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Preface

Thesenoteshave beendevelopedfor thefirst partof thecourseMAS223,Com-
plexity and Optimisationin OperationsResearch, at QueenMary, University of
London.Thedescriptionfor this partof thecoursereads:

Thecoursebeginswith anoutlineof complexity theory, which gives
a moreprecisemeaningto the statementthat someproblems(such
asminimal spanningtree)areeasyto solve whereasothers(suchas
travelling salesman)arehard.

Thekey objectivesfor this partof thecourseare:� Decisionproblems;how to expressa problemwith an integer solutionas
decisionproblem.� TheO ando notation;arrangingfunctionsin orderof valuefor largeargu-
ment.� Input datarepresentationandsimplealgorithmsfor arithmetic,matrix, and
graphproblems.� Turing machines;ability to translateinstructionsinto theactionof thema-
chine.� Solutionsof decisionproblemson deterministicandnondeterministicTur-
ing machines.Definition of

�
and � � . Interpretationof � � in termsof

certificates.� Polynomialtransformations,� � -completeness.Examplesof � � -complete
problems.� Randomisedandapproximationalgorithms. The class � � andits relation
to
�

and � � .

Thenotesprovide a self-containedintroductionto decision,optimisationand
countingproblems,Turingmachines,thedefinitionsof complexity classesinclud-
ing P andNP andtherelationsbetweenthem.All of theabovekey objectivesare
coveredhere. The notesalso include a numberof worked exercises,many of
whichweresetashomework problemsin thecourse.

Thetextbookfor this partof thecoursewas

M. R. Garey andD. S. Johnson,Computers andIntractability: A Guideto
theTheoryof NP-Completeness, Freeman,1979.
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Anotherusefulreference(with a differentemphasis)is

DominicWelsh,CodesandCryptography, OxfordUniversityPress1988.

Thereis noshortageof materialavailableontheWorld WideWeb. In addition
to websitesmentionedin the text, you maywish to look at anon-linecourseon
computabilityandcomplexity by Paul Dunne(Universityof Liverpool)at

http://www.csc.liv.ac.uk/ ˜ ped/teachadmin/algor/comput.ht ml

and someappletsdemonstratingvariousheuristicsfor the Travelling Salesman
Problemby StephanMertens(Universityof Magdeburg) at

http://itp.nat.uni-magdeburg. de/ ˜ mertens/TSP/TSP.html

PeterJ.Cameron
March2001
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Chapter 1

Intr oduction

Someproblemsareeasy, somearehard.
In this course,we don’t studyproblemswhich areconceptuallyhard,suchas

proving Fermat’s LastTheorem.Instead,we look at problemswhich aresimple
in principle,but hardbecauseof theamountof calculationrequiredor thenumber
of casesthathave to bechecked.

We areinterestedin thenumberof stepsrequiredto solve theproblem,and,
more particularly, how this numbergrows as a function of the “size” n of the
problem.Theimportanceof thiscanbeseenfrom anexample.SupposethatI can
solve problemsof size100on my currentcomputer. Next year, I will geta new
computerwhich is twice asfastandhastwice asmuchmemory. If the number
of stepsis proportionalto n, I will beableto solve problemsup to size200; if it
is proportionalto n2, up to size140; but if it is proportionalto 2n, I will only be
ableto do thenext case,101. Thereis a big differencebetweenpolynomialand
exponentialgrowth!

1.1 Minimal connector, travelling salesman

We begin with two examplesthatwill beusedoftenduring thecourse.Suppose
thatn townsaregiven,andweknow thedistancebetweeneachpairof towns.(An
examplewith n � 12 is givenon thenext page.)Now herearetwo problemsthat
wemight wantto solve:� Theminimal connectorproblem: we have to install a communicationsys-

temlinking all the towns. We want thetotal lengthof cableinstalledto be
assmallaspossible.� The travellingsalesmanproblem: a salesmanhasto travel to all thetowns,
visiting eachtown onceandreturningto his startingpoint. We want the

1
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� Aberdeen

� Birmingham� Cardiff � Dover� Exeter

� Fort William� Glasgow

� Harwich

� Inverness

� Johno’Groats

� Kyle of Lochalsh

� London

Figure1.1: Mapof GreatBritain

total distancetravelledto beassmallaspossible.

Although thesetwo problemslook quite similar, we will seethat the minimal
connectorproblemis “easy”,but thetravelling salesmanproblemis “hard”. There
is nodifficulty in principlein solvingthetravelling salesmanproblem– wecould
simply look at all possiblecyclic tours throughthe towns – but the numberof
possibilitiesto checkgrowsveryrapidly, andfor evenamoderatenumberof towns
it is not practicableto checkall possibilities.

First we attacktheminimal connectorproblemin a simple-mindedway. We
first choosetheshortestpossiblelink betweenany two towns.Wecontinuedoing
this until all the townsareconnected,exceptthat, if two townsalreadyhave an
indirectconnection,we do not needto link themagain.Thus,for example,if we
havealreadychosenedgesAB, BC andCD, thereis no needto includeAD.
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B C D E F G H I J K L

A 676 813 947 916 240 233 861 169 373 304 832
B 166 312 253 631 470 269 737 924 758 188
C 383 195 781 620 396 884 1094 908 253
D 399 959 786 201 1001 1201 1080 114
E 901 723 449 995 1197 1011 291
F 163 874 106 314 127 821
G 695 267 475 288 639
H 916 1116 983 122
I 208 135 885
J 304 1067

K 943

Table1.1: Distancesin km

More formally, the procedure(known as the greedyalgorithm for minimal
connector) worksasfollows:� Arrangethepairsof townsin a list L in orderof increasingdistances.Take

anemptylist T.� Repeatthefollowing stepuntil theedgesin T connectall thetowns:

– Take thefirst pair in thelist L, say � t1 � t2 � .
– If thetwo townst1 andt2 in this pair arenot connectedby a sequence

of edgesin T, addtheedge� t1 � t2 � to T.

– Deletethepair � t1 � t2 � from L.� Returnthelist T.

Let’s work this algorithmon our example.Thelist L begins
106(FI), 114(DL), 122(HL), 127(FK), 135(IK), 163(FG),166(BC),
169(AI), 188(BL), 195(CE),201(DH), 208(IJ), 233(AG), 240(AF),
253(BE), 253(CL), 267(GI), 269(BH), 291(EL), 304(AK), 304(JK),
312(BD), 314(FJ),373(AJ), 383(CD), 396(CH), 399(DE), 449(EH),
470(BG), 475(JG),. . .

Sowechoosefirst theedgesFI, DL, HL, FK. WedonotchooseIK, sinceI and
K arealreadyconnectedvia F. Continuing,we chooseFG, BC, AI, BL, CE. We
donotchooseDH. WechooseIJ. Theneveryadditionaledgeis skippedoveruntil
we reachBG, at which point we have connectedall the townsandthealgorithm
terminates.
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Whatis theoutputof thisalgorithm?Clearlythefinal list T of edgesconnects
all the towns. Thesolutioncontainsno cycles,sinceto createa cycle we would
have to addanedgejoining two townsalreadyconnected.Thus,thesolutionis a
tree. It is not obvious that it is a minimal connector, but in fact this is the case,
aswe prove later. It is alsoclearthatthis is an“efficient” algorithm(we will also
make this morepreciselater).

We seethat this algorithm begins by producinga numberof disconnected
pieces,which later coalesce.We canavoid this by a small modificationto the
algorithm, which also can be shown to producea minimal connector. This is
Prim’salgorithm:� Let L bethelist of all pairsof towns(sortedby increasingdistance),andT

theemptylist.� Take thepair in L at leastdistance;addit to T.� Repeatthefollowing stepuntil theedgesin T connectall thetowns:

– Takethefirst pair in thelist L having thepropertythatoneof its towns
liesonanedgein T andtheotherdoesnot;say � t1 � t2 � . Add � t1 � t2 � to
T.� Returnthelist T.

Exercise1.1.1 Work throughthisalgorithmin theexample,andshow thatit finds
thesameminimalconnectorasthegreedyalgorithm(thoughtheedgesarechosen
in adifferentorder).

Solution Thedistancesin increasingorderare
106(FI), 114(DL), 122(HL), 127(FK), 135(IK), 163(FG),166(BC),
169(AI), 188(BL), 195(CE),201(DH), 208(IJ), 233(AG), 240(AF),
253(BE), 253(CL), 267(GI), 269(BH), 291(EL), 304(AK), 304(JK),
312(BD), 314(FJ),373(AJ), 383(CD), 396(CH), 399(DE), 449(EH),
470(BG), 475(JG),. . .

Thegreedyalgorithmchoosesin ordertheedgesFI, DL, HL, FK, FG,BC, AI,
BL, CE,IJ, BG, atwhichpointwehaveconnectedall thetownsandthealgorithm
terminates.

Prim’s algorithmchoosesfirst FI, thenFK, FG,AI, IJ, BG, BC, BL, DL, HL,
andCE(eachedgechosenis theshortestbetweenonetownalreadyconnectedand
onenew town).

Theedgesarethesame;only theorderis different.
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Let ustry thesametechniquefor thetravelling salesman.Adaptingtheabove,
wehavethegreedyalgorithmfor travellingsalesman. Weassumethatthenumber
n of towns is greaterthan2, elsethereis not muchchoiceaboutthe travelling
salesman’s itinerary.� Let L bethelist of all pairsof towns(sortedby increasingdistance),andT

theemptylist.� Take thefirst pair in L; addit to T. At this andall subsequentstagesexcept
the last, theedgesin T will form a path,sowe cantalk aboutthe endsof
thepath.� Repeatthefollowing stepuntil theedgesin T connectall thetowns:

– Takethefirst pair in thelist L having thepropertythatoneof its towns
is an endof the pathT andthe other is not on the path;say � t1 � t2 � .
Add � t1 � t2 � to T.� Add to T the edgejoining its two endpoints,creatinga cycle. Returnthe

list T.

Althoughthis lookssuperficiallysimilar to Prim’s algorithm,andit doesproduce
an itinerary for the travelling salesman,it doesnot producea tour of smallest
length.

In our example,theedgesarechosenin theorder

FI, FK, AI, AG, KJ, BG, BC, CE,EL, DL, DH, HJ,

giving thetourAGBCELDHJKFIA of length3492.
However, the tour AHDLECBGFKJIA haslengthonly 3269. (In fact this is

theshortestpossibletour, ascanbeconfirmedby checkingall thepossibilities.)

Facedwith thedifficulty of theproblem,wemustbepreparedto compromise.
Thereare variouskinds of compromisethat we could make in an optimisation
problem: we could be contentwith an efficient algorithm that doesoneof the
following:� it guaranteesto find a solutionwhich is not too far from theoptimal;� it makessomerandomchoices,andguaranteesto find theoptimalwith not-

too-smallprobability;� it makessomerandomchoices,andguaranteesto find a solutionwhich is
not too far from theoptimalwith not-too-smallprobability.
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As an exampleof the first compromise,we give an algorithmwhich, underan
assumptionwhich is physicallyreasonable,findsatravelling salesmantourwhich
is guaranteedto be“not too bad”. This is the twice-round-the-treealgorithmfor
thetravellingsalesman:� Find a minimal connector(e.g. usingthegreedyalgorithmor Prim’s algo-

rithm).� Find a tour visiting all the towns andreturningto its startingpoint, using
eachedgeof thetreetwice. (We will discusslaterhow this is done.)� Take this tour, andmodify asfollows: At eachstage,godirectly to thenext
town on thetour whichhasnotyet beenvisited.Returntheresult.

In our example,thetour in thesecondstageof thealgorithmcanbechosento
be AIJIFKFGBCECBLDLHLBGFIA, andthe final travelling salesman’s tour is
thenAIJFKGBCELDHA, with length3404,not too far from optimal!

A list of distancesbetweenpairsof towns is said to satisfy the triangle in-
equalityif, for any threetownsx � y� z, wehave

d 	 x � y
�� d 	 y� z
� d 	 x � z
 ;
in otherwords,goingdirectly from x to z is no further thandetouringvia y. We
will show laterthat,if thedistancessatisfythetriangleinequality, thenthelength
of thetour foundby thealgorithmis lessthantwice theminimumpossiblelength.

Finally, we discusshow to constructthetour in thesecondstageof thealgo-
rithm, in thecasewherethe townsarerepresentedin theplane(for example,on
a map). Take the minimal connector, andreplaceeachedgeby a pair of edges.
Now, if we entera town by anedge,we leave it by oneof theedgesimmediately
adjacentin theanticlockwisesense.Sincetheminimal connectoris a tree,after
exploring thebranchalongthis edge,we returnto the town alongtheotheredge
of thispair, whenweagainmoveto thenext edgesin theanticlockwisesense.So,
whenwe leave the town alongthepair of edgesby which we originally entered,
all edgesthroughthattown havebeenusedtwice.

1.2 Graphs, tr eesand circuits

In thissectionweintroducethenotationandterminologyof graphtheory, in order
to statetheproblemsmoreprecisely.

A graphconsistsof a setV of verticesanda setE of edges, eachedgebeing
incidentwith apairof vertices.WedenotethegraphG with vertex setV andedge
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Figure1.2: A graph

setE by theorderedpair 	 V � E 
 . Figure1.2 shows a graph,in theusualpictorial
representation,with verticesrepresentedby dotsandedgesby lines.

Notethatour definitionallows two featureswhicharesometimesdisallowed:� Theremaybeseveraledgesincidentwith thesamepairof vertices.Wecall
suchedgesmultiple edges. We saw in the twice-round-the-treealgorithm
thatmultipleedgeshave theiruses!� Theremaybeanedgewith thepropertythatthetwo verticesincidentwith
it areequal.Suchanedgeis calleda loop.

A graphwithout loops and multiple edgesis called a simplegraph. (A graph
which may containthem is sometimesreferredto asa general graph or multi-
graph.) An importantexampleof a simplegraphis the completegraph Kn, the
graphwith n verticesandoneedgeincidentwith eachpair of vertices.(That is,
theedgesetE consistsof all 2-elementsubsetsof thevertex setV.)

An edge-weightedgraph is a graphwith a numberd 	 e
 associatedwith each
edgee. The total weightof anedge-weightedgraphis thesumof theweightsof
theedges.Theweightsd 	 e
 arenon-negativerealnumbers,which mayrepresent
distances,capacitiesof pipelines,costsof building communicationlinks, etc.

A walk in a graphis asequence	 v0 � e1 � v1 � e2 � v2 ��������� vn � 1 � en � vn 
 �
wherev0 � v1 ��������� vn arevertices,e1 ��������� en areedges,andei is incidentwith vi � 1

andvi for i � 1 ��������� n. Wesaythatit is awalk from v0 to vn. Two classesof walks
areparticularlyimportant:� If all theverticesaredifferent,thewalk is calledapath.� If all the verticesaredifferentexceptthat vn � v0 (andalso, if n � 2, the

two edgesaredifferent),thenthewalk is calledacircuit.

If two verticesarejoinedby a walk, thenthey arejoinedby a path.For, if the
vertex v occursmorethanonceon the walk, we candeletethe part of the walk
betweenthefirst andlastoccurrenceof v andobtaina shorterwalk. After doing
this finitely many times,wewill obtainapath.
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Proposition1.2.1 Let G ��	 V � E 
 be a graph. Definea relation � on V by the
rule that v � v� if there is a pathfromv to v� . Then � is an equivalencerelation.

Proof Therelation � is reflexive (sincev is joinedto itself by thepathwith one
vertex andno edges),andsymmetric(since,if we have a pathfrom v to w, then
reversingit givesapathfrom w to v). Wehave to prove thatit is transitive.

Sosupposethatv � v� andv� � v��� , sothatthereis a pathP ��	 v� X � v� 
 from v
to v� , anda pathP� ��	 v� � X � � v��� 
 from v� to v��� , whereX andX � aresequencesof
edgesandvertices. Then 	 v� X � v� � X � � v����
 is a walk from v to v��� . By the remark
beforetheproof, thereis apathfrom v to v��� ; sov � v� . Thiscompletestheproof.

Theequivalenceclassesof therelationin theprecedingpropositionarecalled
theconnectedcomponentsof thegraphG; andwesaythatG is connectedif it has
just oneconnectedcomponent.In otherwords,a graphis connectedif thereis a
pathbetweenany two of its vertices.

A forest is a graphwith no cycles;a tree is a connectedforest. (So the con-
nectedcomponentsof forestsaretrees.)Notethata forestis asimplegraph,since
loopsandmultipleedgesgive riseto circuitsof length1 and2 respectively.

Proposition1.2.2 Supposethata foresthasn vertices,m edges,andr connected
components.Thenn � m � r.

Proof A forest hasthe property that, if one edgeis removed, the numberof
connectedcomponentsincreasesby 1 (seebelow). Usingthis fact,theproposition
is easilyprovedby inductiononm, thenumberof edges:� If thereareno edges,theneachconnectedcomponentis a singlevertex, so

r � n, m � 0, andtheinductionstarts.� Supposethatthepropositionis truefor forestswith m � 1 edges,andlet G
bea forestwith m edges,n vertices,andr components.Removing anedge
givesagraphwith m � 1 edgesandr � 1 components.By induction,

n ��	 m � 1
���	 r � 1
 � m � r �
andwearedone.

Now let ebeanedgeof a forest,C theconnectedcomponentcontaininge. Let
v andw betheverticesincidentwith e. Now eachvertex of C is joinedto eitherv
or w by apathnot containinge. (Supposethatx is joinedto v by apathincluding
e. Thenemustbethelastvertex in thepath,elsev wouldoccurtwice. Deletingv
ande givesa pathfrom x to w not usinge.) Sowhene is deleted,C splits into at
mosttwo components.But it mustsplit: for if v andw werejoinedby a pathnot
containinge, thenaddingewouldproduceacircuit, contradictingtheassumption
thatG is a forest. Theothercomponentsareunaffectedby thedeletionof e. So
thenumberof componentsincreasesby one,asclaimed.
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Proposition 1.2.3 Let G ��	 V � E 
 bea connectedgraph.Thenthere is a subsetS
of E such that 	 V � S
 is a tree.

Proof Wegiveanalgorithmfor findingsucha tree.� Initialiseby settingS � E.� While thegraph 	 V � S
 containsacircuit, deletefrom E any edgewhich lies
in at leastonecircuit.� ReturnthesetS.

Thealgorithmclearly producesa graphcontainingno circuit. To show that it is
connected,we observe that the original graphis connected,andprove that the
edge-deletionsteppreservesconnectedness.Let thedeletededgebeincidentwith
v andw. Sincee lies in acircuit, thereis apathP from v to w not usinge. So,if a
pathfrom x to y usese, wecanreplaceeby P to find awalk from x to y notusing
e, andthenshortenthiswalk to a pathasusual.

A treewith the propertiesgiven in this propositionis calleda spanningtree
of thegraphG. If G is a weightedgraph,thena spanningtreeof G with smallest
possibletotal weightis aminimalconnector.

If agraphconsistsof acircuit, thenremoving any edgegivesriseto aspanning
tree.

Let G ��	 V � E 
 bea graph.A Hamiltoniancircuit in G is a circuit containing
all theverticesof V (eachexactlyonce).ClearlyagraphcontainingaHamiltonian
circuit is connected.Theconverseis false,andthereis no simpletestknown for
recognisingHamiltoniangraphs(thosecontainingHamiltoniancircuits). As we
will see,this is ahardproblem.

Exercise1.2.1 Prove thatKn is Hamiltonianif andonly if n !� 2.

Solution Any circuit passingthroughall verticesin any order is Hamilto-
nian,sinceeachpair of verticesis joinedby anedge.

Exercise1.2.2 Is the graphshown in Figure1.3 (the so-calledPetersengraph)
Hamiltonian?



10 CHAPTER1. INTRODUCTION

" " " "
" " " "#

######$$$$$$$% % % % % % % %'& & & (((
))))* * * * ###### $ $ $ $ $ $%%%

%%%
" " " "
" "

� �
�

�
�

� �
� ��

Figure1.3: ThePetersengraph

Solution ThePetersengraphdoesnothaveaHamiltoniancycle. Youshould
follow theargumentbelow on thedrawing of thegraph.

Considerthefiveedgesjoining theouterpentagonto theinnerpentagram.Any
Hamiltoniancircuit muststartandendeitherin theouteror in theinnercycle,and
somustuseanevennumberof theseedges.

Supposethata cycle usestwo of thecrossingedges.Thenit mustfollow the
outercyclebetweentheirouterendsandtheinnercyclebetweentheir innerends.
But if the outerendsarefour stepsapart,thenthe inner endsarenot morethan
threestepsapart.Sono cyclecanbeformedusingtwo crossingedges.

Supposethat a cycle usesfour crossingedges.We cansupposethat the one
notusedis theverticaledgein thefigure.Thenthetwo verticeson thisedgemust
bereachedby two edgesof theouterandinnercycles. This givesuseightof the
tenedgesof thecycle,andclearlythereis noway to join themup to form acycle.

If the graphG is weighted,a Hamiltoniancircuit is known as a travelling
salesmantour, andthe travelling salesmantour of minimum possibleweight is
theminimaltravellingsalesmantour. (We think of weightsasdistancesbetween
verticesin this context.)

In thefirst section,we lookedfor minimal connectorsandtravelling salesman
toursin weightedcompletegraphs(that is, every pair of verticesforms an edge
andhasaweight).

We canreversetheprocedure.Let G beanarbitraryconnectedsimplegraph
with n vertices.Weighttheedgesof thecompletegraphKn by therule that � v� w �
hasweight1 if it is anedgeof G, or 2 if not.
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haslengthn.

If G is itself a weightedgraph,we canusethe sametrick, choosinga very
largeweightfor non-edges,to reducequestionsaboutG to questionsaboutKn.

Exercise1.2.3 Let G bea simplegraph.Giveeachedge � v� w � of Kn theweight
1 if it is anedgeof G, and2 if not.

(a) Prove that theweightof a minimal connectorfor Kn is n � r � 2, wherer is
thenumberof connectedcomponentsof G.

(b) Prove that the weight of a minimal travelling salesmantour for Kn is n � s,
wheres is thesmallestnumberof edgeswhoseadditionto G givesaHamil-
toniangraph.

Solution In this questionwe have two thingsto do in eachpart: construct
a connectoror travelling salesmantour of thespecifiedweight,andshow thatno
smallerweightis possible.

(a) Choosea spanningtreein eachconnectedcomponentof G. In eachcom-
ponentwe have onefewer edgesthanvertices,so altogetherwe will have n � r
edges,with total weight n � r. Now enlarge this to a spanningtreefor Kn. We
have to addr � 1 moreedges,eachof weight2 (sincethey do not belongto G),
giving aconnectorof weightn � r � 2 	 r � 1
 � n � r � 2.

Now take any minimal connectorfor Kn. Sinceit is a tree, its edgeswhich
belongto G will form a forest, with at leastas many componentsas G; say s
components,wheres  r. Thus,we usen � s edgesof G. The remainings � 1
edgesarenot in G, andhave weight 2 	 s � 1
 . The total weight is thusn � s �
2 	 s � 1
+� n � s � 2  n � r � 2. Sotheweightof a minimal connectoris indeed
n � r � 2.

(b) Supposethat addings edgesto G gives a Hamiltoniangraph. Then a
travelling salesmantour canbeconstructedusingat mosts of theseedgesandat
leastn � sedgesof G; its totalweightis at mostn � s � 2s � n � s.

Ontheotherhand,atravelling salesmantourof weightn � t woulduseatmost
t edgesnot in G, andclearlytheiradditionto G would form aHamiltoniangraph.

1.3 Proofs

In this sectionwe give theproofsof two resultsfrom thefirst section:thegreedy
algorithmalwaysfindsa minimal connector;and,if thetriangleinequalityholds,
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then the twice-round-the-treealgorithmalways finds a travelling salesmantour
whoselengthis lessthantwice theminimum.

Theorem 1.3.1 Thegreedyalgorithm,appliedto anyweightedcompletegraph,
alwaysfindsa minimalconnector.

Proof The greedyalgorithm finds a subgraphwhich is connected(this is the
terminationcondition)andhasno cycles(this is theconditionfor an edgeto be
added),thatis, a weightedspanningtree,with edgesetS (say).We have to show
thatS is aspanningtreeof smallestweight.

Let e1 � e2 ��������� en � 1 betheedgesin S, in theorderin which theGreedyAlgo-
rithm choosesthem.Notethat

d 	 e1 
-,/.�.�.0, d 	 en � 1 
 �
since if d 	 ej 
21 d 	 ei 
 for j 3 i, then at the ith stage,ej would join points in
differentcomponents,andshouldhavebeenchosenin preferenceto ei .

Suppose,for a contradiction,that thereis a spanningtreeof smallerweight,
with edgesf1 ��������� fn � 1, orderedsothat

d 	 f1 
-, ����� , d 	 fn � 1 
 �
Thus,

n � 1

∑
i 4 1

d 	 fi 
-1 n � 1

∑
i 4 1

d 	 ei 
 �
Choosek assmallaspossiblesothat

k

∑
i 4 1

d 	 fi 
-1 k

∑
i 4 1

d 	 ei 
 �
Note that k 3 1, since the greedyalgorithm choosesfirst an edgeof smallest
weight.Thenwehave

k � 1

∑
i 4 1

d 	 fi 
- k � 1

∑
i 4 1

d 	 ei 
 ;
hence

d 	 f1 
5,6.�.�.0, d 	 fk 
-1 d 	 ek 
 �
Now, at stagek, the greedyalgorithm choosesek ratherthan any of the edges
f1 ��������� fk of strictly smallerweight; soall of theseedgesmustfail thecondition
that they join pointsin differentcomponentsof 	 V � S
 , whereS ��� e1 ��������� ek � 1 � .
It follows that the connectedcomponentsof 	 V � S� 
 , whereS� ��� f1 ��������� fk � , are
subsetsof thoseof 	 V � S
 ; so 	 V � S� 
 hasat leastasmany componentsas 	 V � S
 .

But this is a contradiction,sinceboth 	 V � S
 and 	 V � S� 
 areforests,andtheir
numbersof componentsare n �7	 k � 1
 and n � k respectively; it is falsethat
n � k  n �8	 k � 1
 .
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Theorem 1.3.2 Supposethat the edge weightsin a completegraph satisfythe
triangle inequality. Thenthetwice-round-the-treealgorithmalwaysfindsa trav-
elling salesmantour whoselengthis lessthantwicetheminimum.

Proof The algorithm producesa travelling salesmantour, as we alreadyob-
served.Let l betheweightof aminimalconnector, andL theweightof aminimal
travelling salesmantour.

We have l 1 L, sincedeletingan edgefrom a Hamiltoniancircuit gives a
spanningtree.

In the secondstepof the algorithm, we doubleevery edgeof the tree, and
producea tour (with repeatedvertices)of length2l .

In thelaststep,we takevarious“short cuts”: insteadof following theoriginal
tour from v throughverticesx1 ��������� xm to w, we go straightfrom v to w. But an
easyinductionbasedon theTriangleInequalityshows that

d 	 v� x1 
�� d 	 x1 � x2 
��9.�.�.:� d 	 xm � w
- d 	 v� w
 �
sotheseshortcutsdon’t increasetheweightof thetour. Soif thefinal weight is
L � , wehaveL � , 2l 1 2L, andwearedone.

Exercise1.3.1 Prove that,if theTriangleInequalityholds,then

d 	 v� x1 
�� d 	 x1 � x2 
��9.�.�.:� d 	 xm � w
- d 	 v� w
 �
for any verticesv� w� x1 ��������� xm.

Solution The proof is by inductionon m. Assumingthe resultwith m � 1
replacingm, wehave

d 	 v� x1 
�� d 	 x1 � x2 
��9.�.�.�� d 	 xm� 1 � xm
5 d 	 v� xm
 �
andby hypothesis,

d 	 v� xm
�� d 	 xm � w
- d 	 v� w
 �
Theresultfollows.

Exercise1.3.2 Show that, if L is the weight of a minimal travelling salesman
tour, then the twice-round-the-treealgorithmproducesa tour of weight at most
2 	 L � t 
 , wherewe can take t to be either the nth smallestedgeweight, or the
secondsmallestweightof anedgethroughany particularvertex v.
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Solution Let M betheweightof theminimalconnector. Thenthealgorithm
producesa travelling salesmantourof weightat most2M.

Now removing any edgefrom a travelling salesmantour gives a spanning
tree,whoseweight is thusnot smallerthanM. Supposewe remove the edgeof
largestweight x in the tour. Thenat leastn edgesof the completegraphhave
weight smallerthanx, so x  t, wheret is the nth smallestedgeweight. Thus
M , L � x , L � t.

Similarly, if wepick avertex v andremovetheedgeof thetravelling salesman
tour containingv andof larger weight x, then x is at leastthe secondsmallest
weightof anedgethroughv, andtheargumentproceedsasbefore.

This chapterendswith somethinga bit different. We oftenusetheprinciple
that, if oneof N possibilitiescanbe determineduniquelyasa resultof n binary
choices,thenN , 2n. (Thisis sometimescalledthe“TwentyQuestions”principle,
after thepanelgamein which thepanellistsareallowedto asktwentyquestions
with “yes” or “no” answersand have to identify someobject. Since220 is a
little greaterthana million, in theoryoneof a million objectscanbe identified.
The following exerciseshows that thereis a ternaryversionaswell, whereeach
questionis allowedto haveoneof threepossibleanswers.

Exercise1.3.3 (a) I havetwelvecoins,whichareidenticalexceptthatoneof the
coinsis eitherlighteror heavier thantheothers.I haveabalancewhichcan
comparetheweight of two setsof coins. Show that, in threeweighings,I
candeterminewhich coin is different,andwhetherit is lighter or heavier
thantheothers.

(b) Eachweighingcanhave threeresults(left-handsideheavier, right-handside
heavier, or exactbalance).Soin threeweighingsI candistinguish33 � 27
possibilities. If I had 13 coinsC1 ��������� C13, I might expect to be able to
determinewhichof thepossiblecases“Ci light”, “Ci heavy” (for 1 , i , 13)
or “ all coinsthesame”,sincethereare2 . 13 � 1 � 27 possibilities.(This
argumentshowsthatwecertainlycan’t dealwith morethan13coinsin just
threeweighings.)

Is therea schemefor determiningwhich coin out of 13 is differentin only
threeweighings?

Solution (a) Thefollowing threeweighingscanbecheckedto work:

C5 � C6 � C8 � C9 against C6 � C10 � C11 � C12 �
C2 � C3 � C4 � C10 against C8 � C9 � C11 � C12 �
C1 � C3 � C6 � C7 against C4 � C9 � C10 � C12 �
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(b) If we have 13 coins, then thereare27 possibilities(eachcoin could be
either light or heavy, or they might all be the same)to be determinedby three
weighingseachwith threepossibleoutcomes.Since33 � 27, this would only be
possibleif thefirst weighingreducedthenumberof possibilitiesto 9, thesecond
weighingto 3, andthethird weighingto justone.But considerthefirst weighing,
andsupposethatwe put m coinsin eachpan.If theleft-handpanis heavier, then
wehave2mpossibilities(acoinin theleft-handpanmaybeheavy, or acoinin the
right-handpanmaybe light). Thereis no integerm satisfying2m � 9, however,
sotheweighingis notpossible.
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Chapter 2

Problems,algorithms, computations

In thissection,wemakeprecisethenotionthatfindingaminimalconnectoris easy
while finding a minimal travelling salesmantour is hard. As saidearlier, thereis
nodifficulty in principlein eithercase,but weknow how to find asolutionquickly
in thefirst case,andwedon’t know how (andsuspectthatit is notpossible)in the
second.

Our measureof thecomplexity of a problemwill betheamountof computa-
tion resourcesrequiredto solveit, or (moreprecisely)how thisgrowsasafunction
of theamountof datarequiredto specifytheproblem.Variousresourcescanbe
considered;for example:� time, the numberof computationalstepsrequiredto solve the problemon

anidealisedmodelof acomputer;� space, themaximumnumberof bits of informationthathave to beheld in
memoryduringthecomputation;� processors, the numberof processorsused(in the caseof a parallelalgo-
rithm);� randomness, the numberof coin tossesrequiredby a “randomised”algo-
rithm.

In this courseweonly considertimeasacomplexity measure.
Of course,theexactnumberof stepstakenby a computationdependson the

precisemodelof computationthatwe use. We will take a very simplemodel,a
Turing machine. However, the mostadvancedchip ever madecanonly do the
equivalentof a boundednumberof Turing machinestepsin a singleclock cycle.
Evenin theory, thespeed-upgivenby a moresophisticatedmodelis only a poly-
nomialfactor. So,if we arenot too preciseabouttheexactnumberof steps,then
thecomputationalmodelusedis not crucial.

17
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Note: Thereis onecomputationalmodelto which this remarkdoesnot apply.
This is aquantumcomputer. Althoughaquantumcomputercannotcomputeany-
thingwhichcouldnotbecomputedonaTuringmachine,it canperformexponen-
tially many Turingmachinestepsin asinglecycle. However, quantumcomputers
havenotyet beenbuilt!

2.1 Decision,counting, optimisation

As wesaw, theproblemsof decidingwhetheragraphis Hamiltonianandof find-
ing thelengthof aminimal travelling salesmantour in aweightedcompletegraph
areverysimilar. But thereis oneimportantdifferencebetweenthem:� the first is a decisionproblem, “Is the graphHamiltonian?”,to which the

answeris simply “yes” or “no” (onebit of information);� thesecondis anoptimizationproblem, “How long is theshortesttravelling
salesmantour?”, to which theansweris anumber.

Wecouldalsovary thedecisionproblemto:� a relatedcountingproblem, “How many Hamiltoniancircuitsdoesa given
graphhave?”, to which theansweris againanumber.

Thesethreetypesof problemsaremorecloselyrelatedthanthey appear. A
decisionproblemis oftenaspecialcaseof acountingproblem.(Todecidewhether
G is Hamiltonian,wecouldcountthenumberof Hamiltoniancircuitsin G andsee
whetherthenumberis zeroor not.) A decisionproblemmayalsobeaspecialcase
of anoptimizationproblem.(As wenoted,to decidewhetherG is Hamiltonianor
not,wegiveweight1 to eachedgeof G andweight2 to eachnon-edge;thenG is
Hamiltonianif andonly if theshortesttravelling salesmantourhaslengthn.)

In theotherdirection,supposethatwehaveanoptimizationor countingprob-
lem, to which thesolutionis known to bea non-negative integerstrictly smaller
than N, for somenumberN. (The solution to a countingproblemis always a
non-negative integer; and,for example,the numberof Hamiltoniancircuits in a
graphonn verticeswill certainlynotbegreaterthann! . In thetravelling salesman
problem,if all edgeweightsarenon-negative integersnot exceedingM, thenthe
lengthof theshortesttour is anintegerat mostnM.)

In this situation,we cansolve the optimizationproblemby solving at most
log2 	 N 
 decisionproblemsof the form “Is the answerat leastK?”, for various
integersK. For, whenwritten in base2, thesolutionhas(atmost)log2 	 N 
 binary
digits, andthesecanbedeterminedoneat a time (from largestto smallest)by a
sequenceof questionsof theabove type.
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For example,if theansweris known to beatmost64andis actually27,weask
“Is theanswerat leastK?” for K � 32, 16, 24, 28, 26, 27, receiving theanswers
No, Yes,Yes,No, Yes,Yes; theseanswersreveal that the numberis 011011in
base2.

We will usuallyassumethat the solution to any optimizationproblemis an
integer. Usually therewill beana priori upperboundwhich is at mosttheexpo-
nentialof apolynomialin thesizeof theinputdata,sowecanreducetheproblem
to a polynomialnumberof decisionproblems.

2.2 Input and output

Problemswith more input data,for exampleproblemsinvolving larger graphs,
will take longerto solve; just readingtheinput will take longer. Sowe will mea-
surethecomplexity of a problemby how long it takesto solve it asa functionof
thenumberof bits of input. (We arrangethat theprobleminput is encodedasa
stringof bits.)

The preciseway in which the encodingis donewill affect the function. For
example,agraphcanbedescribedin variousways.Let usassumethatthevertices
arenumberedasv0 � v1 ��������� vn � 1.� If the graphis simple,we could give it asan incidencematrix, an n ; n

matrix with 	 i � j 
 entry1 if � vi � v j � is anedge,or 0 otherwise.This matrix
containsn2 bits of information.� This canbe improved slightly; sinceai j � a j i andaii � 0 for all i � j, it is
enoughto give theentriesai j with i 1 j. This reducesthenumberof bits to
n 	 n � 1
�< 2, slightly lessthanhalf thenumberwehadpreviously.� We could give a list of n lists, the ith list consistingof all numbersj for
which v j is adjacentto vi . This is slightly lessefficient in general,since
eachnumberj lies in theinterval = 0 � n � 1> andthereforetakeslog2n bits to
write down in base2 notation,sowemight requireasmany asn2 log2n bits
in general.However, if thegraphhasonly a few edges,thenthis methodis
better. For example,if eachvertex is joinedto exactly threeothers,thenthe
numberof bits requiredis 3nlog2n.
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Figure2.1: A graph

Considerthegraphshown in Figure2.1.Theincidencematrix isABBBBBBBBC
0 1 1 0 0 0 0
1 0 1 1 1 0 0
1 1 0 1 0 1 0
0 1 1 0 1 1 0
0 1 0 1 0 1 1
0 0 1 1 1 0 1
0 0 0 0 1 1 0

DFEEEEEEEEG
andthelists of neighboursare:

A : BC
B : ACDE
C : ABDF
D : BCEF
E : BDFG
F : CDEG
G : EF

You canseean exampleof a moderatelylarge graphon the Web. This is a
fragmentof the mathematicalcollaboration graph, whoseverticesareall math-
ematicians,two verticesadjacentif they have written a joint article. Onevery
prolific mathematicianwasPaul Erdős,who died in 1996. He hadover 500co-
authors.At thewebsite
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http://www.acs.oakland.edu/ ˜ grossman/erdoshp.html

you canfind theverticesof thecollaborationgraphat mosttwo stepsfrom Erdős
(thesenumberover 5000),with all edgesinvolving at leastonemathematician
adjacentto Erdős. The graphis given by the “lists of neighbours”method. (A
similar databasefor theKevin Bacongame,at

http://www.cs.virginia.edu/or acle /

doesnot make thelists availablebut simply looksup shortestpathsto Kevin Ba-
con.)

All thatwe requirein the representationof input datais that it is not too in-
efficient. For example,an importantproblem(relatedto cryptography)is thatof
decidingwhetheragivenpositiveintegern is prime.Theinput is thenumbern. It
couldbegivenasa stringof n ones,but this is very inefficient; we could instead
write n in base2, needingonly aboutlog2 	 n � 1
 bits. (It is simpleto test in n
stepswhethern is prime; to do it in 	 logn
 k steps,for any fixedk, is muchmore
challenging!)

2.3 Orders of magnitude

We introducesomestandardnotationfor theorderof magnitudeof a functionof
a positive integern. Let f 	 n
 andg 	 n
 betwo suchfunctions,wherewe assume
thatg 	 n
 is neverzero.� We saythat f 	 n
5� O 	 g 	 n
�
 (read“ f 	 n
 is big Oh of g 	 n
 ”) if thereis a

positiveconstantC suchthat f 	 n
�, Cg 	 n
 for all sufficiently largen.� Wesaythat f 	 n
H� o 	 g 	 n
�
 (read“ f 	 n
 is little Ohof g 	 n
 ”) if f 	 n
�< g 	 n
JI
0 asn I ∞.

Notethatwe couldreplace“all sufficiently largen” by “all n” in thedefinitionof
f 	 n
 � O 	 g 	 n
�
 , at theexpenseof increasingtheconstantabit.

Thisnotationis usefulfor comparingtherateof growth of functionsin asim-
ple way. For example,if

f 	 n
 �LK 2
27n3 � 6n2 � 3n if n is odd,
2
15n3 � 5n2 � 7n � 4 if n is even,

then f 	 n
+� O 	 n3 
 .
Typically we usea very simplefunctionfor g. For example,if f is any poly-

nomialof degreed, then f 	 n
 � O 	 nd 
 .
Exercise2.3.1 Prove that thereis no constantc suchthatn! � O 	 cn 
 . (In other
words,thefunctionn! grows fasterthanany exponentialfunction.) Is n! � O 	 nn 

true?
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Solution Weareaskedto provethattheinequalityn! , Acn is falsefor large
enoughn, for any constantsA andc. Weobservethat,if c1 1 c2, thenA1cn

1 1 A2cn
2

holdsfor largeenoughn for any positiveconstantsA1 andA2. Takinglogarithms,
we requirethat

nlogc1 � logA1 1 nlogc2 � logA2 �
andthis is trueaslongas

n 3 logA1 � logA2

logc2 � logc1
�

Soit is enoughto prove that the inequalityfails for givenc andsomevalueof A.
Wemayassumethatc is aninteger.

But clearly, for any integerc, wehaven! 3 c!cn � c �M	 c! < cc 
 cn for n 3 c, since
all factorsin theproductapartfrom 1 ��������� c aregreaterthanc.

For thelastpart,notethat

n! � 1 . 2 .�.�. n , n . n .�.�. n � nn �
socertainlyn! � O 	 nn 
 holds.

Exercise2.3.2 A function g on the naturalnumbersis said to grow fasterthan
anotherfunction f if g 	 n
+3 f 	 n
 for all sufficiently largen (thatis, all n 3 n0, for
somenumbern0). Arrangethefollowing functionsin increasingspeedof growth:

101010
n � 10n1010 � 10nlogn � nN n � 1010n10 � 1010logn � nlogn � 10n10 � n! �

Solution Weusethefactthatlogn growsslowerthanany powerof n, andan
exponentialfunctionof n grows fasterthanany power of n. Also, n! grows faster
thanany exponentialfunctionof n. But n! is smallerthannn � enlogn, sogrows
slower thanecnα

for any α 3 1.
For posersof n, wecanignoreany constants,andorderthemby theexponent:

thus,101010
n comesbefore1010n10, whichcomesbefore10n1010

.
How abouta functionlikenN n? This is equalto eN nlogn, sogrowsslowerthan

ecn, sincetheexponentO nlogn growsslowerthancn (becauselogn growsslower
thancO n).

Sofinally theorderis

1010 logn � 101010
n � 10nlogn � 1010n10 � 10n1010 � nlogn � nN n � n! � 10n10 �

2.4 Examples

In this section,we givea few examplesin aninformal style. Thesecanof course
bedonemoreformally.
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Addition of integers Theusualoperationof integeraddition,appliedto two n-
digit integersrequiresonly O 	 n
 operations.Hereis descriptionof how to addthe
integerswhosebase-b representationsarexn � 1 ����� x0 andyn � 1 ����� y0. Herediv and
mod arefunctionsgiving usthequotientandremainderin anintegerdivision,and
: � theassignmentoperator.� Let i : � 0 andc : � 0. (Herei will be thenumberof thedigit on which we

areoperatingandc the“carry”.)� While i , n � 1, do thefollowing:

– Let u : � xi � yi � c; let zi : � u modb andc : � udivb.

– Let i : � i � 1.� At theconclusionof this loop, we have i � n, andthereareno moredigits
to add.If c !� 0, thenputzn : � c.

Although xi � yi � c appearsto involve two additions,it is easyto seethat c
is either0 or 1. Sotheoperationin this stepcanbedoneby looking up tablesof
“addition carryingzero” and“addition carryingone”. Only n suchlookupsand
assignmentsarerequired.

Multiplication of integers Tomultiply twon-digit integersby theusualmethod,
we have to do n2 multiplicationsandO 	 n2 
 additions,sincea typical digit zi of
theproductis givenby

zi � x0yi � x1yi � 1 �9.�.�.�� xiy0 � carry

if i , n. We canimprove on this by breakingthe integersinto smallerparts.We
will usebase2 here.For example,if wewrite

x � u12nP 2 � u0 � y � v12nP 2 � v0 �
then

xy � w22n � w12nP 2 � w0 �
where

w2 � u1v1 �
w1 � u1v0 � u0v1 � w2 � w0 �8	 u1 � u0 
Q	 v1 � v0 
 �
w0 � u0v0 �

Thusmultiplicationof two n-bit numbersrequiresthreemultiplicationsof n< 2-bit
numberstogetherwith O 	 n
 additionsandsubtractionsof digits.
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Let T 	 n
 be the numberof stepsrequiredto multiply two n-bit numbersby
this method.Wehave

T 	 n
 � 3T 	 n< 2
�� O 	 n
 �
Fromthis recurrencerelationwefind that

T 	 n
R� Anlog3P log2 � O 	 nlogn
 �
(If it happensthatn � 2k, thenwefind thatT 	 n
S� 3kT 	 1
T� kO 	 n
 ; now k � log2n
andso3k � nlog3P log2 andkO 	 n
H� O 	 nlogn
 . If n is notapowerof 2, thenround
up to thenext powerof 2 above.)

Sincelog3< log2 � 1 � 59 ����� , this is considerablybetterthanthe O 	 n2 
 steps
requiredby theelementarymethod.Still further improvementsarepossible.So
theobviousalgorithmis notalwaysthebest!

Finding the determinant Let A beann ; n matrix. How hardis it to find the
determinantof A?

Oneway to find thedeterminantis to usetheformula

det	 A
 � ∑
σ U Sn

sign	 σ 
 a1σ V 1W a2σ V 2W .�.�. anσ V nW � (2.1)

whereSn is thesetof all permutationsof � 1 �������:� n � andsignis thesignof theper-
mutation.This is clearlyvery bad: therearen! termsto becalculated,eachterm
involving n � 1 multiplications,so thenumberof stepsis morethanexponential
in n.

For example,let

A �LXXXXXX
1 2 3
4 5 6
7 8 9

XXXXXXEquation2.1gives

det	 A
+� 1 � 5 � 9 � 2 � 6 � 7 � 3 � 4 � 8 � 1 � 6 � 8 � 2 � 4 � 9 � 3 � 5 � 7 � 0 �
Thecofactorexpansionis nobetter:thedeterminantis thesumof n cofactors,

eachan 	 n � 1
Y;Z	 n � 1
 determinant.In ourexample,

det	 A
R� 1 . XXXX 5 6
8 9 XXXX � 2 . XXXX 4 6

7 9 XXXX � 3 . XXXX 4 5
7 8 XXXXwhich involvescalculatingthreesmallerdeterminants.
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But by usingelementaryrow operations(Gaussianelimination),it is possible
to calculatethedeterminantin O 	 n3 
 operations.In theexample,

det	 A
 � XXXXXX
1 2 3
0 � 3 � 6
0 � 6 � 12

XXXXXX � XXXXXX
1 2 3
0 � 3 � 6
0 0 0

XXXXXX � 0 �
Of course,theadvantageof n3 overn! is not clearfor n � 3.

TheO 	 n3 
 canbefurtherimprovedusinga trick somewhatlike thatfor multi-
plication.

Thepermanentof a matrix is the functionworkedout by theformula for the
determinantin Equation(2.1),but leaving out thesignfactor:

det	 A
 � ∑
σ U Sn

a1σ V 1W a2σ V 2W .�.�. nσ V nW � (2.2)

For example,if A is asabove,then

per	 A
 � 1 � 5 � 9 � 2 � 6 � 7 � 3 � 4 � 8 � 1 � 6 � 8 � 2 � 4 � 9 � 3 � 5 � 7 � 450�
The permanentis importantin many matchingproblems. Here thereis no

linear algebrato help us, andnothingmuchbetterthanevaluatingall termsand
summingis known. However, wewill seethatdecidingwhetherthepermanentis
zerois sometimeseasier.

Exercise2.4.1 Show thatany algorithmfor thedeterminantof ann ; n matrix(or
evenfor decidingwhetherthematrix is non-singular)requiresat leastn2 steps.

Solution It is easyto find two n ; n matriceswhich agreein all positions
exceptone,with thepropertythatonehasnon-zerodeterminantandtheotherhas
zerodeterminant.Sowecannottell whetherthedeterminantis zeroor notwithout
at leastreadingall n2 entries!

Connectedness Givenagraph,wecancheckefficiently whetherit is connected.
Thealgorithmgivenheredoesn’t quitedothat.It beginswith adirectedgraph(one
in whicheachedgeis givenadirection,sothatit hasn initial vertex andaterminal
vertex), anda vertex s of the graph(the source),anddetermineswhich vertices
canbe reachedby directedpaths(following the arrows) from s. If the graphis
undirected,thenwe convert it into a directedgraphby replacingeachedge� x � y �
with apairof edges	 x � y
 (from x to y) and 	 y� x
 (from y to x). Now anundirected
graphis connectedif ndonly if, from any givenstartingvertex s, thereis apathto
everyvertex.
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We saythat w is an out-neighbourof v if thereis an edge 	 v� w
 , andan in-
neighbourif thereis anedge 	 w� v
 .

Thealgorithmworksasfollows. Duringthecourseof thealgorithm,weassign
numbersto thevertices;thenumberassignedto v will betheleastnumberof steps
requiredto reachv from s. The algorithmis a versionof “breadth-firstsearch”.
Therearetwo globalvariables,a non-negative integer i (recordingthenumberof
thestage)andaBooleanf (which tellsusif wehavefinished).� Begin by settingi : � 0, f : �\[^]`_ a:b , andassigningthenumber0 to s.� While f �7[^]`_ a:b , do thefollowing:

– Set f : �\cedgfhb .
– Run through the verticeswhich have beenassignedthe number i.

Whenever sucha vertex hasanout-neighbourwhich hasnot yet been
assignedanumber, assigni � 1 to it andset f : �7[^]`_ a:b .

– Seti : � i � 1.� Whenwe reachthis stage,no new assignmentshave beenmadeat the last
pass.Terminatethealgorithmandreturnthevertex assignments.

Thenumberassignedto eachvertex v is, asclaimed,theleastnumberof steps
from s to v. We prove this asfollows. First, thereis a pathfrom s to v of lengthi.
This is clearif i � 0, sinces is theonly vertex assigned0. If i 3 0, thenv is an
out-neighbourof a vertex u to which i � 1 wasassigned.By induction,we can
reachu in i � 1 steps,whencewecanreachv in i steps.

Wemustalsoshow thatthereis noshorterpath.Supposethatthis is false,and
let v bechosenso that theshortestpathfrom s to v is smallerthanthenumberi
assignedto v, and(subjectto this) that i is minimal. Clearly i 3 0. But if u is the
penultimatevertex onapathfrom v to w, thenthenumberassignedto u is equalto
its distancefrom s (which is lessthani � 1), andthealgorithmassignsa number
lessthani to v, acontradiction.

Theargumentabove shows that from theassignmentswe canfind a shortest
pathfromsto vbybacktracking.If i isassignedtov, thenchooseany in-neighbour
of v to which i � 1 is assigned,andwork backin this manneruntil s is reached.

Exercise2.4.2 Apply this algorithmto thegraphshown in Figure2.1,with each
edgeorientedin bothdirections.
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Solution The tableshows assignmentsandvertex labelsafter eachpassof
thealgorithm:

i f A B C D E F G
0 [^]`_ a:b 0
1 [^]`_ a:b 0 1 1
2 [^]`_ a:b 0 1 1 2 2 2
3 [^]`_ a:b 0 1 1 2 2 2 3
4 cedgfhb 0 1 1 2 2 2 3

Network flow A networkconsistsof a weighteddirectedgraph(having non-
negativeweights)with two distinguishedverticess (thesourceandt (the target).
A flow in a network is a function f from the setE of edgesto the non-negative
realnumberssatisfying� 0 , f 	 e
-, w 	 e
 for eachedgee;� for any vertex v !� s� t,

∑V x i vWjU E

f 	 x � v
R� ∑V vi yWjU E

f 	 v� y
 �
In otherwords,theflow in eachedgecannotexceedits capacity, andtheflow into
andout of any vertex otherthanthesourceor targetmustbalance(sothatthenet
flow outof suchavertex is zero).

It is easilycheckedthat, for any flow, thenetflow out of s is equalto thenet
flow into t; thisnumberis calledthevalueof theflow. Weareinterestedin finding
aflow whosevalueis aslargeaspossible.

If all theedgecapacitiesarepositiveintegers(andarenottoolarge),thenthere
is anefficientalgorithmto solve theproblem.It worksasfollows.

Wedefineaflow-augmentingpathto beadirectedpathwhichusesthefollow-
ing two typesof edges:

Type1: any edgee �k	 x � y
 for which theflow in e is lessthanthecapacity;

Type2: any edgee in whichtheflow is non-zero,but usedin thereversedirection
– that is, if e ��	 x � y
 hasnon-zeroflow, thenthepathis allowedto usethe
“edge” 	 y� x
 .

Now supposethatwehaveaflow f with thepropertythateachf 	 e
 is aninteger.
(We call sucha flow integral.) The following stepattemptsto augmenttheflow
(thatis, to increaseits value).

CalculatethesetS of all verticesx for which thereexistsa flow-augmenting
pathfrom s to x. (Thatis, find theverticeswhich canbereachedfrom s usingthe
above two typesof edges.)Therearetwo possibilities:
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(a) t l S. In this case,take a flow-augmentingpathfrom s to t, andmodify the
flow by increasingby onetheflow in eachedgeof thefirst typeonthepath,
anddecreasingby onetheflow in eachedgeof thesecondtype. It canbe
checked that we obtaina new flow f � whosevalueis onegreaterthanthe
valueof f .

(b) t <l S. In thiscase,let T bethecomplementarysetto S. Thens l Sandt l T.
Moreover, if C is thesetof edgesfrom Sto T, theneachedgein C carriesits
full capacityin theflow f . ThesetC is calledacut, sinceits removal leaves
no pathfrom s to t. Now no flow canhavevaluelargerthanthecapacityof
any cut (seebelow). Sotheexistenceof thecutC whosecapacityis equal
to thevalueof f demonstratesthatnoflow with largervalueis possible.

SupposethatC is any cut,consistingof theedgesfrom Sto thecomplementary
setT, and f any flow, with valuev. Theflow outof s is equalto v; sinceall other
verticesof Shave equalflow in andout, thenetflow out of S is equalto v. That
is, theflow out of S (which mustusetheedgesof C) minustheflow into Smust
beequalto v. Sothecapacityof C mustbeat leastv.

Now thealgorithmcanbegiven.� Startwith thezeroflow.� Repeatedlyattemptto augmentthe flow until no further augmentationis
possible.� At this point, returntheflow f andthecutC definedin case(b) above.

Becausethevalueof f is equalto thecapacityof C, therecannotbea flow with
largervalue.

Thenumberof timesthatwecanaugmenttheflow is notgreaterthanthesum
of the capacitiesof all the edges,so is at mostn1n2, wheren1 is the numberof
edgesandn2 the largestcapacityof anedge.Searchingfor theflow-augmenting
pathtakesat mostn1 steps.Sothewholeprocedurerunsin at mostn2

1n2 steps.
So we have givenan algorithmicproof of the following two importanttheo-

rems.

Theorem 2.4.1(Max-Flow Min-Cut Theorem) In anynetworkwith positivein-
teger capacities,themaximumvalueof a flowis equalto theminimumcapacityof
a cut.

Theorem 2.4.2(Integrity Theorem) In anynetworkwith positiveintegercapac-
ities, there is an integral flowwith maximumvalue. Such a flowcanbefoundin a
numberof stepspolynomialin thenumberof verticesandthemaximumcapacity
of an edge.
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Example Considerthe network shown in Figure2.2, in which all edgeshave
capacity1.

� �
� �� �m m m m m m`n m m m m m m`no o o o o o`p

o o o o o o`pm m m m m m m m
m m m m`no o o o o o o o o o o o`p

q
s

a c

b d

t

Figure2.2: A network

In thefirst passof thealgorithm,we might choosetheaugmentingpathsact,
andintroduceaflow of 1 in eachof theedges	 s� a
 , 	 a � c
 , 	 c � t 
 . At thenext stage,
thereis anaugmentingpathsbcadt (notethatwe usetheedge 	 a � c
 in thewrong
direction,sincethis edgecarriesa positive flow). Sowe introducea flow of 1 in	 s� b
 , 	 b � c
 , 	 a � d 
 and 	 d � t 
 , andreduceto zerotheflow in theedge 	 a � c
 . Now
thereareno augmentingpathsleaving s at all; so we have a flow of maximum
value(namely2), andtheedges	 s� a
 and 	 s� c
 form acut with capacity2.

In practice,ratherthan implementingthe algorithmfor Max-Flow asgiven,
it is moreefficient to begin by guessinga flow, reducingthe capacitiesof edges
accordingly, and then implementingthe algorithm. The larger the valueof the
flow weguess,thefewer iterationsof thealgorithmareneeded.

Exercise2.4.3 Find a maximal flow and a minimal cut in the network in Fig-
ure2.3. (Thenumberswritten on theedgesrepresentcapacities,andarrows give
directions.)

Solution We begin by guessinga flow. If weassignflow values

8 � 3 � 2 � 4 � 2 � 1 � 6 � 0 � 1 � 2 � 2 � 9
to theedges

sa� sb� ab� ad � ac� cb� be� dc � ce� de� dt � et

respectively, wehaveaflow of value11. In searchingfor anaugmentingpath,we
observe thatsacet consistsof edgesall in the positive directionandall carrying
lessthancapacity. Sowe increasetheflow in theseedgesobtaining

9 � 3 � 2 � 4 � 3 � 1 � 6 � 0 � 2 � 2 � 2 � 10
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Figure2.3: Anothernetwork

with value12. Now, in searchingfor anaugmentingpath,wefind thatwecanuse
theedgesa, but all outletsfrom a areblocked; we canusesb, thenbc (which is
carryingaflow of 1 in thereversedirection),thencet. Thisgivesanew flow

9 � 4 � 2 � 4 � 3 � 0 � 6 � 0 � 3 � 2 � 2 � 11

with value13. This time in searchingfor anaugmentingpathwefind thatwecan-
not leavetheset � s� a � b � , sotheedgesleadingoutof thisset,namely, � ad � ac� be� ,
form a cut with capacity13, demonstratingthatwe have the maximumpossible
flow.

Vanishing permanent Let A �L	 ai j 
 beann ; n matrix with non-negative en-
tries. Rememberthat the permanentof A is the sumof all the termsin the de-
terminantbut without the alternatingsigns. We saw that, althoughcalculating
thedeterminantis “easy”, calculatingthepermanentis thoughtto be“hard”. We
will give an efficient algorithmfor the simplerquestionof decidingwhetherthe
permanentof A is zero,by reducingthis questionto anetwork flow problem.

Constructa network N 	 A
 asfollows. Thevertex setis

V �M� s� r1 ��������� rn � c1 ��������� cn � t �v�
wheres is thesourceandt thetarget;theedgesareasfollows:� anedge 	 s� r i 
 for 1 , i , n;
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 if andonly if ai j !� 0;� anedge 	 c j � t 
 for 1 , j , n.

Eachedgehascapacity1.

Proposition 2.4.3 The permanentof A is non-zero if and only if the maximum
valueof a flow in N 	 A
 is equalto n.

Proof Consideringtheedgesout of s, we seethat thevalueof a flow cannotbe
greaterthann, andis equalto n if andonly if it useseveryedgeoutof s.

Supposethat the maximumvalueof a flow is equalto n. By the Integrity
Theorem,the flow realisingthis value can be taken to be integral; and it uses
every edgeout of s andevery edgeinto t. Now the flow hasvalue1 from each
r i to somec j , andclearly themapσ taking i to j is a permutationof � 1 ��������� n � .
Thus,aiσ V i W !� 0 for i � 1 ��������� n, andwe geta non-zerotermin theexpressionfor
thepermanent.Sinceall entriesarenon-negative,thepermanentis non-zero.

Conversely, if thepermanentis non-zero,thenat leastoneterm,saytheterm
a1σ V 1W a2σ V 2W .�.�. anσ V nW , is non-zero.Thenthereis aflow of valuen, usingtheedges	 s� r i 
 , 	 r i � cσ V i W 
 , and 	 ci � t 
 for 1 , i , n.

Proposition2.4.3hasanapplicationto thefamous“marriageproblem”.Weare
givenn womenandn men,with theinformationthatsomecouplesarecompatible
(thatis, they wouldbepreparedto marry),andothersarenot. Canwearrangethe
n marriagessuchthatall marriedcouplesarecompatible?

Somereadersmaybefamiliarwith Hall’sMarriageTheoremfrom GraphThe-
ory or Combinatoricscourses.According to this theorem,the compatiblemar-
riagescanbearrangedif andonly if, for any setof k women,thereareat leastk
mencompatiblewith somewomanin theset.

More formally, a systemof distinct representatives, or SDR for short, for a
family 	 Ai : i � 1 ��������� n
 of setsis a family 	 ai : i � 1 ��������� n
 of elementshaving
theproperties� ai l Ai for i � 1 ��������� n (this saysthatai is a representativeof thesetAi);� ai !� a j for i !� j (this saysthattheai aredistinct).

Now thestatementof Hall’sTheoremis asfollows.

Theorem 2.4.4 Let A1 �������:� An besubsetsof a setS. For anysetI of indices(that
is, for anysubsetI of � 1 ��������� n � ), let

A 	 I 
w�/x
i U I

Ai �
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Thenthefamily 	 Ai : i � 1 ��������� n
 of setshasa systemof distinctrepresentativesif
andonly if y

A 	 I 
 y  y
I
y

for everysubsetI of � 1 �������:� n � .
This is a very importantand useful theorem. However, sincethereare 2n

subsetsof � 1 �������:� n � , checkingthe conditionsdirectly would be very slow! But
we cando better. We restrictto thecasewhereShasexactly n elements(that is,
in theapplication,thereareasmany boysasgirls).

Defineann ; n matrixM ��	 mi j 
 , where

mi j �{z 1 if i l A j ,
0 if not.

This is sometimescalled the incidencematrix of the family of sets. Then the
permanentof M is non-zeroif andonly if thereexistsa SRDfor thefamily; that
is, if andonly if compatiblemarriagescanbe arranged.By Proposition2.4.3,
thereis anefficientalgorithmto decidewhetherthisholdsor not. Moregenerally,
any SDR correspondsto a non-zeroterm in the permanent;so the permanentis
equalto thenumberof SDRs.Thenext exampleillustrates.

Exercise2.4.4 Four womenA � B � C � D and four men W� X � Y� Z are friends. A
wouldbehappy to marryW, X or Y; B wouldbehappy with W or X; C would be
happy with W or Y; andD would be happy with W or Z. Usethe network flow
algorithmto decidewhetherit is possibleto marrythewomento themensubject
to theseconstraints.

In how many differentwayscanthemarriagesbearranged?

Solution Thenetwork is asfollows. All edgesaredirectedfrom left to right
andhavecapacity1.

� �
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Now, eitherby runningthenetwork flow algorithm,or by inspection,thereis
aflow of value4, usingtheedgessA, sB, sC, sD, AW, BX, CY, DZ, Wt, Xt,Yt, Zt,
which is clearlymaximal.So 	 A � W 
 , 	 B � X 
 , 	 C � Y 
 and 	 D � Z 
 form acompatible
pairingor matching.

Thenumberof matchingsis thepermanentof thematrixrepresentingthecom-
patibilities,namely, ABBC 1 1 1 0

1 1 0 0
1 0 1 0
1 0 0 1

DFEEG �
It is easyto seethateachof theonesin thefirst row canonly occurin onenon-zero
termcontributing to thepermanent,asshown:ABBC 1 1 1 0

1 1 0 0
1 0 1 0
1 0 0 1

D EEG ABBC 1 1 1 0
1 1 0 0
1 0 1 0
1 0 0 1

D EEG ABBC 1 1 1 0
1 1 0 0
1 0 1 0
1 0 0 1

D EEG
Sothepermanentis equalto 3, andtherearethreecompatiblematchings.These
areexactlygivenby thethreetermsshown, namely� 	 A � W 
 , 	 B � X 
 , 	 C � Y 
 and 	 D � Z 
� 	 A � X 
 , 	 B � W 
 , 	 C � Y 
 and 	 D � Z 
� 	 A � Y 
 , 	 B � X 
 , 	 C � W 
 and 	 D � Z 
 .
Sorting Oneof thecommonestjobsthatcomputersdo is sortingdata: givena
list of dataitems,in an unknown permutationof the correctorder, the taskis to
restorethelist to thecorrectorder. Weassumethattheitemsin thelist areintegers
andwe arerequiredto sort theminto increasingorder, but similar remarksapply
to any sortingtask.(Indeed,in discussingtheGreedyAlgorithm for theMinimal
ConnectorandTravelling Salesmanproblemsin Chapter1, wesaw theadvantage
of sortingthelist of pairsof townsin orderof increasingdistance.)

Eachcomparisonor movementof datacanbebrokendown into moreelemen-
tarymachinesteps;thenumberof suchstepswhich is atmostsomepolynomialin
thenumberof digitsof thenumberscompared.Sowewill simplycountthenum-
berof comparisonsrequiredby analgorithmin orderto estimatethecomplexity
of thetask.Let n bethenumberof itemsin thelist to besorted.

Therearen! possibleorderingsof thelist. By theendof a successfulsort,we
have effectively identifiedwhich oneof thesepossibilitiesactuallyoccurred.So
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the numberof comparisonsrequiredis not more than log2n! � nlog2n. (As a
resultof k yes-noquestions,wecanidentify oneof at most2k possibilities.)

ThesimplestsortingalgorithmisBubblesort: wemakerepeatedpassesthrough
the list, andwhenever we find two elementsout of order, we interchangethem.
Note that eachelementcan move at most one place in eachpass. So, if the
largestelementoccursin position i, we will needat leastn � i passes,requiring	 n � i 
Q	 n � 1
 comparisons.Weseethat� therearemany orderingsthatrequireat least 	 n � 1
 2 comparisons;� Onaverage,at leastn 	 n � 1
�< 2 comparisonsarerequired.

Clearly, this is not verygoodcomparedto our lowerbound!
Severalbettersortingalgorithmsareknown. Oneof thesimplestto describe

is Quicksort, whichworksasfollows:� Let x bethefirst elementof the list, andsplit theremainderof the list into
sublistsL � Rconsistingof elementslessthanandgreaterthanx respectively
(this requiresn � 1 comparisons).� Recursively sortL andR.� Return = L (sorted),x � R (sorted)> .

It canbeshown that this takesaboutcnlogn comparisonson average.Thereare
still someorderswhich requireaboutcn2 comparisons(paradoxically, if the list
is alreadysorted,we requirethemaximumnumbern 	 n � 1
�< 2 of comparisons!),
but therearestrategiesto avoid this problem.

Sortingis avitally importantpracticalproblem,andany advancewhichshaves
abit of time from asortingalgorithmis worthpursuing.However, from thepoint
of view thatwe take in this course,thedifferencein complexity betweenBubble-
sortandQuicksortis of no significance;eithercanbeperformedin time polyno-
mial in thesizeof theinputdata.Soweregardsortingasan“easy”problemfrom
acomputationalpoint of view.

Exercise2.4.5 Another sorting algorithm is Mergesort, which operatesas fol-
lows:� Divide the given list L into two nearlyequalpartsL1 andL2 (containing�

n< 2� and � n< 2� itemsrespectively).� SortL1 andL2.� Merge the sortedlists, by startingwith an emptylist M andrepeatingthe
following operation:
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Let a1 anda2 bethefirst entriesin L1 andL2; removethesmaller
of L1 andL2 from its list andaddit to thefinal list;

until L1 andL2 areempty. ReturnM.

Show thatthelargestnumberF 	 n
 of comparisonsrequiredby Mergesortsatisfies

F 	 n
+� n � 1 � F 	 � n< 2��
�� F 	h� n< 2��

anddeducethatF 	 n
+� O 	 nlogn
 .

Solution Sorting L1 and L2 takes at most F 	 � n< 2�h
H� F 	�� n< 2�h
 compar-
isons,andtherewill be someorderingsfor which this numberis required. The
merge steprequiresat mostn � 1 comparisons,sinceonceoneof L1 andL2 is
empty, no morecomparisonsarerequired.Clearlythis boundis alsoattained.So
wehaveprovedtherecurrencefor F.

To show that F 	 n
5� O 	 nlogn
 , it suffices to prove this whenn is a power
of 2. For supposethatF 	 n
�, cnlogn whenn is a power of 2, andlet m be the
leastpowerof 2 notsmallerthann. Then

F 	 n
�, F 	 m
�, cmlogm , 2cnlog 	 2n
 �
asrequired.

Now for powersof 2, wecanproveby inductionamorepreciseresult,namely

F 	 2k 
+��	 k � 1
 2k � 1

for k  1. For we clearly have F 	 1
�� 1, so the result holds for k � 1. Now,
assumingthatit holdsfor k, wehave

F 	 2k � 1 
+�k	 2k� 1 � 1
���	�	 k � 1
 2k � 1
���	�	 k � 1
 2k � 1
+� k2k� 1 � 1 �
andtheinductivestepis done.

A morechallengingexercise,which you might like to try yourself,is to show
that, if 0 , t , 2k, thenF 	 2k � t 
-�L	 k � 1
 2k � 1 � t 	 k � 1
 . In otherwords,F
grows linearlybetweenany two successivepowersof 2.

Exercise2.4.6 I aman industrialistwho needsthesolutionto the“widget prob-
lem” for designinggizmos.I amaverybusyman,andcanonly afford to wait for
oneweekfor asolutionto theproblemin any particularcase.

(a) The standardalgorithmfor the widget problemsolvesan instanceof sizen
of the widget problemby runningthroughall n! permutationsof the con-
stituentparts.My supercomputercangenerateapermutationin onenanosec-
ondandtestit in four nanoseconds.(Onenanosecond= 10� 9 second.)How
largeaninstanceof thewidgetproblemcanI solve?
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(b) A new algorithmfor theproblemhasbeendevisedwhichonly involveslook-
ing through1000n3 possiblepermutationsinsteadof all n!. Thesecon-
figurationsaremorecomplicatedto generate;eachtakesonemicrosecond
( � 10� 6 second).They canstill betestedin four nanoseconds.If I usethe
new algorithm,how largeaninstancecanI solve?

Solution Thenumberof secondsin aweekis 7 ; 24 ; 60 ; 60 � 604800.

(a) Generatingandtestingonepermutationtakes5 ; 10� 9 seconds,sothenum-
berof permutationswe cancheckis 604800<J	 5 ; 10� 9 
�� 1 � 2 ; 1014. So
thenumbern mustsatisfy

n! , 1 � 2 ; 1014 �
or n , 16.

(b) This time, generatingandtestingonepermutationtakes1 � 004 ; 10� 6 sec-
onds,sothenumberwecancheckis 604800<J	 1 � 004 ; 10� 6 
�� 6 � 02 ; 1011.
Sothenumbern mustsatisfy

1000n3 , 6 � 02 ; 1011 �
or n , 844.



Chapter 3

Complexity: � and � �
In this sectionwe give a formal definitionof a Turing machine,of thecomputa-
tional complexity of a decisionproblem,andthecomplexity classes

�
and � � .

3.1 Turing machines

In this sectionwe describeTuring machines,our basicmodel of computation.
AlthoughTuring machinesappearratherlimited, it is believedthatno methodof
computationis morepowerful. This is theChurch–Turing thesis, whichstates:

Any problemwhich canbesolvedon any mechanicalcomputational
devicecanbesolvedon aTuringmachine.

Of coursethis is notamathematicaltheorem;rather, it is astatementof whatcom-
putationmeans.Certainlynodeviceeverconstructedor evenimagined(including
aquantumcomputer)haseverviolatedthis thesis.

Similarly, any computingdevicewhichcurrentlyexistshasthepropertythatit
is “not muchfaster”thana Turing machine:moreprecisely, for any suchdevice
D, thereis a polynomialp suchthat, if D solvestheproblemin n steps,a Turing
machinesolvesit in p 	 n
 steps.(This is notanactof faith for thefuture;it would
befalsefor aquantumcomputerif onewerebuilt.)

A Turing machinehastwo components:aread/writeheadandatape.Thetape
is a line of unit squares,infinite in both directions,andthereis a finite alphabet
A �{� a1 ��������� an � suchthat eacheachsquareof the tapeeither is blank or hasa
symbolfrom A written on it. We assumethatonly a finite numberof squaresare
not blank. Thusthe informationstoredis finite, but we do not put any limit on
thenumberof bitswecanstore.For easeof expositionweassumethat“blank” is
representedby aspecialsymbolβ l A. Oftenwe take theothersymbolsto bethe
binarydigits 0 and1. Figure3.1shows theidea.

37
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β β x1 x2 x3 x4 x5 x6 . . .�����

si

�
x j l�� a1 ��������� an �

Figure3.1: A Turingmachine

Theheadmovesover thetape,so thatat any givenclock cycle it is scanning
onesquareof the tape. It alsocanbe in any oneof a finite setof internal states
S �{� s1 �������:� sr � . Usually we assumethat thereis a distinguishedstarting state;
thereis no harmin alsoassuminga stoppingstate, asweshallsee.

The actionof the machineis specifiedby giving a list of instructions. Each
instructionhastheform

If theheadis in statesi andit is scanningasquarecontainingsymbol
a j , thenit shoulddooneof thefollowing actions:� moveonesquareleft;� moveonesquareright;� changethesymbolon thesquareto ak;

andchangeinto statesl .

Eachsuchinstructioncanberepresentedbyaquadruplesia jLsl , sia jRsl , orsia jaksl .
TheTuringmachineis completelyspecifiedby thelist of quadruples.

A Turing machineis deterministic(for short,a DTM) if, for any si l S and
any a j l A, thereis at mostonequadruplein the list beginning sia j ; it is non-
deterministic(for short,aNDTM) otherwise.

Supposethat a DTM is startedwith the headin statesi scanninga square
carrying symbol a j . If thereis a quadruplebeginning sia j , the machinetakes
theappropriateaction.At thenext clock cycle, it is in anew statescanninganew
symbol,andtheprocessrepeats.If thereis norelevantquadruplein theinstruction
list, themachinehalts. Only computationswhich halt canactuallyberegardedas
producinga result,soweareinterestedin these.

If the machinedoeshalt, we may assumethat whenit doesso it is in a dis-
tinguishedstoppingstatesH not usedfor any otherpurpose.This is achievedby
listing all pairssia j which do not occurat thestartof any quadruple,andadding
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for eachanew quadruplesia ja jsH (thatis, “leave thesymbolscannedasit is and
move into statesH”). Sinceno quadruplebegins sH , the new machinewill now
halt in this state.

For a NDTM, the differenceis that the machinemay have a choiceof in-
structionsat somestage.In this case,in a particularcomputation,it choosesone
instructionto obey. So we have a branchingtreeof possiblecomputationpaths.
Somepathsmay leadto the machinehalting, while othersleadto it continuing
forever. Again,we areonly interestedin computationpathswhich halt; againwe
mayassumethatthemachinehaltsin adistinguishedhaltingstate.

Example Thefollowing list of quadruplesdefinesaTuringmachinewhichdoes
thefollowing job. If we write a numbern on thetapein base2, andput thehead
in an initial states0 scanningthe blank squareimmediatelyto the right of the
number, it replacesn by n � 1 andreturnsto its startingsquarebeforehalting in
statesH . Checkthis by trackingits operationona numberof yourchoice.

s0βLs1

s110s2

s20Ls1

s101s3

s1β1s3

s30Rs3
s31Rs3
s3ββsH

Table3.1: A Turingmachineprogram

A coupleof observationsare in order. First, we have not specifiedhow the
machineshouldact if it is not setup accordingto thespecification.Indeed,if it
startsin states0 not scanninga blank, it doesnothing;andif it startsscanninga
blank not immediatelyto the right of a binary string, it changesthe blank to its
left to a1 andthenhalts.

Second,not all state-symbolpairsoccur in quadruples.If the machineis in
states2, it expectsto be scanninga zero: the only way states2 arisesin normal
operationis whenthemachinehaschangeda1 to a0 andis aboutto move left.

Exercise3.1.1 ConsidertheTuring machinedefinedby the following seventeen
quadruples.Thestatesares0 � s1 � s2 � sH � t1 ��������� t7, andthetapesymbolsareβ (blank),
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0 and1.

s0βLt1 s1βRt2 s2βLt6
t1β0s1 t2βLsH t610t7
s10Rs1 t211t3 t70Lt6
s11Rs1 t31Rt3 t601s1

t3βLt4 t6β1s1

t41βt5
t5βLs2

s21Ls2

(a) Show that,if themachineis in states0 scanninga blanksquarewith a blank
squareto its left, thenit writes0 in thesquareto the left andreturnsto the
startingsquarein states1 in threemoves.

(b) Show that,if themachineis in states1 scanninga blanksquarewith a blank
squareto its right, then it halts on the startingsquarein statesH in two
moves.

(c) Show that,if themachineis in states1 scanningablanksquarewith astringof
1sof lengthn (followedby a blank)to its right, thenit erasestherightmost
1 andreturnsto its startingsquarein states2 in O 	 n
 moves.

(d) Show that, if the machineis in states2 scanninga blank squarewith the
numbern written in base2 immediatelyto its left, thenit replacesn with
n � 1 andreturnsto its startingsquarein states1 in O 	 logn
 steps. (You
maywish to comparethetriplesin thethird columnabovewith anexample
from lectures.)

(e) Now supposethatthemachinestartsin states0 scanningablanksquarewith
n onesimmediatelyto its right (andthe restof the tapeblank). Show that
it terminateson its startingsquarein statesH in O 	 n2 
 steps.Describethe
configurationon thetapewhenthemachinehalts.

Solution For simplicity I will write ����� a1a2 = si > a3 ����� to denotethat the tape
hasthesymbols����� a1a2a3 ����� written on it andthemachineis in statesi scanning
thesquarewith a2 written.

(a) Thefirst threeinstructionsshow that����� ββ = s0> ����� I ����� β = t1 > β ����� I ����� 0 = s1 > β ����� I ����� 0β = s1 > �����
(b) Thefirst two instructionsin thesecondcolumnshow that����� β = s1 > β ����� I ����� ββ = t2 > ����� I ����� β = sH > β �����
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(c) In two steps,wehave����� β = s1 > 111 ����� 11β ����� I ����� β1 = t2 > 11 ����� 11β ����� I ����� β1 = t3> 11 ����� 11β �����
Now while themachineis in statet3 scanninga 1, it movesright. This happensn
timesuntil we have ����� β111 ����� 11β = t3 > �����
Thenext stepsare����� β111 ����� 11= t4 > β ����� I ����� β111 ����� 1β = t5> β ����� I ����� β111 ����� 1 = s2 > ββ �����
At this point therearen � 1 oneson the tape,andthe machinemovesright for
n � 1 stagesto reach ����� β = s2 > 111 ����� 1ββ �����
in 2n � 4 stepsaltogether.

(d) Considerthenumbern written in base2. Supposethat the longestrun of
onesstartingat the right (the units digit) is k (this includesthe possibility that
k � 0, if the numberhasunits digit zero. Theneither the numberin base2 is
11 ����� 1 (k ones)which is equalto

2k � 1 � 2k � 2 �9.�.�.�� 2 � 1 � 2k � 1 �
or it is � 011 ����� 1 � N � 2k � 1, whereN is representedby thestring � . Notethat
n  2k � 1, sothatk , log2n � 1.

Now supposethat we startwith the secondcase,namely � 011 ����� 11β = s2> �����
Onesteptakesusto � 011 ����� 11= t6 > β ����� . Thenwehave� 011 ����� 11= t6> β ����� I�� 011 ����� 10= t7 > β ����� I�� 011 ����� 1 = t6 > oβ �����
In otherwords,in two stepsthe machinechangesa 1 to a 0 andmovesleft. So
after2k stepswehave � 0 = t6 > 0 ����� 00β ����� . Next� 0 = t6 > 0 ����� 00β ����� I�� 1 = s1 > 0 ����� 00β �����
following which the machinemovesright for k stepsto reach � 10 ����� 00β = s1> �����
Thebinarynumber � 10 ����� 00 is equalto N � 2k � n � 1, andthetotal numberof
stepstakenis 1 � 2k � 1 � k � 0 	 log2n
 .

In the other case,wheren � 2k � 1, the operationis the sameexcept that
insteadof changinga 0 to a 1 themachinechangesa β to a 1 giving thenumber
10 ����� 00 � 2k � n � 1. Thenumberof stepsis thesame.

(e) Let usdenoteby � n � thenumbern in base2 written on thetape.Starting
with ββ = s0 > 1 ����� 1β ����� (with n onesin the string), the machinefirst writes a 0 to
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theleft (after threesteps).We canwrite this configurationas � 0 � β = s1 > 1 ����� 1β ����� .
Now, after O 	 n � log2n
 steps,it removesa 1 from the string to the right and
increases� 0 � to � 1 � , resultingin � 1 � β = s1 > 1 ����� 1β ����� (with n � 1 onesin thestring).
After a similar time, it becomes� 2 � β = s1> 1 ����� 1β ����� (with n � 2 ones).That is, it
repeatedlyremoves1 from thestringandincreasesthenumberwritten to theleft
by one. After doing this n times(which takestime nO	 n � log2n
�� O 	 n2 
 ), we
reach� n � β = s1> β ����� . Thenby (b), two morestepstake usto � n � β = sH > β ����� andthe
machinehalts.Sotheoperationof themachinecanbedescribedasfollows:

If startedin states0 onablanksquarewith astringof onesto theright
andtherestof thetapeblank,it countstheones(anderasesthem)and
writes thenumberof onesin base2 to the left, thenhalts;all this in
timeO 	 n2 
 .

Exercise3.1.2 Outlinetheconstructionof aTuringmachinewhich,whenstarted
on a blank squarewith the numbern written in base10 to its left on the tape,
decideswhethern is divisible by 3. [Hint: How would you decidewhethern is
divisible by 3? How would you do this if you couldonly remembera very small
amountof informationwhile youdothesum?]A detailedlist of quadruplesis not
required,but youshouldexplain theprinciplesthatyour machineuses.

Solution The basictest is that a numbern is divisible by 3 if andonly if
the sumof its digits is divisible by 3. To test this, we don’t have to remember
the sumof the digits, but only the summodulo3, andwe canusethreeTuring
machinestates(sayt0 � t1 � t2) to do this. So, if themachineis in stateti scanning
the digit j, it shouldmove onesquareto the left andmove into statetk, where
k � i � j 	 mod3
 . When it finishesreadingthe numberand reachesa blank
square,it returnstheanswer“yes” if it is in statet0 and“no” otherwise.

The following setof quadrupleswill do the job. For a change,we usetwo
haltingstates,sYES andsNO, to signify theanswer.

s0βLt0

t00Lt0 t01Lt1 t02Lt2 t03Lt0 t04Lt1 t05Lt2 t06Lt0 t07Lt1 t08Lt2 t09Lt0
t10Lt1 t11Lt2 t12Lt0 t13Lt1 t14Lt2 t15Lt0 t16Lt1 t17Lt2 t18Lt0 t19Lt1
t20Lt2 t21Lt0 t22Lt1 t23Lt2 t24Lt0 t25Lt1 t26Lt2 t27Lt0 t28Lt1 t29Lt2

t0ββsYES t1ββsNO t2ββsNO

This machineis clearlyoptimally efficient: by thetime it hasfinishedreadingall
thedigits, it hasworkedout theanswer.

Wecanimagineimproving theefficiency of aTuringmachinein variousways.
We couldallow it to changethesymbolandmove theheadin a singleoperation.
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Wecouldallow it to moveseveralsquaresleft or right, insteadof just one.(How-
ever, therearegoodreasonswhy the lengthof a jump shouldbe bounded.The
finite numberof state-symbolpairscannotencodeinfinitely many jump lengths,
andphysicallythedistancemovedin oneclockcycle is boundedbecausethehead
cannotmovefasterthanthespeedof light.) Wecouldreplacetheone-dimensional
tapewith a multi-dimensionalarray;we couldequiptheheadwith its own mem-
ory in the form of a stack. We could even allow several communicatingheads
(with restrictionsas for jumps). It can be shown that noneof theseimprove-
mentsenlargestheclassof computationswhich canbeperformed;and,although
they speedup computationssomewhat, they do not changethedefinitionsof the
classes

�
and � � , to whichwe turn next.

3.2 � and ���
We say that a deterministicTuring machinesolvesa decisionproblemP if the
following is true. Supposethat the input for P is written (in binarynotation)on
thetape,andthemachineis in thestartingstatescanningtheblanksquarejust to
theleft of thedata.Thenit haltswhenthereis only onenon-blanksquare;thehead
is scanningthis squareandis in thehaltingstate;andthesymbolin thesquareis
1 if theanswerto thedecisionproblemis “yes”, or 0 if it is “no”.

A non-deterministicTuringmachinesolvestheproblemif, with thesameini-
tial conditions,thereis at leastonecomputationalpathwhich leadsto the same
result.

It follows from the Church–Turing thesisthat, if a decisionproblemhasa
mechanicalor algorithmicsolution,thenthereis a(deterministic)Turingmachine
whichsolvesit. Now weareinterestedin how many stepssuchaTuringmachine
takes.It followsfrom ourcommentsthat,if wecountthenumberof “elementary”
stepstakenby our algorithm,the thenumberof Turing machinestepsis not too
muchgreater.

Wedistinguishbetweenaproblem� andaninstanceof � . Justknowing thata
particularquestion,specifiedby 100bitsof data,canbesolvedin 1000000Turing
machinesteps,givesus no informationabouthow hardthe generalquestionis:
thecomplexity might be10000n, or n3, or even22N n. Accordingly, wedefinethe
complexity of a decisionproblem� to bethefunction f � f� definedasfollows:� Thesizeof aninstanceof � is thenumberof bitsof datarequiredto specify

thatinstance.� f 	 n
 is thesmallestintegerN suchthat thereexistsa deterministicTuring
machinewhich solvesany instanceof � of sizen in at mostN steps.



44 CHAPTER3. COMPLEXITY:
�

AND � �
Then we say that � is polynomial-timesolvable, or belongsto the class

�
, if

f��	 n
 � O 	 nk 
 for someintegerk.

We take theview herethatproblemsin
�

arethosewhich are“easy”
or tractable, andproblemsnot in

�
are“hard” or intractable.

Note that this definition refersto the “worst case”of the problem. It may
be that a typical probleminstancecan be solved very quickly, but thereare a
few recalcitrantinstanceswhich take muchlonger. (Somepeoplearguethat an
“averagecase”complexity is moremeaningful. It is certainlytrue that thereare
many importantproblemswherethe averagecaseis mucheasierthanthe worst
case.)

Note also that the definition says“there exists a Turing machine”, that is,
“there exists an algorithm”. So, to show that a problem � is polynomial-time
solvable,all wehave to do is to exhibit analgorithmwhichwill solve thepolyno-
mial in a polynomialnumberof steps.Our earlierargumentsshow that it is not
evennecessaryto translatethealgorithminto a Turing machine;we canbequite
informal aboutthedefinitionof steps.Soall theproblemsin thefinal sectionof
the precedingchapterarein

�
. However, to show that a problemis not in

�
is

usuallymuchmoredifficult: we have to show that thereis no possiblealgorithm
whichcanguaranteeto solve theproblemin apolynomialnumberof steps.

Analogously, wesaythataproblemis non-deterministicpolynomial-timesolv-
able, or belongsto � � , if thereis a non-deterministicTuring machinewhich has
anacceptingcalculationfor any positiveinstanceof theproblemandtakesatmost
nk stepsfor somek, wheren is thesizeof theinput.

Sincenon-deterministiccomputationsarequite hardto think about,we give
anotherinterpretation.To specifya computationpathof a non-deterministicTur-
ing machine,wehaveto givesomeadditionalinformationwhichtellsthemachine
which instructionto executeateachpointwhereanambiguityarises.Wecanturn
this into a deterministiccomputationasfollows. We give all the requiredinfor-
mation in advance,so that the machineis presentedwith both the datafor the
problemandsomeadditionaldataforming a “certificate”. Now we requirethat
themachinecanperformadeterministiccomputation,usinginformationfrom the
certificateaswell astheproblemdata,andterminatewith theanswer“yes” pre-
ciselyin thecasewherethesolutionto theproblemis “yes”.

For example,theproblem“Givenagraph,doesit haveaHamiltoniancircuit?”
is in � � . Thecertificateis just theHamiltoniancircuit. Youcanthink aboutit like
this:� aproblemis in

�
if it canbesolvedquickly;
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certificateto do thechecking.For example,I canquickly convinceyou that
agraphis Hamiltonian,just by showing youaHamiltoniancircuit.

A featureof this definition is that, whereasthe negationof a problemin
�

is also in
�

(sincewe can just performthe calculationfor the original problem
andthennegatethefinal answerin onemorestep),thenegationof a problemin� � is not necessarilyin � � . Although I canquickly convince you that a graph
is Hamiltonian,I will have a muchharderjob convincing you thata graphis not
Hamiltonian!

Exercise3.2.1 Show that the following decisionproblemin in � � . You may
argueinformally; you arenot requiredto constructa Turing machineto solve the
problem.

Compositenumber

Instance:A positive integern in base2 notation.

Problem:Is n composite?

Solution To show thattheproblemis in � � , wehave to show thatthereis a
certificatefor any positive instanceof theproblem,suchthatgiventhecertificate,
thecorrectnessof thepositive answercanbeverified in a polynomialnumberof
steps.

Giventhatthenumbern is composite,wetakethecertificateto beanumberm
suchthat1 1 m 1 n andm dividesn. Thesizeof theinput datais thenumberof
bitsnecessaryto write n in base2, whichis � log2n � 1� . Thesizeof thecertificate
m is smallerthanthis, andthedivision sumcanbedonein a polynomialnumber
of steps.

Any problemwhich is in
�

is in � � : just usethe emptycertificate. So
���� � . Since � � containsmany problems(suchastheHamiltoniancircuit problem)

which areregardedas“hard” (andwhereno polynomial-timealgorithmhasever
beenfound,despitea lot of effort), it is widely believedthat

� !�k� � . This is the
outstandingopenproblemof complexity theory.

On 24 May 2000, the Clay MathematicalInstitute announcedseven prizes,
eachworth onemillion U.S.dollars,for thesolutionof sevenof themajorprob-
lemsin contemporarymathematics.Thefirstproblemonthelist is thatof deciding
whether

� !��� � . SeetheWebpageat

http://www.claymath.org/prize problems/p vs np.htm

for moreinformation.
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3.3 Polynomial transformations

Let � and� bedecisionproblems.
We say that there is a polynomial transformationfrom � to � if, for any

instanceX of � of sizen, thereis a Turing machinewhich calculatesaninstance
Y of � in a numberof stepswhich is boundedby a polynomialin n, andhasthe
propertythat the answers(“yes” or “no”) to the two instancesX andY are the
same.

More precisely, we canassumethat the Turing machinebegins scanningthe
squarejust to the left of theinput datafor theinstanceX; it writes theinput data
for theinstanceY onthetape,deletesthedatafor X, andhaltsscanningthesquare
immediatelyto theleft of thedatafor Y.

Sincethe machineonly takesa polynomialnumberof steps,the sizeof the
instanceY is boundedby apolynomialin thesizen of instanceX.

As usual,we don’t have to be so formal in practice. To show the existence
of a polynomialtransformationfrom � to � , it sufficesto give an algorithmto
translateany instanceof X into aninstanceof Y with thesamesolution,andargue
informally thatthealgorithmrunsin polynomialtime.

As anexample,let usconsiderthetwo problemsHC (Hamiltoniancircuit) and
TSP(Travelling SalesmanProblem)specifiedasfollows:

HC (Hamiltoniancircuit)

Instance:A graphG.

Problem:DoesG haveaHamiltoniancircuit?

TSP (Travelling salesman)

Instance:A weightedcompletegraph,whereweightsarepositiveintegers,anda
positive integerL.

Problem:Is thelengthof ashortesttravelling salesmantour at mostL?

This is theway in which wewill specifydecisionproblems.
Thereis a polynomialtransformationfrom HC to TSP, which we saw in the

first chapter. GivenagraphG on n vertices,weassignweightsto theedgesof the
completegraphKn by the rule that w 	 e
-� 1 if e is an edgeof G, andw 	 e
5� 2
otherwise. Then the shortesttravelling salesmantour haslength (at most) n if
andonly if G is Hamiltonian.Clearlythis transformationof graphsinto travelling
salesmandatacanbeperformedefficiently.
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Themostimportantconsequenceof thedefinitionis thefollowing.

Proposition 3.3.1 Supposethat there is a polynomialtransformationfrom � to� . If � is in
�
, then � is in

�
; andif � is in � � , then � is in � � .

Proof We aregiven that thereis a Turing machineT1 which transformsan in-
stanceX of � of lengthn into an instanceY of � with thesameanswerin time
at mostp 	 n
 , wherep is a polynomial. Thesizeof Y is at mostq 	 n
 , whereq is
polynomial,aswe remarkedabove.

If � is in
�
, thenwe arealsogiven that thereis a Turing machineT2 which

solvesY in time polynomialin its size,that is, r 	 q 	 n
�
 , wherer is a polynomial.
Now let T be the Turing machinewhich simulatesthe operationof T1 until it
halts,andthentheoperationof T2. (Take T1 andT2 to have disjoint setsof states,
andthenidentify thehaltingstateof T1 with theinitial stateof T2.) Theresulting
machinesolvesX correctlyin time p 	 n
�� r 	 q 	 n
�
 , which is polynomialin n.

Theargumentfor � � is similar, usinga non-deterministicTuring machinein
placeof T2 to solveY.

Intuitively, regardingpolynomial-timeas“easy”, this means:

If thereis a polynomial transformationfrom � to � , then � is no
harderthan � .

Also, we notethe following. If � is in
�
, and � is any problemfor which

the answeris not always“yes” andnot always“no”, thenthereis a polynomial
transformationfrom � to � . Simply take two instancesY0 andY1 of � , oneof
which hasanswer“yes” andtheotherhasanswer“no”. Givenany instanceX of� , wecansolveit in polynomialtimeandthenwrite onthetapethedatafor either
Y0 or Y1 dependingonwhattheanswerto X is.

In particular, any non-trivial problemin
�

hasapolynomialtransformationto
any other.

3.4 Cook’sTheorem; ��� -completeness

As we have said,we regardproblemsin
�

aseasy. Theclass � � containsmany
problemswhich are commonlyregardedashard, suchas the Travelling Sales-
man. The remarksat theendof the lastsectionshow that theproblemsin

�
are

all equivalentwith respectto polynomialtransformation,andform the “easiest”
problemsin � � .

Cook’s Theoremshows that thereis anothersubclassof � � whosemembers
arethe“hardest”problemsin � � (andagainareall equivalent).Theseproblems
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arecalled � � -complete.Amongthe � � -completeproblemsareourold favourites
HC andTSP, aswewill see.Hereis theformaldefinition.

A problem� is saidto be � � -completeif� � is in � � ;� for any problem� in � � , thereis a polynomialtransformationfrom � to� .

Immediatelyfrom the definition, we seethat � � -completeproblemsarethe
hardestin � � . Indeed,thefollowing holds.

Proposition3.4.1 Let � beany � � -completeproblem.If there is a polynomial-
timealgorithmfor � , then

� ��� � .

For, by definition,for any problem� in � � , thereis apolynomialtransforma-
tion from � to � ; so,if � is in

�
, thensois � . Sofinding anefficient algorithm

for any onesuchproblemwouldwin themillion dollarsfrom theClayMathemat-
ical Institute!

How do we know that � � -completeexist? This is thecontentof Cook’s The-
orem.First,we definetheproblemCookconsidered,thesatisfiabilityof Boolean
formulae,or SAT for short.

A Booleanformula is onebuilt up from Booleanvariablesx1 ��������� xn (eachof
which cantake the valuestrue or false, by meansof connectives: � (negation,
“not”), � (conjunction,“and”), and   (disjunction,“or”). The connectivesare
evaluatedaccordingto theusualtruth tables.

A BooleanformulaF is saidto bein conjunctivenormalform(for short,CNF)
if it hastheform

F � C1 � C2 �¡.�.�.�� Cm �
whereeachclauseCi hastheform

Ci �k	 ui1   ui2  ¡.�.�.�  uir i 
 �
andeachliteral ui j is eithera variablexmi j or a negatedvariable 	¢� xmi j 
 (which
we write for shortasxmi j 
 ). It is a theoremof Booleanlogic thatany formula is
equivalentto onein conjunctivenormalform.

An assignmentof valuesto the Booleanvariablesis said to be a satisfying
assignmentfor a formula F if the truth valueof F with this assignmentis true.
If F is in CNF, thenin a satisfyingassignment,eachclauseCi mustget thevalue
true; soat leastoneliteral ui j in eachclausemustgetthevaluetrue (whichmeans
thatxmi j takesthevaluetrue if ui j � xmi j , or thevaluefalse if ui j � xmi j 
 ).
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For example,theformula	 x1   x2   x3 
��£	 x2 � x4 

is satisfiedby theassignment

x1 �\[^]`_ a:b � x2 �7ced¤fhb � x3 �7[^]`_ a:b � x4 �\cedgfhb
(andindeedby many otherassignments).

Exercise3.4.1 For eachof thefollowing Booleanformulae,(i) is it in conjunctive
normalform, (b) is it satisfiable?[Recallthatx meansthenegationof x.]

(a)F � x1 � x3 � x26 � x1.

(b) G �k	 x1   x2   x3 
��¥	 x1   x2   x3 
��¡	 x1   x2   x3 
��¡	 x1   x2   x4 
��¡	 x3   x4 
¦�	 x3   x4 
��£	 x3   x4 
 .
Solution

(a) This formula is in conjunctivenormalform. (Notethateachclausecontains
justoneliteral; this is permitted.)It is notsatisfiablesincenoassignmentof
truthvaluescangivebothx1 andx1 thevalue ced¤fhb .

(b) This formula is in conjunctive normal form; and it is not satisfiable. For
the only way of satisfyingthe last threeclausesis to put x3 ��[^]`_ a:b and
x4 �7ced¤fhb ; thento satisfythefirst four clausesrequiresthateachof thefour
combinations	 x1   x2 
 , 	 x1   x2 
 , 	 x1   x2 
 and 	 x1   x2 
 mustbesatisfied,
which is clearlynotpossible.

Now thesatisfiabilityproblemis asfollows.

SAT (Satisfiabilityof Booleanformula)

Instance:A BooleanformulaF in CNF.

Problem:DoesF haveasatisfyingassignment?

Theorem 3.4.2(Cook’s Theorem) TheproblemSAT is � � -complete.
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Proof This is not a completeproof,moreanillustrationof whatis required.We
have to show two things: that SAT is in � � ; andthat any problemin � � hasa
polynomialtransformationto SAT.

The first statementis easy. A suitablecertificatefor a satisfiableformula is
just a satisfyingassignment.If we know the assignment,we canquickly check
thatat leastoneliteral in eachclauseis true.

It is thesecondstatementthatrequiresthework, becausewehaveto startwith
any problem � in � � . All we know aboutsucha problemis that, if X is any
positive instanceandC a certificatefor X, thenthereis a Turing machinewhich
beginswith thedatafor X andthecertificateC andreachestheacceptingstateafter
a polynomialnumberof steps.Whatwe have to do is to encodetheactionof this
Turing machineinto a CNF formula. The formula will have clausesdescribing
the configurationof the tapeandthe stateof the headat any time, guaranteeing
that themachineoperatescorrectly, that it startswith thecorrectdata,andthat it
finishesin theacceptingstate.

We will illustratewith a very simpleexample,usingthe following problem.
Theinput consistsof anunknown numbern of oneson consecutive tapesquares,
andtheproblemis to decidewhethern is even. This problemis actuallyin

�
, so

no certificateis required,but thegeneralprincipleis thesameasfor any problem
in � � . A Turing machineto solve the problemcould consistof the following
quadruples:

s0βRs1
s11βs4

s4βRs2
s21βs3

s3βRs1
s1β1s5
s2β0s5

Themachinemovesright, erasingonesandalternatingbetweenstatess1 ands2.
Whenit reachesablanksquare,it writes1 or 0 accordingasthenumberof onesit
haspassedis evenor odd,andentersthehaltingstates5. Soit terminatesscanning
a 1 if andonly if n is even. We alsoseethatthemachinetakes2n � 2 stepsif the
inputcontainsn ones.

Considerthecasen � 4 for illustration. Theprogramterminatesin tensteps,
sowe canbesurethat if it startson tapesquare0 thenit cannotreachany square
outsidetherangefrom � 10 to � 10. Thepropositionalvariableswe usefall into
threegroups:

x 	 i � sj 
 will indicatethat at time i the headis in statesj , for 0 , i , 10 and
0 , j , 5.
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y 	 i � j 
 will indicatethat at time i the headis scanningsquarej, for 0 , i , 10
and � 10 , j , 10.

z	 i � j � ak 
 will indicatethat at time i, squarej hassymbolak written in it, for
0 , i , 10, � 10 , j , 10andk � 0 � 1 � 2 (wherea0 � β, a1 � 0, anda2 � 1.

The clausesof the formula reflect the correctactionof the Turing machine,to-
getherwith its initial andfinal configuration.They canbedividedinto six clauses,
asfollows.

Firstgroup:Theseexpressthefactthateachtimetheheadis in exactlyonestate.
They areof two types:

x 	 i � s0 
�  x 	 i � s1 
� ¡.�.�.:  x 	 i � s5 

is trueif theheadis in at leastonestate,and

x 	 i � sj 
�  x 	 i � sk 

for k !� j, is true if the headis not both in statesj andstatesk.We require
thesefor 0 , i , 10 and,for thesecondtype,0 , j � k , 5.

Secondgroup: Theseexpressthe fact that, at eachtime, the headis scanning
exactlyonesquare.They areconstructedlike thefirst groupbut usingthey
variables.

Third group: Theseexpressthe fact thateachsquarecontainsonly onesymbol
at any giventime. Againsimilar, usingthez variables.

Fourth group: Thesedescribethe initial configuration.Eachclauseconsistsof
only a singleliteral. We includex 	 0 � s0 
 , y 	 0 � 0
 , z	 0 � i � 1
 for i � 1 � 2 � 3 � 4,
andz	 0 � i � β 
 for theothervaluesof i.

Fifth group:Thesedescribetheoperationof themachine.Notethataclause

x   y   z

is equivalentto theimplication 	 x � y
+I z

which holds unlessx and y are true and z false. Now we translateeach
machineinstructioninto severaltypesof clauses.Thus,sia jaksl becomes

x 	 t � si 
�  y 	 t � u
�  z	 t � u � a j 
�  p;
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thereare threesuchclauses,one having p � z	 t � 1 � u � ak 
 (this will say
that the machinewrites ak), one with p � x 	 t � 1 � sl 
 (this will say that
the statechangesto sl ), andonewith p � y 	 t � 1 � u
 (to saythat the head
doesnotmove). For theinstructionsia jLsl , wehave theaboveclauseswith
p � y 	 t � 1 � u � 1
 in placeof the lastvalue,andthefirst oneinvolving ak

deleted;for sia jRsl , usep � y 	 t � 1 � u � 1
 instead.Therearetwo or three
clausesfor eachinstruction,eachvalueof t with 0 , t , 9, andeachvalue
of u with � 9 , u , 10. Unfortunatelywe arenot finishedyet: we needto
saythatsquaresnot beingscanneddon’t changetheir content.This canbe
doneby clausesof theform

y 	 t � u
�  z	 t � u � ak 
�  z	 t � 1 � u � ak 
 �
Sixthgroup:Theseassertthattheheadterminatesscanningasquarebearingthe

symbol1 andin thehalt states5. We cantakeaclause

y 	 10� j 
�  z	 10� j � 1

for � 10 , j , 10,anda singleclausex 	 10� s5 
 .

Somethoughtshowsthatasatisfyingassignmentfor theresultingconjunction
of clausesexistsif andonly if theTuringmachineacceptsthegiveninput.

It is fairly clearthatthis patternwill work for any problemin � � .

It is interestingto stopandthink aboutwhat hasbeendonehere. We have
shown that, given the descriptionof a Turing machineandits input (all written
on a tape),thereis anotherTuring machinewhich takes this tapeas input and
producesasoutputa logical formula which is satisfiableif andonly if the first
Turingmachineacceptsits input!

3.5 Examples

In orderto show thataproblem� is � � -complete,wehave to show two things:� � is in � � ; and� thereis a polynomialtransformationfrom a known � � -completeproblem
to � .

Usuallythefirst stepis easy. To begin with, theonly exampleof an � � -complete
problemwhich we canusein thesecondstepis SAT, by Cook’s Theorem.But,
aswe progress,we increaseour stockof � � -completeproblems,and this step
becomeseasier. In this section,wegivea few examplesof suchproofs.
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3-SAT The problem3-SAT is a specialcaseof SAT, wherewe consideronly
formulaein which every clausecontainsexactly three literals. Clearly a special
caseis nomoredifficult thanthegeneralcase;weshow thatit is noeasiereither!

Theorem 3.5.1 There is a polynomialtransformationfromSAT to 3-SAT. Hence
3-SAT is � � -complete.

Proof We have to take a logical formula F which is a conjunctionof arbitrary
clauses,andproduceaformulaF � whichis aconjunctionof clauseseachinvolving
only threeliterals,which is satisfiableif andonly if F is.

Wetranslatetheclausesof F oneata time.If wehaveaclauseu   v   w which
alreadyinvolvesthreeliterals,wecanleave it asit is.

For aclauseu   v with only two literals,wetakeanew variablez(notoccurring
anywhereelsein the formula), andbuild the two clausesu   v   z andu   v   z.
Now, nomatterwhatvalueis assignedto z, thecorrespondingliteral in oneclause
will befalse, sou   v mustbetrue if theclauseis to besatisfied.

Similarly, for asingleliteral u, take two new variablesz1 andz2, andform the
four clausesu   z1   z2, u   z1   z2, u   z1   z2, andu   z1   z2.

Supposefinally thatwe have a clausewith morethanthreeliterals, sayu1  .�.�.�  uk, with k 3 3. Take k � 3 new variablesz1 ��������� zk � 3, andform theclauses

u1   u2   z1 � u3   z1   z2 � u4   z2   z3 ������ uk � 2   zk � 4   zk � 3 � uk � 1   uk   zk � 3 �
For example,if k � 4, wereplacetheclauseu1   u2   u3   u4 by u1   u2   zand

u3   u4   z. Wehave to show thatanassignmentsatisfiestheoriginalclauseif and
only if thereis avaluefor zsuchthatthetwo new clausesaresatisfied.

Supposefirst thatanassignmentsatisfiesu1   u2   u3   u4. If u1 or u2 is given
thevaluetrue, thensetz to befalse; if u3 or u4 is true, setz to betrue.

Conversely, supposethat both of the three-literalclausesaresatisfiedby an
assignment.If we have setz to be true, thenoneof u3 andu4 mustbe true to
satisfythe secondclause;if we setz to be false, thenoneof u1 andu2 mustbe
true to satisfythefirst clause.

A similar argumentworksfor largerk (seethenext exercise).

Exercise3.5.1 Checkthatall theseclausesaresatisfiedby anassignmentif and
only if theoriginal clauseis satisfiedby theassignmentof valuesto theus.

Solution In thegeneralcase,thepartsof clausesinvolving thenew variables
canbewrittenas

z1 � z1 I z2 �������:� zk � 4 I zk � 3 � zk � 3 �
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In this form it is clearthat no assignmentcanmake all thesesubformulaetrue.
But, by settingz1 ��������� zi to be true andzi � 1 ��������� zk � 3 to be false, we satisfyall of
themexceptzi I zi � 1. Similarly, we cansatisfyall but the first (by putting all
variablesfalse), or all but thelast(by puttingthemall true).

Now supposewe have an assignmentof truth valuessatisfyingthe k-literal
clause.Thensomeui is satisfied.We cannow assignvaluesto the zs to satisfy
all the fragmentsexcept the onein the 3-literal clausecontainingui . So all the
3-literal clausesaresatisfied.

Conversely, supposethat all the 3-literal clausesare satisfied. Then as we
noted,notall thefragmentsinvolving thezscanbetrue, soat leastoneui mustbe
true, andsotheoriginalk-literal clauseis satisfied.

Why do we take 3-SAT here?It canbe shown that the problem2-SAT (sat-
isfiability of Booleanformulaein CNF with two literals in eachclause)is in

�
,

that is, it canbe solvedefficiently. You may wish to try to prove this – it is not
completelystraightforward,andnot immediatelyrelevant,sowewill notgive the
proof.

Vertex cover Let G �§	 V � E 
 be a graph. A vertex cover of G is a setC of
verticeswith thepropertythatevery edgeof G is incidentwith somevertex in C.
Weareinterestedin thesizeof thesmallestvertex cover.

Exercise3.5.2 What is thesmallestsizeof a vertex-cover of thePetersengraph
(Figure1.3)?

Solution A vertex cover for a pentagonmustcontainat leastthreevertices.So
we requireat leastthreeverticesfrom boththeouterpentagonandtheinnerpen-
tagram;sono smallervertex cover than6 is possible.But thereis a vertex cover
of size6, givenby thecircledverticesin Figure3.2.

Hereis a formulationof thedecisionproblemassociatedwith this question.

VC (vertex cover)

Instance:A graphG, andapositive integerk.

Problem:DoesG haveavertex coverof sizeatmostk?

Thisproblemis in � � , sincethelist of verticesin avertex coveris acertificate
for apositive instance.

Theorem 3.5.2 There is a polynomialtransformationfrom3-SAT to VC. Hence
VC is � � -complete.
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Figure3.2: A vertex cover

Proof Take an instanceof 3-SAT, a formulaF in n Booleanvariableswhich is
a conjunctionof m clauseseachcontainingthreeliterals.We constructa graph
G ��	 V � E 
 suchthatG hasa vertex-coverof sizen � 2m or lessif andonly if the
formulais satisfiable.

ThegraphG has2n � 3m vertices,asfollows:� For eachvariablexi , thereare two verticescalledxi andxi , joined by an
edge.Wecall thesethe truth-settingvertices.� For eachclauseu   v   w, thereare threeverticescalled u � v� w, any pair
joinedbyanedge(thatis, formingatriangle).Wecall thesethesatisfaction-
testingvertices.

Now the nameof eachsatisfaction-testingvertex also occursas the nameof a
truth-settingvertex; we join thesevertices. For example,if we have the clause
x1   x2   x4, we have a triangleof satisfaction-testingverticesnamedx1, x2 and
x4, andeachis joined to exactly onetruth-settingvertex (the onewith the same
name),asshown in Figure3.3.

Now any vertex-cover mustobviously containat leastoneof eachpair � x � x �
of truth-settingvertices,andat leasttwo of eachtriangleof satisfaction-testing
vertices. So the sizeof a vertex-cover is at leastn � 2m. We have to show that
thereis a vertex-coverof this sizeif andonly if theformulais satisfiable.

Supposefirst thatthereis asatisfyingassignment.This tellsushow to choose
oneof eachpair of truth-settingvertices:choosetheoneof x andx which is true.
Now eachclausecontainsa true literal, sooneof theverticesin eachtriangleof
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satisfaction-testingverticesis joinedto oneof thetruth-settingverticeswhich we
have chosen;we put theothertwo into our vertex-cover, gettingn � 2m vertices
altogether.

Conversely, supposethat thereis a vertex-coverC with n � 2m vertices.The
argumentshows thatit mustcontainoneof eachpair of truth-settingverticesand
two of eachtriangleof satisfaction-testingvertices.Wenow defineanassignment
by puttingx or x truedependingon which is in C. Now in eachclauseu   v   w,
only two of u � v� w arein C; sothethird mustbejoinedto a truth-settingvertex in
C, whichmeansit is assignedthevaluetrue, andsotheclauseis true. Thus,F is
satisfied.

For example,theformula	 x1   x2   x3 
��£	 x1   x2   x4 

translatesinto thegraphshown in Figure3.3,andthesatisfyingassignment

x1 �7ced¤fhb � x2 ��[^]v_ a�b � x3 �7[^]`_ a:b � x4 �7[^]`_ a:b
translatesinto thevertex cover formedby thecircledvertices.
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Figure3.3: A vertex cover

Hamiltonian circuit WedefinedtheproblemHC (Hamiltoniancircuit) earlier.

Theorem 3.5.3 There is a polynomialtransformationfromVC to HC. HenceHC
is � � -complete.

Theproof is similar to but a bit morecomplicatedthantheprecedingone;we
referto Garey andJohnsonfor details.

Wealreadysaw thatthereis apolynomialtransformationfrom HC to TSP(the
Travelling Salesmanproblem).SoTSPis also � � -complete.
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Other complexity classes

The complexity classes
�

and � � arethe most importantbut not the only ones
that have beenconsidered.We look briefly at someof the others;this will be
moreinformal,but theclassesinvolving randomisedalgorithmsor approximation
algorithmsleadon naturallyto thesecondpartof thecourse.

4.1 Harder problems

First, we introducetheclasses
�¬«¬�®5¯�°

and
°�±²�H³2´¶µ¥°

, which containproblems
thoughtto beevenharderthan � � -completeproblems.

A problem � belongsto the class
�H«¬�0-¯-°

if any instanceof sizen canbe
solved by a Turing machinein which, while the programis running, the head
movesat mostO 	 nk 
 stepsaway from its initial location. Informally, a problem
is in the class

�H«¬�0-¯�°
if it canbe solved usingonly a polynomial amountof

memoryspace.
Typicalhardproblemsin

�H«¬�0-¯-°
arefindingawinningstrategy in positional

gameslike “generalisedchess”playedon ann ; n board. We mayhave to look
many movesahead,but weonly haveto remembertheconfigurationof theboard.
(Findinga winning strategy for ordinarychessis a singlefinite problem,though
a very large one; we can’t talk aboutthe complexity unlesshave have a whole
family of arbitrarily largeproblems.)

Theorem 4.1.1 � �¥�/�H«¬�0-¯�°
.

Needlessto say, it is believed that thesetwo classesareunequalbut nobody
canprove it! We will provethat

�¡�·�¬«H�0-¯-°
andtreat � � moreinformally.

The reasonthat
�¸�k�H«¬�0-¯-°

is simply that, if a Turing machinerunsfor a
polynomialnumberof steps,it obviously cannotmove further thana polynomial

57
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distancefrom its startingsquare.In general,the spacecomplexity of a problem
cannotbelargerthanthetimecomplexity.

For � � , we argueasfollows. Supposethatthereis a nondeterministicTuring
machinewhich solvesaninstanceof theproblemin polynomialtime. Remember
that thereis at leastonecomputationalpathwhich leadsto thesuccessfulresult.
We cansimulatethis Turing machineby a deterministicmachinewhich triesall
thepossiblecomputationalpaths;wedonotneedany morememoryspace,except
for enoughto saveacopy of theinputdata.(Thereis adifficulty, sincetheremight
beacomputationalpathwhichdoesn’t terminate,or whichtakesavery longtime,
which themachinetriesbeforereachingthesuccessfulpath.Sowe have to equip
themachinewith a “clock” which tells it to abandona particularattemptif it has
notsucceededin afixedpolynomialnumberof steps.)

A problem� is in theclass
°�±²�H³2´¶µ¥°

if aninstanceof theproblemof sizen
can be solved by someTuring machinein time O 	 2nk 
 for somek. That is,°�±¹��³º´�µ¥°

really means“time which is theexponentialof apolynomial”.

Theorem 4.1.2
�H«¬�0-¯-°»�·°¦±¹�H³2´�µ¥°

.

To prove this, supposethat � is a problemin the class
�H«¬�0-¯�°

, so that an
instanceof sizen canbesolvedby a Turingmachinewhoseheadmovesno more
than p 	 n
 stepsfrom its original position. Thustheonly tapesquareswhich are
usedarethosein therangefrom � p 	 n
 to p 	 n
 . Supposethatthenumberof tape
symbolsis k andthenumberof machinestatesis r.

Weclaimthatthetotalnumberof possibleconfigurationsof machineandtape
is at most 	 2p 	 n
�� 1
 rk2p V nW¼� 1 �
For thereareat most2p 	 n
½� 1 positionsfor thehead,andat mostr states;then
eachtapesquarehasoneof k symbolswritten in it, sothetotal numberof strings
thatcouldbewrittenon thetapeis at mostk2p V nW¼� 1.

Now we claim that thetime takenby thecomputationis not greaterthanthis
number. For otherwise,someconfigurationof positionandstateof theheadand
stringwrittenonthetapemustoccurtwice. But then,thesecondtime,thecompu-
tationwill proceedexactlyasit did onthefirst occasion,sothemachineis stuckin
a loopandwill never terminate.Thiscontradictstheassumptionthatthemachine
reallydoessolve theproblem!

Now 	 2p 	 n
�� 1
 rk2p V nW¼� 1 is certainlyboundedby theexponentialof a poly-
nomial:wehave2p 	 n
�� 1 1 22p V nW¼� 1, andso	 2p 	 n
�� 1
 rk2p V nW¼� 1 1 2 V 1� log2kWgV 2p V nW¼� 1W'� log2 r �
Sotheclass� belongsto

°�±¹��³º´�µ¥°
, asclaimed.
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4.2 Counting problems

Many decisionproblemscanbeextendedin a naturalway to countingproblems.
Hereareacoupleof examples.

SAT (Satisfiability)

Instance:A Booleanformula,in conjunctivenormalform

Decisionproblem:Is thereanassignmentof truth valuesto thevariableswhich
satisfiestheformula?

Countingproblem:How many suchsatisfyingassignmentsarethere?

HC (Hamiltoniancircuit)

Instance:A graphG.

Decisionproblem:DoesG havea Hamiltoniancircuit?

Countingproblem:How many HamiltoniancircuitsdoesG have?

In eachcase,the countingproblemis harderthan the decisionproblem. If we
couldsolve thecountingproblem,wecouldimmediatelysolve thedecisionprob-
lemby just testingwhethertheansweris zeroor non-zero.

Sometimes,an easydecisionproblem is associatedwith an easycounting
problem. We have seenthat a graphG hasa spanningtree if andonly if G is
connected(andthis canbe decidedquickly). The numberof spanningtreescan
be computedby evaluatinga determinant(which canalsobe donequickly), ac-
cordingto Kirchhoff ’sMatrix-TreeTheorem, whichwestatewithoutproof:

Theorem 4.2.1 Let A betheadjacencymatrix of a simplegraphG. Let D bethe
diagonalmatrix whose 	 i � i 
 entry is thevalencyof the ith vertex (the numberof
edgeson which it lies. Let X be thematrix obtainedfromD � A by deletingthe
first rowandcolumn.Thendet	 X 
 is equalto thenumberof spanningtreesof G.

For example,let G � K3, thecompletegraphon3 vertices.Then

D � A � AC 2 � 1 � 1� 1 2 � 1� 1 � 1 2

DG �
and

det	 X 
 � det ¾ 2 � 1� 1 2 ¿ � 3 �
soG hasthreespanningtrees.



60 CHAPTER4. OTHERCOMPLEXITY CLASSES

Sometimes,however, aneasydecisionproblemis associatedwith ahardcount-
ing problem,asin thecaseof thepermanentof amatrixwith non-negativeentries.
Aswesaw, it is easyto decidewhetherthepermanentis non-zero,but hardto eval-
uateit. In thecaseof Hall’s MarriageProblem,thepermanentcountsthenumber
of waysin which thecompatiblemarriagescanbearranged.

The natural complexity classfor counting problemsis #
�

(read “number-
P”). It consistsof problemswhich canbe solved in polynomial time on a non-
deterministicTuringmachine,andweareaskedto countthenumberof accepting
computations.Alternatively, we have to countthenumberof “certificates”for a
positive solution. The countingproblemsfor SAT andHC above areexamples.
Wedonot discussthis further.

4.3 Parallel algorithms

Someproblemscanbesolvedmuchfasterusinga modifiedTuring machinecon-
taininga largenumberof heads,equippedwith thecapacityto communicatewith
oneanotherandall usingthe sametape. We think of theseheadsasprocessors
working in parallelandsharingmemory.

A class� of problemsis saidto belongto � ¯ if a problemin � of sisen can
besolvedin time O 	�	 logn
 k 
 by a machinewith O 	 nk 
 heads,for somepositive
integerk. Somehardproblemscanbeshown to lie in this class.The letters � ¯
standfor “Nick’ s class”,afterNick Pippingerwho inventedit. We do not discuss
it further.

4.4 Randomisedalgorithms

Sofarwehaveconsideredtimeandspace(thatis, timeto performthecomputation
and memoryspaceused)as the resourceswhich measurethe complexity of a
calculation.Wenow consideradifferentkind of resource:randomness.

A deterministiccomputercannotgeneratea randomnumber. The “random
numbers”built into mostprogrammingsystemsarethe resultof applyingsome
computationto a “seed”,which maybethereadingof thecomputer’s clock. The
resultingnumbersvary in an apparentlyunpredictableway but eachis uniquely
determinedby the onebefore. They aremoreproperlycalled “pseudo-random
numbers”. The more complicatedthe calculationis, the more satisfactory the
result will be. However, from a theoreticalpoint of view it is betterto regard
randomnessasa resource,which is paidfor in time by a pseudo-randomnumber
generator.

Thus,we regardaTuringmachineexecutinga randomisedalgorithmasbeing
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equippedwith a sourceof randombits, which in practicewill be suppliedby a
pseudo-randomnumbergenerator. Themachinecanhave additionalinstructions
which causeit to requesta randombit, andthesubsequentstateof theheadwill
dependon thevalueof this bit.

In the courseof a polynomial-timecalculation,of course,the machinecan
only askfor polynomiallymany randombits.

For example,a non-deterministicTuring machinecan be madeinto a ran-
domisedTuring machinein the following way. Whenever the machinehasa
choiceof instructionsto follow, it asksfor enoughrandombits to allow it to make
thechoice.

Now we definethe class � � of problemswhich can be solved in “random
polynomialtime”. First,for comparison,werepeatthedefinitionof � � . A class�
of decisionproblemsbelongsto � � if thereis anon-deterministicTuringmachine
which runsin timepolynomialin theinput sizesuchthat� for any positive instanceof � , thereis at leastonecomputationpathwhich

acceptstheinstance;� for any negative instance,thereis no acceptingcomputationpath,

Now we saythat � belongsto � � if thereis a non-deterministicTuring ma-
chinewhich runsin timepolynomialin theinput sizesuchthat� for any positive instanceof � , at leasthalf of all the computationpaths

accepttheinstance;� for any negative instance,thereis no acceptingcomputationpath,

It is clearthatthisis astricterrequirementthanthedefinitionof � � . Moreover,
adeterministicTuringmachinecanberegardedasanon-deterministicmachinein
which thereis only onecomputationpathfor any probleminstance.Sowehave:

Theorem 4.4.1
�¥� � �¡� � � .

Thereis nothingspecialabouttheprobability1< 2 in thedefinition: any posi-
tiveconstantwoulddo, for thefollowing reason:

Theorem 4.4.2 Supposethata problemcanbesolvedin timeT bya randomised
Turing machinewith probabilityc, where0 1 c 1 1. Thenit canbesolvedin time
T � logε < log 	 1 � c
:� with probability1 � ε, for anyε.

For 1 � c is the probability that we do not obtaina result in time T. If we
repeatthecalculationn times,usingindependentrandombits, theprobabilitythat



62 CHAPTER4. OTHERCOMPLEXITY CLASSES

wedonotobtainaresultis 	 1 � c
 n. Wecanmakethissmallerthanε by choosing
n sothat 	 1 � c
 n 1 ε, or nlog 	 1 � c
�1 logε; in otherwords,

n 3 logε < log 	 1 � c
 �
(Rememberthatlog 	 1 � c
 is negative,since1 � c 1 1.)

So,if a randomisedTuringmachinesolvesaproblemwith probabilitygreater
than1< 2, thenin just100repetitionsof thecalculationthechanceof nothaving a
resultis lessthan 	 1< 2
 100, which is smallerthantheprobabilityof ahardwareer-
ror in thecomputer. (Of course,thisassumesthattherandombitsareindependent,
whichwill notbethecaseif weuseapseudo-randomnumbergenerator.)

What this meansis that, if we arepreparedto accepta minuteprobabilityof
error, thenthe class � � is almostassatisfactoryas

�
. In practicalterms,aswe

will see,algorithmsinvolving somerandomchoicescangive usa very powerful
methodto attackhardproblems.

The mostfamousexampleof a randomizedalgorithmis a primality testde-
velopedby Solovay andStrassenandby Rabin. The algorithm(which depends
on someadvancednumbertheory, so we do not give detailshere)hasthe prop-
erty that it answers“composite”or “probablyprime”: if the input is prime then
theansweris “probablyprime”, if it is compositethentheansweris “composite”
with probability at least1< 2. So, in termsof the definition, the problem“Is n
composite?”is in � � . If thenumbern getstheanswer“probablyprime” in 100
independentrunsof thealgorithm,thenwearejustifiedin assumingthatn is prime
for practicalpurposessuchascryptography. But just oneanswer“composite”is
enoughto convinceus.

Thedevelopmentof randomisedalgorithmsdoesprovide aninterestingprob-
lemfor thephilosophyof mathematics.It is now possibleto write down anumber
n with severalhundreddigits andstate“n is probablyprime”; if thecomputation
hasbeendoneproperly, our confidencein this statementmaybegreaterthanour
confidencein a longandcomplex proof of a theoremprovedby amathematician.
Socansuchastatementbea mathematicaltruth?

4.5 Approximation algorithms

We saw an exampleof an algorithm(the twice-round-the-treealgorithmfor the
Travelling SalesmanProblem)which givesananswerwhich is at mosttwice the
optimumvalue.Severalotherexamplesof suchalgorithmsareknown.

However, for whatis technicallyknown asan“approximationalgorithm”,we
askfor more.We requirethatyou cangetwithin a factorarbitrarily closeto 1 of
theoptimumvalueif youarepreparedto spendenoughtimedoingit.
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Let us supposethat we have a problemwith input dataof sizen, wherewe
arerequiredto computesomenumericalfunction(suchasa countingproblemor
theTravelling SalesmanProblem).Let K bethetrueanswerto theproblem.We
saythat thereis a polynomial-timeapproximationalgorithm for the problemif,
givenany positivenumberε, thereis aTuringmachinewhichcomputesanumber
k satisfying� K <J	 1 � ε 
�1 k 1 K 	 1 � ε 
 ;� thenumberof stepsis boundedby apolynomialin n andlog 	 1< ε 
 .

We saythat thealgorithmestimatesK to within ε if thefirst conditionholds.
(Thisagreeswith theusage“to within 1%”, for example.)

Wehaveto explainwhyweuselog 	 1< ε 
 here.Supposethatwehavecomputed
the answer, andwe arerequiredto improve our accuracy by onedecimalplace.
That means,we have to reducethe possibleerror to one-tenthof its previous
value,solog 	 1< ε 
 increasesby aconstantamount.If, for example,thetimewasa
linearfunctionof log 	 1< ε 
 , thenthis would increasethetime takenby a constant
amount.If thetimewasproportionalto 1< ε instead,thento getoneextradecimal
placewould take tentimesaslong! In brief, we requirethatthetime takengrows
asapolynomialin thesizeof theinputdataandin thenumberof significantfigures
requiredin theanswer.

We cancombinethe last two ideasanddefinea randomisedapproximation
algorithm. Here,we usea randomisedalgorithm(onewhich makeschoicesbe-
tweencomputationpathsbasedon randombits). We prescribeboththeaccuracy
of the computedanswer(the numberε above) andthe probability that the algo-
rithm fails to meetthe requirements(anotherpositive numberδ). If the running
time is boundedby a polynomial in n (thesizeof the input data),log 	 1< ε 
 , and
log 	 1< δ 
 , wecall thealgorithmfully polynomial.

If thereis anrandomisedalgorithmwhich estimatesK to within ε with prob-
ability at least3< 4, say, thenwe canestimateK to within ε with arbitrarily high
probability 1 � δ, by the following simple trick: repeatthe algorithm N times,
whereN � 1 � 12 � log 	 1< δ 
:� , andtake the medianof the resultingN estimates.
This dependson the following resultaboutprobability theory, of which we omit
theproof (which just involvesestimatesfor binomialcoefficients):

Proposition 4.5.1 Let X1 ��������� XN be independentrandomvariableshaving the
samedistribution,whereN is odd.Leta andb bereal numbers. Supposethat

P 	 a , Xi , b
- 3
4

for all i. Then,if X denotesthemedianof X1 ��������� XN, wehave

P 	 a , X , b
� 1 � e� N P 12 �
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Now, in our case,to make this probabilitygreaterthan1 � δ, we just require
e� N P 12 1 δ, or N  12log 	 1< δ 
 . Theadded1 is to makeN odd,sothatthemedian
is defined.

So we cangive a simplerdefinition: a randomisedapproximationalgorithm
for a numberK is fully polynomialif, for any positivenumberε, it approximates
K to within ε with probabilityat least3< 4 in time polynomialin n andlog 	 1< ε 
 .

For example, considerthe countingproblemassociatedwith SAT: we are
givenaBooleanformulaF in conjunctivenormalform, andweareaskedto count
thenumberof satisfyingassignments.If F is a formulain n variables,thenthere
arealtogether2n assignmentsof truthvalues,soit will takeexponentiallylong to
try themall andcountthesuccesses.

Wecouldproceedby sampling. In otherwords,choosea largeenoughinteger
N, andthenchooseN assignmentsof valuesat random;countthe proportionM
of theseassignmentswhich make F true. Provided that M is not too small, we
would guessthat aboutM < N of all assignmentsaresatisfyingassignments,and
estimatethetotal numberof satisfyingassignmentsas 	 M < N 
 2n. It canbeshown
that, if theactualnumberof satisfyingassignmentsis µ . 2n, andif we chooseN
largeenough(precisely, N  4log 	 2< δ 
�< µε2), thenwe will succeedin estimating
thenumberto within ε with probabilityat least1 � δ.

But if the numberof satisfyingassignmentsis rathersmall, we arelikely to
find nonein our sample. (Rememberthat thereare2n assignmentsandwe can
only look at a small proportionof them.) Thenwe will not be able to give an
accurateestimate.

Therearemoreadvancedsamplingmethodsto get aroundthis problem,but
wedon’t considerthemhere.

4.6 Quantum computation

Thistopicis mentionedjust for completenesshere,thoughit maywell playamore
importantrole in complexity theoryin thefuture.Theoreticalmodelsof quantum
computershaveledto definitionsof thecomplexity classÀ � (problemswhichcan
be solved in a polynomialnumberof stepson a quantumcomputer).This class
certainlyincludesproblemswhicharenotknown to bein

�
andarethoughtto be

“hard” in termsof classicalcomputation.
The most striking exampleis the result of PeterShorwho gave a quantum

polynomial-timealgorithmfor the problemof factorisingan integer. Sincethis
hard problemlies at the foundationsof cryptographicsystems(suchas RSA)
widely usedon the internetandin commerce,the impactof an actualquantum
computerwould bevery greatindeed.But no seriousquantumcomputerhasyet
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beenconstructed.
Furtherinformationon quantumcomputationcanbe obtainedfrom the Web

page

http://www.theory.caltech.edu /peo ple/ presk ill/ ph229 /

the courseinformation for JohnPreskill’s courseon QuantumComputationat
Caltech.


