Exercise (1.19b of Permutation Groups by P. J. Cameron). Let q be a prime power, and n a positive integer. Suppose that every prime divisor of n divides $q-1$, and that, if $q \equiv 1(\bmod 4)$, then n is not divisible by 4 . Let $m(k)=\left(q^{k}-1\right) /(q-1)$. Prove that

- n divides $m(n)$
- the numbers $m(0)=0, m(1)=1, m(2), \ldots, m(n-1)$ form a complete set of residues modulo n.

Remark. $q \equiv 1(\bmod 4)$ is a typo in the statement and should be replaced by $q \equiv-1(\bmod 4)$. (For $q=3$, $n=4$ the conclusion of the second part is not true.)
Remark. In the exceptional case it is enough to assume a slightly weaker (and necessary) condition, see below. The assumption of q being a prime power can be dropped (obviously it is needed for (c)).
Exercise (Suggested correction ${ }^{1}$). Let q and and n a positive integers such that every prime divisor of n divides $q-1$. Let $m(k)=\sum_{i=0}^{k-1} q^{i}$.

- Prove that n divides $m(n)$.
- If n is even and $q \equiv-1(\bmod 4)$, suppose further that n is not divisible by 4 . Prove that the numbers $m(0)=0, m(1)=1, m(2), \ldots, m(n-1)$ form a complete set of residues modulo n.
Proof. - Let $m_{q}(k):=m(k)$. Observe that $m_{q}(n)=m_{q}(d) \cdot m_{q^{d}}(n / d)$ for any $d \mid n$. Let p be an arbitrary prime divisor of n and let $n=p^{a} r$ where $p \nmid r$. Apply the observation a times each time separating a divisor p to get

$$
m_{q}(n)=\prod_{j=0}^{a-1} m_{q^{p^{j}}}(p) \cdot m_{q^{p^{a}}}(r)
$$

By the assumption $q^{p^{j}}=1+P_{j}$ for some multiple P_{j} of p for any j, so $m_{q^{p^{a}}}(r) \equiv r \not \equiv 0(\bmod p)$ and $m_{q^{p}}(p)=\sum_{k=0}^{p-1}\left(1+P_{j}\right)^{k}=\sum_{k=0}^{p-1} \sum_{l=0}^{k}\binom{k}{l} P_{j}^{l}=\sum_{l=0}^{p-1} \sum_{k=l}^{p-1}\binom{k}{l} P_{j}^{l}=\sum_{l=0}^{p-1}\binom{p}{l+1} P_{j}^{l}$, hence $m_{q^{p^{j}}}(p) \equiv p+\binom{p}{2} P_{j}\left(\bmod p^{2}\right)$. More explicitly

$$
m_{q^{p^{j}}}(p) \equiv \begin{cases}0, & \text { if } p=2, q \equiv-1 \quad(\bmod 4), j=0 \\ p, & \text { otherwise }\end{cases}
$$

modulo p^{2}. Thus $p^{a} \mid m_{q}(n)$, but since p was an arbitrary prime divisor of n, we have $n \mid m_{q}(n)$ as stated.
Even more, this argument shows that $\operatorname{gcd}\left(m_{q}(n) / n, n\right)=1$ unless both $2 \mid n$ and $q \equiv-1(\bmod 4)$ in which case $\operatorname{gcd}\left(m_{q}(n) / n, n\right)=\operatorname{gcd}(n,(q+1) / 2)$, a positive power of 2 .

- Note that from the condition, n and q are relative primes, i.e. q is invertible modulo n, and that $m_{q}(k+l)=m_{q}(k)+q^{k} m_{q}(l)$ for natural numbers k and l. Then $m_{q}(k+l) \equiv m_{q}(k)(\bmod n)$ if and only if $n \mid m_{q}(l)$. Choose $l>0$ be minimal such that $n \mid m_{q}(l)$. Assume for contradiction that $l \neq n$, otherwise the conclusion is true.
Let $n=h l+l^{\prime}$ where $0 \leq l^{\prime}<l$. Then from the observation and the previous note $m_{q}(n)=$ $m_{q}(l) m_{q^{h}}(h)+q^{h l} m_{q}\left(l^{\prime}\right)$. Form the first part $n \mid m_{q}(n)$, by assumptions $\operatorname{gcd}(n, q)=1$ and $n \mid m_{q}(l)$, so $n \mid m_{q}\left(l^{\prime}\right)$. Then minimality of l forces $l^{\prime}=0$, i.e. $l \mid n$. Then the previous equation simplifies to $m_{q}(n)=m_{q}(l) m_{q^{l}}(n / l)$, so $\frac{m_{q}(n)}{n}=\frac{m_{q}(l)}{n} m_{q^{l}}(n / l)$, so $m_{q^{l}}(n / l) \left\lvert\, \frac{m_{q}(n)}{n}\right.$. On the other hand, from the first part $\left.\frac{n}{l} \right\rvert\, m_{q^{l}}(n / l)$, thus $\frac{n}{l}\left|m_{q^{l}}(n / l)\right| \frac{m_{q}(n)}{n}$ and hence $\left.\frac{n}{l} \right\rvert\, \operatorname{gcd}\left(m_{q}(n) / n, n\right)$. By (the contrapositive) assumption $1<\frac{n}{l}$, so $1<\operatorname{gcd}\left(m_{q}(n) / n, n\right)$. Comparing this with the last sentence of the first part yields $2 \mid n$ and $q \equiv-1(\bmod 4)$ (i.e. the exceptional case of this part is satisfied) and that n / l is a positive power of 2 . Then $2|n| m_{q}(l)$ and $m_{q}(l)=\sum_{i=0}^{l-1} q^{i} \equiv(-1)^{i}(\bmod 4)$, which is only possible if $2 \mid l$. But then $n=l \cdot \frac{n}{l}$ is a product of two even numbers, so $4 \mid n$. This contradicts the exceptional assumption of the exercise.

Remark. Note that in the extra case the assumption $4 \nmid n$ is necessary to obtain a complete set of residues, i.e. if $4 \mid n$ and $q \equiv-1(\bmod 4)$ then the numbers are not pairwise incongruent: Pick a with $2^{a} \mid n$ but $2^{a+1} \nmid n$. Consider $m_{q}(n)=n_{q}(n / 2) \cdot\left(1+q^{n / 2}\right)$. The term $\left(1+q^{n / 2}\right)$ is relative prime to all the odd prime divisors of n. Now $\left(1+q^{n / 2}\right) \equiv 2(\bmod 4)$ from the assumptions on n and q. In the first part we proved that $2^{a+1} \mid m_{q}(n)$. These imply $2^{n} \mid m_{q}(n / 2)$. But also from the first part $\left.\frac{n}{2} \right\rvert\, n_{q}(n / 2)$, and these together imply that $n \mid n_{q}(n / 2)$. Then $m_{q}(0) \equiv m_{q}(n / 2)(\bmod n)$ so the listed elements do not form a complete set of residues.

[^0]
[^0]: ${ }^{1}$ Dávid Szabó, Central European University, Budapest, 2016, Szabo_David@phd.ceu.edu

