Notes on permutation characters

pjc, may 2001

This note gives some orbit theorems for subgroups of $P\Gamma L(n,q)$, proved by using only simple facts about the permutation character. These theorems also follow from Kantor's theorem [1] and Block's Lemma, but the proofs here are more elementary. The theorems also have analogues for subgroups of the symmetric group S_n acting on subsets of $\{1, \ldots, n\}$.

According to the Orbit-counting Lemma, if *G* acts on Ω with permutation character π , then the number of orbits of *G* on Ω is equal to $\langle \pi, 1 \rangle_G$, where 1 denotes the principal character of *G*. If *G* also acts on Ω' with permutation character π' , then the permutation character of *G* on $\Omega \times \Omega'$ is $\pi\pi'$, and so the number of orbits of *G* on $\Omega \times \Omega'$ is $\langle \pi\pi', 1 \rangle_G = \langle \pi, \pi' \rangle_G$. In particular, the rank of *G* on Ω is equal to $\langle \pi, \pi \rangle_G$.

Let *V* be an *n*-dimensional vector space over GF(q). For $0 \le i \le n$, let P_i denote the set of *i*-dimensional subspaces of *V*, and let π_i denote the permutation character of $P\Gamma L(n,q)$ on P_i .

Lemma 0.1 There are irreducible characters $\chi_0, \chi_1, \dots, \chi_{\lfloor n/2 \rfloor}$ of $P\Gamma L(n,q)$ such that

$$\pi_i = \pi_{n-i} = \chi_0 + \chi_i + \cdots + \chi_i$$

for $i \leq n/2$.

Proof Let $G = P\Gamma L(n,q)$. We show first that $\pi_j = \chi_0 + \chi_1 + \cdots + \chi_j$ for $j \le n/2$. The proof is by induction on *j*, the result being clear for j = 0 (since $|P_0| = 1$).

We claim that, for $0 \le i \le j \le n/2$, we have

$$\langle \pi_i, \pi_j \rangle_G = i+1.$$

Indeed, elementary linear algebra shows that, for $0 \le k \le i$, the subset

$$(X,Y) \in P_i \times P_j : \dim(X \cap Y) = k$$

is an orbit; and these are all the orbits. Hence

$$\langle \pi_i - \pi_{i-1}, \pi_j \rangle_G = 1.$$

By the inductive hypothesis, if i < j, then $\pi_i - \pi_{i-1} = \chi_i$; so χ_i occurs in π_j with multiplicity 1. We conclude that

$$\pi_j = \chi_0 + \cdots + \chi_{j-1} + \psi$$

for some character ψ containing none of $\chi_0, \dots, \chi_{j-1}$. The fact that $\langle \pi_j, \pi_j \rangle_G = j+1$ shows that ψ is irreducible. Taking $\chi_j = \psi$, we complete the inductive step.

Now again let $0 \le i \le j \le n/2$. We claim that

$$\langle \pi_i, \pi_{n-j} \rangle_G = i+1$$
 and $\langle \pi_{n-j}, \pi_{n-j} \rangle_G = j+1$.

This is proved by linear algebra as before: the orbits on $P_i \times P_{n-j}$ are

 $\{(X,Y) \in P_i \times P_{n-j} : \dim(X \cap Y) = k\}$

for k = 0, ..., i, while the orbits on $P_{n-i} \times P_{n-i}$ are

$$\{(X,Y) \in P_{n-j} \times P_{n-j} : \dim(X \cap Y) = k\}$$

for k = n - 2j, ..., n - j.

Then the same argument as before shows that π_{n-j} contains χ_i with multiplicity 1 for i = 0, ..., j, and nothing else.

We say that a character π of *G* is *contained in* a character π' if $\pi' = \pi + \psi$ for some character ψ . Now, if π and π' are permutation characters of *G* on Ω and Ω' , and π is contained in π' , then:

- (a) $\langle \pi, 1 \rangle_G \leq \langle \pi', 1 \rangle_G$; that is, the number of orbits of *G* on Ω' is not less than the number of orbits on Ω ;
- (b) $\langle \pi, \pi \rangle_G \leq \langle \pi', \pi' \rangle_G$; that is, the rank of *G* on Ω' is not less than the rank on Ω ;

Theorem 1 Let G be any subgroup of $P\Gamma L(n,q)$, having N_i orbits on P_i for $0 \le i \le n$. Then the following hold:

(*a*)
$$N_i = N_{n-i}$$
 for $0 \le i \le n/2$.

(*b*) $N_i \le N_j$ for $0 \le i \le j \le n/2$.

For the Lemma shows that the permutation characters of $P\Gamma L(n,q)$ on P_i and P_{n-i} are equal, and that the permutation character on P_i is contained in the character on P_j if $0 \le i \le j \le n/2$; these facts remain true when the characters are restricted to the subgroup *G*. Obviously the analogous statement to (b) also holds if we replace "number of orbits" by "rank".

References

[1] W. M. Kantor, On incidence matrices of projective and affine spaces, *Math. Z.* **124** (1972), 315–318.