP-complete Amongthe NP-completeproblemsareour old favourites
HC andTSR aswe will see.Hereis theformal definition.
A problemX is saidto be NP-completdf

e X isin NP;

e for any problem?” in NP, thereis a polynomialtransformatiorfrom ¢ to
X.

Immediatelyfrom the definition, we seethat NP-completeproblemsarethe
hardesin NP. Indeedthefollowing holds.

Proposition 3.4.1 Let X beany NP-completeproblem. If there is a polynomial-
timealgorithmfor X, thenP = NP.

For, by definition,for any problem?” in NP, thereis a polynomialtransforma-
tion from 9 to X; so,if X isin P, thensois 9. Sofinding anefficientalgorithm
for any onesuchproblemwouldwin themillion dollarsfrom the Clay Mathemat-
ical Institute!

How do we know thatNP-completeexist? Thisis the contentof Cook’s The-
orem. First, we definethe problemCook consideredthe satisfiabilityof Boolean
formulae,or SAT for short.

A Booleanformulais onebuilt up from Booleanvariablesx, ..., X, (eachof
which cantake the valuestrue or false, by meansof connectves: — (negation,
“not”), A (conjunction,“and”), andV (disjunction,“or”). The connectvesare
evaluatedaccordingto the usualtruth tables.

A BooleanformulaF is saidto bein conjunctivenormalform (for short, CNF)
if it hastheform

F=CiACoA---ACp,

whereeachclauseC; hastheform
Ci = (Uz1VUV--- VU,

andeachliteral uj; is eithera variablexy; or a negatedvariable(—Xm;) (which
we write for shortasxmj)). It is atheoremof Booleanlogic thatary formulais
eguialentto onein conjunctve normalform.

An assignmenbf valuesto the Booleanvariablesis saidto be a satisfying
assignmentor a formulaF if the truth valueof F with this assignments true.
If F isin CNF thenin asatisfyingassignmentgachclauseC; mustgetthevalue
true; soatleastoneliteral uj; in eachclausemustgetthevaluetrue (whichmeans
thatxm, takesthevaluetrue if uij = X, or thevaluefalse if Uij = X))
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For example theformula
(X1 VX2V X3) A (X2 A Xa)
is satisfiedby theassignment
X1 =false, Xo=true, X3="false, Xq=true

(andindeedby mary otherassignments).

Exercise3.4.1 For eachof thefollowing Booleanformulae (i) isit in conjunctve
normalform, (b) is it satisfiableyRecallthatx meanghe negationof x.]

(@) F = X1 AX3 A Xog AXT.

(b)G= (X1 VX2VX3) A (X1 VX2V X3) A (X1 VX2V X3) A (X1 VXV Xa) A (K3V Xa) A
(XaVXa) A (X3V Xa).

Solution
(a) This formulais in conjunctve normalform. (Note thateachclausecontains
justoneliteral; thisis permitted.)It is not satisfiablesinceno assignmenof
truth valuescangive bothx; andx; thevaluetrue.
(b) This formulais in conjunctive normalform; andit is not satisfiable. For
the only way of satisfyingthe last three clausesis to put x3 = false and
X4 = true; thento satisfythefirst four clausegequiresthateachof the four

combinationgx; V x2), (X1V X2), (X1 VX2) and (X1 V X2) mustbe satisfied,
whichis clearlynot possible.

Now the satisfiabilityproblemis asfollows.
SAT (Satisfiabilityof Booleanformula)

Instance:A BooleanformulaF in CNE

Problem:DoesF have a satisfyingassignment?

Theorem 3.4.2(Cook’s Theorem) TheproblemSAT is NP-complete
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Proof Thisis notacompleteproof, moreanillustrationof whatis required.We
have to shaw two things: that SAT is in NP; andthatany problemin NP hasa
polynomialtransformatiorio SAT.

The first statements easy A suitablecertificatefor a satisfiableformulais
just a satisfyingassignmentIf we know the assignmentye canquickly check
thatatleastoneliteral in eachclauses true.

It is thesecondstatementhatrequireshework, becauseve have to startwith
ary problem.Xx in NP. All we know aboutsucha problemis that, if X is any
positive instanceandC a certificatefor X, thenthereis a Turing machinewhich
beginswith thedatafor X andthecertificateC andreachesheacceptingtateafter
a polynomialnumberof steps.Whatwe have to dois to encodehe actionof this
Turing machineinto a CNF formula. The formulawill have clausesdescribing
the configurationof the tapeandthe stateof the headat ary time, guaranteeing
thatthe machineoperatesorrectly thatit startswith the correctdata,andthatit
finishesin theacceptingstate.

We will illustratewith a very simple example,usingthe following problem.
Theinput consistof anunknovn numbem of oneson consecutre tapesquares,
andthe problemis to decidewhethern is even. This problemis actuallyin P, so
no certificateis required but the generalprincipleis the sameasfor any problem
in NP. A Turing machineto solve the problemcould consistof the following
quadruples:

SoBRs.
s11Bsy
s4BRe
S 1Bs3
S3BRs
s1B1ss
$B0ss

The machinemovesright, erasingonesandalternatingbetweenstatess; ands;.
Whenit reaches blanksquareijt writes1 or 0 accordingasthenumberof onesit
haspasseds evenor odd,andenterghehaltingstatess. Soit terminatescanning
alif andonly if nis even. We alsoseethatthe machinetakes2n+ 2 stepsf the
inputcontainsn ones.

Considerthe casen = 4 for illustration. The programterminatesn tensteps,
sowe canbesurethatif it startson tapesquare0 thenit cannotreachary square
outsidetherangefrom —10to +10. The propositionalvariableswe usefall into
threegroups:

X(i,sj) will indicatethat at time i the headis in states;, for 0 <i < 10 and
0<j<5.
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y(i, j) will indicatethatat time i the headis scanningsquarej, for 0 <i < 10
and—10< j <10.

Z(i, j,ax) will indicatethatat time i, squarej hassymbol ay written in it, for
0<i<10,-10< j<10andk=0,1,2 (whereag =3,a; = 0,anda, = 1.

The clausesof the formulareflectthe correctaction of the Turing machine,to-
gethemwith its initial andfinal configuration.They canbedividedinto six clauses,
asfollows.

Firstgroup: Theseexpresghefactthateachtime theheadis in exactly onestate.
They areof two types:

X(Isz) VX(i,S]_) \28 'Vx(iaSS)
is trueif theheadis in atleastonestate,and
X(i,sj) VX(i, )

for k # |, is trueif the headis not bothin states; andstates,.\We require
thesefor 0 <i < 10and,for thesecondype,0 < j,k <5.

Secondgroup: Theseexpressthe fact that, at eachtime, the headis scanning
exactly onesquare.They areconstructedik e thefirst groupbut usingthey
variables.

Third group: Theseexpressthe fact that eachsquarecontainsonly onesymbol
atary giventime. Again similar, usingthe z variables.

Fourth group: Thesedescribethe initial configuration. Eachclauseconsistsof
only a singleliteral. We includex(0,s), y(0,0), z(0,i,1) for i = 1,2,3,4,
andz(0,i, B) for the othervaluesof i.

Fifth group: Thesedescribethe operationof the machine Notethata clause
XVyVz
Is equivalentto theimplication
(XAY) — z

which holds unlessx andy aretrue and z false. Now we translateeach
machineinstructioninto severaltypesof clausesThus,sajaxs becomes

X(t,s) Vy(t,u) vVz(t,u,aj) vV p;
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thereare three such clauses,one having p = z(t + 1,u,ax) (this will say
that the machinewrites ay), onewith p = x(t + 1,5) (this will say that
the statechangedo §), andonewith p = y(t + 1,u) (to saythatthe head
doesnotmove). For theinstructionsajLs, we have the above clauseswith

p=y(t+1,u—1) in placeof the lastvalue,andthefirst oneinvolving ax

deleted;for sajRs, usep = y(t + 1,u+ 1) instead.Therearetwo or three
clausedor eachinstruction,eachvalueof t with 0 <t < 9, andeachvalue
of uwith —9 < u < 10. Unfortunatelywe arenot finishedyet: we needto

saythatsquareshot beingscannedion’t changetheir content. This canbe
doneby clauseof theform

y(t,u) vVZ(t,u,a) vV z(t+ 1,u,ay).

Sixth group: Theseasserthatthe headterminatesscanninga squarebearingthe
symboll andin thehalt statess. We cantake a clause

y(10,j) v Z(10,j,1)
for —10< j < 10,andasingleclausex(10,ss).

Somethoughtshows thata satisfyingassignmentor theresultingconjunction
of clausesxistsif andonly if the Turing machineacceptghegiveninput.
It is fairly clearthatthis patternwill work for ary problemin NP.

It is interestingto stop andthink aboutwhat hasbeendonehere. We have
shawvn that, given the descriptionof a Turing machineandits input (all written
on a tape),thereis anotherTuring machinewhich takes this tapeas input and
producesas outputa logical formula which is satisfiableif andonly if the first
Turing machineacceptsts input!

3.5 Examples

In orderto shav thata problem.X is NP-complete we have to shaw two things:
e X isinNP;and

e thereis a polynomialtransformatiorfrom a known NP-completeproblem
to X.

Usuallythefirst stepis easy To begin with, the only exampleof anNP-complete
problemwhich we canusein the secondstepis SAT, by Cook’s Theorem.But,
aswe progresswe increaseour stock of NP-completeproblems,andthis step
become®asierIn this section,we give afew examplesof suchproofs.
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3-SAT The problem3-SAT is a specialcaseof SAT, wherewe consideronly
formulaein which every clausecontainsexactly threeliterals. Clearly a special
cases no moredifficult thanthe generalkcasewe show thatit is no easiereither!

Theorem 3.5.1 Thereis a polynomialtransformatiorfromSAT to 3-SAT. Hence
3-SAT is NP-complete

Proof We have to take a logical formula F which is a conjunctionof arbitrary
clausesandproduceaformulaF’ whichis aconjunctionof clausegachinvolving
only threeliterals,whichis satisfiablef andonly if F is.

We translatehe clauseof F oneatatime.If we have aclauseuV vV w which
alreadyinvolvesthreeliterals,we canleave it asit is.

ForaclauseuV v with only two literals,wetake anew variablez (notoccurring
anywhereelsein the formula), and build the two clausesuvvyvzanduvvyv z
Now, no matterwhatvalueis assignedo z, thecorrespondingdjteral in oneclause
will befalse, souVv v mustbetrue if theclauses to besatisfied.

Similarly, for asingleliteral u, take two new variablesz; andz,, andform the
fourclausesivz;Vz,uvziVz, uvzVz, anduvz V.

Supposdinally thatwe have a clausewith morethanthreeliterals, sayu; Vv
-+« V Uk, with k > 3. Take k— 3 new variablesz, ..., z._3, andform theclauses

uuvuVz, uzvzVz, UusV2pVza,
Ue—2VZaVZ 3, U1VUVZ 3.

For example,if k=4, wereplacetheclauseu; vV u, vV usVus byui Vu, vVzand
usV Uz vV z. We have to shav thatanassignmensatisfiegheoriginal clausef and
only if thereis avaluefor z suchthatthetwo new clausesresatisfied.

Supposdirst thatanassignmensatisfiesu; V u, V uz Vv ua. If ug or up is given
thevaluetrue, thensetz to befalse; if uz or us is true, setzto betrue.

Corversely supposehat both of the three-literalclausesare satisfiedby an
assignment.If we have setz to be true, thenoneof uz andus mustbe true to
satisfythe secondclause;if we setz to be false, thenoneof u; andu, mustbe
true to satisfythefirst clause.

A similaragumentworksfor largerk (seethe next exercise).

Exercise3.5.1 Checkthatall theseclausesaresatisfiedby anassignmenif and
only if theoriginal clauseis satisfiedoy the assignmenof valuesto theus.

Solution Inthegenerakasethepartsof clausesnvolving thenew variables
canbewrittenas

2,0y — 22, -y Ze—t — L3, Zk—3-
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In this form it is clearthat no assignmentanmake all thesesubformulaetrue.
But, by settingzs, ...,z to betrue andz_.1,...,z_3 to befalse, we satisfyall of
themexceptz — z1. Similarly, we cansatisfyall but the first (by putting all
variabledfalse), or all but thelast(by puttingthemall true).

Now supposewne have an assignmenbf truth valuessatisfyingthe k-literal
clause. Thensomeuy; is satisfied.We cannow assignvaluesto the zs to satisfy
all the fragmentsexceptthe onein the 3-literal clausecontainingu;. Soall the
3-literal clausesaresatisfied.

Corversely supposethat all the 3-literal clausesare satisfied. Thenaswe
noted,notall thefragmentsnvolving thezs canbetrue, soatleastoneu; mustbe
true, andsotheoriginal k-literal clauses satisfied.

Why do we take 3-SAT here?It canbe shavn thatthe problem2-SAT (sat-
isfiability of Booleanformulaein CNF with two literals in eachclause)is in P,
thatis, it canbe solved efficiently. You may wish to try to prove this — it is not
completelystraightforvard,andnotimmediatelyrelevant,sowe will notgivethe
proof.

Vertex cover Let G = (V,E) beagraph. A vertex cover of G is a setC of
verticeswith the propertythatevery edgeof G is incidentwith somevertex in C.
We areinterestedn the sizeof thesmallestvertex cover.

Exercise3.5.2 Whatis the smallestsize of a vertex-cover of the Petersergraph
(Figurel.3)?

Solution A vertex cover for a pentagormustcontainat leastthreevertices.So
we requireat leastthreeverticesfrom boththe outerpentagorandtheinnerpen-
tagram;so no smallervertex cover than6 is possible.But thereis a vertex cover
of size6, givenby thecircledverticesin Figure3.2.

Hereis aformulationof the decisionproblemassociatedvith this question.

VC (vertex cover)
Instance:A graphG, anda positive integerk.
Problem:DoesG have avertex cover of sizeat mostk?

Thisproblemis in NP, sincethelist of verticesin avertex coveris acertificate
for apositiveinstance.

Theorem 3.5.2 Ther is a polynomialtransformatiorfrom 3-SAT to VC. Hence
VC is NP-complete
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Figure3.2: A vertex cover

Proof Take aninstanceof 3-SAT, aformulaF in n Booleanvariableswhich is
a conjunctionof m clauseseachcontainingthree literals.\We constructa graph
G = (V, E) suchthatG hasa vertex-cover of sizen+ 2m or lessif andonly if the
formulais satisfiable.

ThegraphG has2n+ 3mvertices,asfollows:

e For eachvariablex;, therearetwo verticescalledx; andx;, joined by an
edge.We call thesethetruth-settingvertices

e For eachclauseuV vV w, therearethreeverticescalled u,v,w, ary pair

joinedby anedge(thatis, formingatriangle).We call thesethesatisfaction-
testingvertices

Now the nameof eachsatistction-testingvertex also occursasthe nameof a
truth-settingvertex; we join thesevertices. For example,if we have the clause
X1V X2V X4, We have a triangle of satishction-testingverticesnamedx;, xo and
X4, andeachis joined to exactly onetruth-settingvertex (the onewith the same
name),asshowvn in Figure3.3.

Now ary vertex-cover mustobviously containat leastone of eachpair {x, X}
of truth-settingvertices,andat leasttwo of eachtriangle of satishction-testing
vertices. So the size of a vertex-cover is at leastn+ 2m. We have to show that
thereis avertex-cover of this sizeif andonly if theformulais satisfiable.

Suppossdirst thatthereis a satisfyingassignmentThis tells ushow to choose
oneof eachpair of truth-settingvertices:choosethe oneof x andx whichis true.
Now eachclausecontainsa true literal, so oneof the verticesin eachtriangle of
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satishction-testingrerticesis joinedto oneof thetruth-settingverticeswhich we
have chosenwe put the othertwo into our vertex-cover, gettingn+ 2m vertices
altogether

Corversely supposéhatthereis a vertex-cover C with n+ 2m vertices. The
argumentshaws thatit mustcontainoneof eachpair of truth-settingverticesand
two of eachtriangleof satishction-testingzertices.We now defineanassignment
by putting x or X true dependingon whichis in C. Now in eachclauseuVv vv w,
only two of u,v,w arein C; sothethird mustbejoinedto atruth-settingvertex in
C, whichmeanst is assignedhevaluetrue, andsotheclauseis true. Thus,F is
satisfied.

For example theformula
(X1 VX2V X3) A (X1 V X2V Xa)
translatesnto thegraphshown in Figure3.3,andthe satisfyingassignment
X1 =true, X =false, X3=false, X4 = false

translatesnto thevertex cover formedby thecircledvertices.

Truth-settingvertices
X1 X1 X X X3 X3 X4 X4

X1 X2 X1 X2
Satishction-testingrertices

Figure3.3: A vertex cover

Hamiltonian circuit We definedthe problemHC (Hamiltoniancircuit) earliet

Theorem 3.5.3 Theris a polynomialtransformatiorfromVC to HC. HenceHC
is NP-complete

Theproofis similar to but a bit morecomplicatedhanthe precedingone;we
referto Garegy andJohnsorfor details.

We alreadysaw thatthereis apolynomialtransformatiorfrom HC to TSP(the
Travelling Salesmarmroblem).So TSPis alsoNP-complete.
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Other complexity classes

The compleity classed andNP arethe mostimportantbut not the only ones
that have beenconsidered.We look briefly at someof the others;this will be
moreinformal, but the classesnvolving randomisedlgorithmsor approximation
algorithmsleadon naturallyto the secondoartof the course.

4.1 Harder problems

First, we introducethe classe?SPACE andEXPTIME, which containproblems
thoughtto be evenharderthanNP-completeproblems.

A problem.X belongsto the classPSPACE if ary instanceof sizen canbe
solved by a Turing machinein which, while the programis running, the head
movesat mostO(nK) stepsaway from its initial location. Informally, a problem
is in the classPSPACE if it canbe solved usingonly a polynomial amountof
memoryspace.

Typical hardproblemsn PSPACE arefindingawinning stratgy in positional
gamedike “generalisedchess’playedon ann x n board. We may have to look
mary movesaheadput we only have to remembethe configurationof theboard.
(Finding a winning strateyy for ordinarychesss a singlefinite problem,though
a very large one; we cant talk aboutthe compleity unlesshave have a whole
family of arbitrarily large problems.)

Theorem4.1.1 NP C PSPACE.

Needlesdo say it is believed that thesetwo classesare unequalbut nobody
canproveit! We will provethatP C PSPACE andtreatNP moreinformally.

The reasonthat P C PSPACE is simply that, if a Turing machinerunsfor a
polynomialnumberof stepsjt obviously cannotmove furtherthana polynomial
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distancefrom its startingsquare.In generalthe spacecomplexity of a problem
cannotbelargerthanthetime compleity.

For NP, we argueasfollows. Supposéhatthereis a nondeterministiduring
machinewhich solvesaninstanceof the problemin polynomialtime. Remember
thatthereis at leastonecomputationapathwhich leadsto the successfutesult.
We cansimulatethis Turing machineby a deterministicmachinewhich tries all
thepossiblecomputationapaths;we do notneedany morememoryspacegxcept
for enoughto save acopy of theinputdata.(Thereis adifficulty, sincetheremight
beacomputationapathwhich doesnt terminate or which takesaverylongtime,
which the machinetries beforereachingthe successfupath. Sowe have to equip
themachinewith a“clock” whichtellsit to abandora particularattemptif it has
not succeedeth afixedpolynomialnumberof steps.)

A problemX is in theclassEXPTIME if aninstanceof the problemof sizen

can be solved by some Turing machinein time O(2”k) for somek. Thatis,
EXPTIME really means‘time whichis the exponentialof a polynomial’.

Theorem4.1.2 PSPACE C EXPTIME.

To prove this, supposéhat X is a problemin the classPSPACE, sothatan
instanceof sizen canbe solvedby a Turing machinewhoseheadmovesno more
than p(n) stepsfrom its original position. Thusthe only tapesquareswhich are
usedarethosein therangefrom —p(n) to p(n). Supposehatthe numberof tape
symbolsis k andthe numberof machinestatessr.

We claim thatthetotal numberof possibleconfiguration®f machineandtape
is atmost

(2p(n) + 1)rk2P+1,

For thereareat most2p(n) + 1 positionsfor the head,andat mostr statesthen
eachtapesquarehasoneof k symbolswrittenin it, sothetotal numberof strings
thatcould bewritten on the tapeis at mostk2P(W+1,

Now we claim thatthe time taken by the computationis not greaterthanthis
number For otherwise someconfigurationof positionandstateof the headand
stringwritten onthetapemustoccurtwice. But then,thesecondime,thecompu-
tationwill proceedexactlyasit did onthefirst occasionsothemachines stuckin
aloop andwill neverterminate.This contradicteheassumptiorthatthemachine
really doessolve the problem!

Now (2p(n) + 1)rk?*(W+1 s certainlyboundedby the exponentialof a poly-
nomial: we have 2p(n) 4+ 1 < 22P(W+1 andso

(2p(n) 4 1)rk?P(M+1 < p(1+logzk)(2p(n)+1)+logyr

SotheclassXx belongsto EXPTIME, asclaimed.
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4.2 Counting problems

Many decisionproblemscanbe extendedin a naturalway to countingproblems.
Herearea coupleof examples.

SAT (Satisfiability)
Instance:A Booleanformula,in conjunctive normalform

Decisionproblem:Is therean assignmenbf truth valuesto the variableswhich
satisfiegheformula?

Countingproblem:How mary suchsatisfyingassignmentarethere?

HC (Hamiltoniancircuit)

InstanceA graphG.
Decisionproblem:DoesG have a Hamiltoniancircuit?

Countingproblem:How mary HamiltoniancircuitsdoesG have?

In eachcase,the countingproblemis harderthanthe decisionproblem. If we
couldsolve the countingproblem,we couldimmediatelysolve the decisionprob-
lem by justtestingwhetherthe answelis zeroor non-zero.

Sometimesan easydecisionproblemis associatedvith an easycounting
problem. We have seenthat a graphG hasa spanningtreeif andonly if G is
connectedandthis canbe decidedquickly). The numberof spanningtreescan
be computedby evaluatinga determinani{which canalsobe donequickly), ac-
cordingto Kirchhof’s Matrix-TreeTheoem which we statewithout proof:

Theorem 4.2.1 Let A bethe adjacencymatrix of a simplegraph G. LetD bethe
diagonal matrix whose(i, i) entryis the valencyof the ith vertex (the numberof
edgeson which it lies. Let X be the matrix obtainedfrom D — A by deletingthe
firstrowandcolumn.Thendet(X) is equalto the numberof spanningreesof G.

For example let G = K3, thecompletegraphon 3 vertices.Then

2 -1 -1
D-A=|-1 2 -1],
~1 -1 2

and
2 -1
det(X) _det<_1 5 ) =3,

soG hasthreespanningrees.
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Sometimeshowever, aneasydecisionproblemis associatedith ahardcount-
ing problem,asin the caseof the permanenbf a matrix with non-ngative entries.
Aswesaw, it is easyto decidewhetherthepermanenis non-zeroput hardto eval-
uateit. In the caseof Hall's MarriageProblem the permanentountsthe number
of waysin whichthe compatiblemarriagesanbearranged.

The natural compleity classfor counting problemsis #P (read “number
P”). It consistsof problemswhich canbe solvedin polynomialtime on a non-
deterministicTuring machine andwe areaskedto countthe numberof accepting
computations Alternatively, we have to countthe numberof “certificates”for a
positive solution. The countingproblemsfor SAT andHC above are examples.
We do not discusghis further.

4.3 Parallel algorithms

Someproblemscanbe solved muchfasterusinga modified Turing machinecon-
tainingalargenumberof headsgequippedwith the capacityto communicatevith
oneanotherandall usingthe sametape. We think of theseheadsasprocessors
working in parallelandsharingmemory

A classX of problemss saidto belongto NC if aproblemin X of sisen can
be solvedin time O((logn)¥) by a machinewith O(n¥) headsfor somepositive
integerk. Somehardproblemscanbe shawn to lie in this class. The lettersNC
standfor “Nick’ s class”,after Nick Pippingerwho inventedit. We do not discuss
it further.

4.4 Randomisedalgorithms

Sofarwe have consideredime andspacethatis, timeto performthecomputation
and memory spaceused)as the resourcesvhich measurethe compleity of a
calculation.We now considera differentkind of resourcerandomness

A deterministiccomputercannotgeneratea randomnumber The “random
numbers”built into mostprogrammingsystemsarethe resultof applyingsome
computatiorto a “seed”,which maybethereadingof the computers clock. The
resultingnumbersvary in an apparentlyunpredictablavay but eachis uniquely
determinedby the one before. They are more properly called “pseudo-random
numbers”. The more complicatedthe calculationis, the more satistctory the
resultwill be. However, from a theoreticalpoint of view it is betterto regard
randomnesasaresourcewhichis paidfor in time by a pseudo-randomumber
generatar

Thus,we regarda Turing machineexecutinga randomisedlgorithmasbeing
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equippedwith a sourceof randombits, which in practicewill be suppliedby a
pseudo-randomumbergeneratar The machinecanhave additionalinstructions
which causet to requesta randombit, andthe subsequengtateof the headwill
dependonthevalueof thisbit.

In the courseof a polynomial-timecalculation,of course,the machinecan
only askfor polynomiallymary randombits.

For example, a non-deterministicTuring machinecan be madeinto a ran-
domisedTuring machinein the following way. Wheneer the machinehasa
choiceof instructiongo follow, it asksfor enoughrandombitsto allow it to make
thechoice.

Now we definethe classRP of problemswhich canbe solved in “random
polynomialtime”. First,for comparisonywe repeathedefinitionof NP. A classX
of decisionproblemsbelonggo NP if thereis anon-deterministi@uringmachine
whichrunsin time polynomialin theinput sizesuchthat

e for ary positiveinstanceof X, thereis atleastonecomputatiorpathwhich
acceptgheinstance;

e for any negative instancethereis no acceptingcomputatiorpath,

Now we saythat X belongsto RP if thereis a non-deterministicluring ma-
chinewhichrunsin time polynomialin theinput sizesuchthat

e for any positive instanceof X, at leasthalf of all the computationpaths
acceptheinstance;

e for any nggative instancethereis no acceptingcomputatiorpath,

It is clearthatthisis astricterrequirementhanthedefinitionof NP. Moreover,
adeterministicTuringmachinecanberegardedasanon-deterministienachinen
whichthereis only onecomputatiorpathfor any probleminstance Sowe have:

Theorem4.4.1 P C RP C NP.

Thereis nothingspecialaboutthe probability 1/2 in the definition: ary posi-
tive constantwvould do, for thefollowing reason:

Theorem 4.4.2 Supposehata problemcanbesolvedin timeT by arandomised
Turing madinewith probability c, where 0 < ¢ < 1. Thenit canbesolvedin time
T[loge/log(1— c)| with probability 1 — €, for anyze.

For 1 — c is the probability that we do not obtaina resultin time T. If we
repeathe calculationn times,usingindependentandombits, the probabilitythat
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we do notobtainaresultis (1—c)". We canmake this smallerthane by choosing
nsothat(1—c)" < g, ornlog(1—c) < logg; in otherwords,

n>loge/log(1—c).

(Remembethatlog(1— c) is negative,sincel —c < 1.)

So,if arandomised’uring machinesolvesa problemwith probability greater
thanl1/2, thenin just 100repetitionsof the calculationthe chanceof nothaving a
resultis lessthan(1/2)1°, whichis smallerthanthe probability of a hardwareer-
rorin thecomputer (Of coursethisassumeshattherandombits areindependent,
whichwill notbethecasef we useapseudo-randomumbergenerata)

Whatthis meanss that, if we arepreparedo accepta minute probability of
error, thenthe classRP is almostassatishctoryasP. In practicalterms,aswe
will see,algorithmsinvolving somerandomchoicescangive us avery powerful
methodto attackhardproblems.

The mostfamousexampleof a randomizedalgorithmis a primality testde-
velopedby Solovay and Strasserand by Rabin. The algorithm (which depends
on someadwancednumbertheory sowe do not give detailshere)hasthe prop-
erty thatit answers‘composite”or “probably prime”: if the input is prime then
theanswers “probably prime”, if it is compositehentheansweris “composite”
with probability at least1/2. So, in termsof the definition, the problem*Is n
composite?”is in RP. If the numbern getsthe answer‘probably prime” in 100
independentunsof thealgorithm thenwe arejustifiedin assuminghatn is prime
for practicalpurposesuchascryptography But just oneanswer‘composite”is
enoughto corvinceus.

Thedevelopmentof randomisedlgorithmsdoesprovide aninterestingprob-
lemfor the philosophyof mathematicslt is now possibleto write down anumber
n with severalhundreddigits andstate”n is probablyprime”; if the computation
hasbeendoneproperly our confidencen this statementay be greaterthanour
confidencen alongandcomplec proof of atheoremprovedby a mathematician.
Socansuchastatemenbe a mathematicatruth?

4.5 Approximation algorithms

We sawv an exampleof an algorithm (the twice-round-the-trealgorithmfor the
Travelling SalesmariProblem)which givesananswermwhich is at mosttwice the
optimumvalue. Several otherexamplesof suchalgorithmsareknown.

However, for whatis technicallyknown asan“approximationalgorithm”, we
askfor more. We requirethatyou cangetwithin afactorarbitrarily closeto 1 of
theoptimumvalueif you arepreparedo spendenoughtime doingit.
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Let us supposethat we have a problemwith input dataof sizen, wherewe
arerequiredto computesomenumericalfunction (suchasa countingproblemor
the Travelling SalesmarProblem).Let K be thetrue answerto the problem. We
saythatthereis a polynomial-timeapproximationalgorithm for the problemif,
givenary positve numbere, thereis a Turing machinewhich computesanumber
k satisfying

o K/(1+¢) <k<K(1+¢);

¢ thenumberof stepsis boundedby a polynomialin n andlog(1/¢).

We saythatthe algorithmestimateX to within ¢ if thefirst conditionholds.
(This agreeswith theusage‘to within 1%”, for example.)

We haveto explainwhy we uselog(1/¢€) here.Supposéhatwe have computed
the answeyr andwe arerequiredto improve our accurag by onedecimalplace.
That means,we have to reducethe possibleerror to one-tenthof its previous
value,solog(1/¢g) increasedy aconstanamount.If, for example thetime wasa
linearfunctionof log(1/¢), thenthis would increaseghetime taken by a constant
amount.If thetime wasproportionalto 1/¢ insteadthento getoneextradecimal
placewould take tentimesaslong! In brief, we requirethatthetime takengrows
asapolynomialin thesizeof theinputdataandin thenumberof significantfigures
requiredin theanswer

We can combinethe last two ideasand definea randomisedapproximation
algorithm. Here,we usea randomisedalgorithm (onewhich makeschoicesbe-
tweencomputatiornpathsbasedon randombits). We prescribeboththe accurag
of the computedanswer(the numbere above) andthe probability that the algo-
rithm fails to meetthe requirementganotherpositve numberd). If the running
time is boundedby a polynomialin n (the size of theinput data),log(1/¢), and
log(1/d), we call thealgorithmfully polynomial

If thereis anrandomisedlgorithmwhich estimateX to within € with prob-
ability at least3/4, say thenwe canestimateK to within € with arbitrarily high
probability 1 — , by the following simpletrick: repeatthe algorithmN times,
whereN = 1+ 12[log(1/d)], andtake the medianof the resultingN estimates.
This dependon the following resultaboutprobability theory of which we omit
the proof (which justinvolvesestimategor binomial coeficients):

Proposition4.5.1 Let Xy, ..., Xy be independentandomvariables having the
samedistribution,wheie N is odd. Leta andb bereal numbes. Supposéehat

P(agmsb)zg

for all i. Then,if X denoteghemedianof Xy, ..., Xy, wehave
Pla< X <b)>1-—e N2
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Now, in our caseto make this probability greaterthan1 — o, we just require
e N/12 < 5, orN > 12log(1/3). Theaddedl is to make N odd,sothatthemedian
is defined.

Sowe cangive a simplerdefinition: a randomisedapproximationalgorithm
for anumberK is fully polynomialif, for arny positve numbere, it approximates
K to within € with probabilityatleast3/4 in time polynomialin n andlog(1/e).

For example, considerthe counting problem associatedvith SAT: we are
givenaBooleanformulaF in conjunctve normalform, andwe areaskedto count
the numberof satisfyingassignmentslf F is aformulain n variablesthenthere
arealtogethe2" assignmentsf truth values,soit will take exponentiallylongto
try themall andcountthe successes.

We couldproceedby sampling In otherwords,choosealargeenoughinteger
N, andthenchooseN assignmentsf valuesat random;countthe proportionM
of theseassignmentsvhich make F true. ProvidedthatM is not too small, we
would guessthat aboutM /N of all assignmentsire satisfyingassignmentsand
estimatethetotal numberof satisfyingassignmentas(M/N)2". It canbeshowvn
that, if the actualnumberof satisfyingassignmentss - 2", andif we chooseN
large enough(precisely N > 4log(2/8) /ue?), thenwe will succeedn estimating
thenumberto within € with probabilityatleastl — d.

But if the numberof satisfyingassignmentss rathersmall, we arelikely to
find nonein our sample. (Remembethat thereare 2" assignmentandwe can
only look at a small proportionof them.) Thenwe will not be ableto give an
accurateestimate.

Thereare more advancedsamplingmethodsto get aroundthis problem,but
we don't considerthemhere.

4.6 Quantum computation

Thistopicis mentionedustfor completeneskere thoughit maywell playamore
importantrole in compleity theoryin thefuture. Theoreticaimodelsof quantum
computerdave ledto definitionsof thecomplexity classQP (problemswhichcan
be solvedin a polynomialnumberof stepson a quantumcomputer). This class
certainlyincludesproblemswhich arenotknown to bein P andarethoughtto be
“hard” in termsof classicakomputation.

The most striking exampleis the result of PeterShorwho gave a quantum
polynomial-timealgorithmfor the problemof factorisinganinteger. Sincethis
hard problemlies at the foundationsof cryptographicsystems(suchas RSA)
widely usedon the internetandin commercethe impactof an actualquantum
computerwould be very greatindeed.But no seriousquantumcomputerhasyet
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beenconstructed.
Furtherinformationon quantumcomputationcan be obtainedfrom the Web

page
http://www.theory.caltech.edu /peo ple/ presk illl  ph229/

the courseinformation for John Preskill's courseon QuantumComputationat
Caltech.



