Notes on permutation characters

pjc, may 2001

This note gives some orbit theorems for subgroups of $\mathrm{P} \Gamma \mathrm{L}(n, q)$, proved by using only simple facts about the permutation character. These theorems also follow from Kantor's theorem [1] and Block's Lemma, but the proofs here are more elementary. The theorems also have analogues for subgroups of the symmetric group S_{n} acting on subsets of $\{1, \ldots, n\}$.

According to the Orbit-counting Lemma, if G acts on Ω with permutation character π, then the number of orbits of G on Ω is equal to $\langle\pi, 1\rangle_{G}$, where 1 denotes the principal character of G. If G also acts on Ω^{\prime} with permutation character π^{\prime}, then the permutation character of G on $\Omega \times \Omega^{\prime}$ is $\pi \pi^{\prime}$, and so the number of orbits of G on $\Omega \times \Omega^{\prime}$ is $\left\langle\pi \pi^{\prime}, 1\right\rangle_{G}=\left\langle\pi, \pi^{\prime}\right\rangle_{G}$. In particular, the rank of G on Ω is equal to $\langle\pi, \pi\rangle_{G}$.

Let V be an n-dimensional vector space over $\operatorname{GF}(q)$. For $0 \leq i \leq n$, let P_{i} denote the set of i-dimensional subspaces of V, and let π_{i} denote the permutation character of $\mathrm{P} \Gamma \mathrm{L}(n, q)$ on P_{i}.

Lemma 0.1 There are irreducible characters $\chi_{0}, \chi_{1}, \ldots, \chi_{\lfloor n / 2\rfloor}$ of $\mathrm{P} \Gamma \mathrm{L}(n, q)$ such that

$$
\pi_{i}=\pi_{n-i}=\chi_{0}+\chi_{i}+\cdots+\chi_{i}
$$

for $i \leq n / 2$.
Proof Let $G=\operatorname{P\Gamma L}(n, q)$. We show first that $\pi_{j}=\chi_{0}+\chi_{1}+\cdots+\chi_{j}$ for $j \leq n / 2$. The proof is by induction on j, the result being clear for $j=0$ (since $\left|P_{0}\right|=1$).

We claim that, for $0 \leq i \leq j \leq n / 2$, we have

$$
\left\langle\pi_{i}, \pi_{j}\right\rangle_{G}=i+1 .
$$

Indeed, elementary linear algebra shows that, for $0 \leq k \leq i$, the subset

$$
(X, Y) \in P_{i} \times P_{j}: \operatorname{dim}(X \cap Y)=k
$$

is an orbit; and these are all the orbits. Hence

$$
\left\langle\pi_{i}-\pi_{i-1}, \pi_{j}\right\rangle_{G}=1 .
$$

By the inductive hypothesis, if $i<j$, then $\pi_{i}-\pi_{i-1}=\chi_{i}$; so χ_{i} occurs in π_{j} with multiplicity 1 . We conclude that

$$
\pi_{j}=\chi_{0}+\cdots+\chi_{j-1}+\psi
$$

for some character ψ containing none of $\chi_{0}, \ldots, \chi_{j-1}$. The fact that $\left\langle\pi_{j}, \pi_{j}\right\rangle_{G}=$ $j+1$ shows that ψ is irreducible. Taking $\chi_{j}=\psi$, we complete the inductive step.

Now again let $0 \leq i \leq j \leq n / 2$. We claim that

$$
\left\langle\pi_{i}, \pi_{n-j}\right\rangle_{G}=i+1 \text { and }\left\langle\pi_{n-j}, \pi_{n-j}\right\rangle_{G}=j+1 .
$$

This is proved by linear algebra as before: the orbits on $P_{i} \times P_{n-j}$ are

$$
\left\{(X, Y) \in P_{i} \times P_{n-j}: \operatorname{dim}(X \cap Y)=k\right\}
$$

for $k=0, \ldots, i$, while the orbits on $P_{n-j} \times P_{n-j}$ are

$$
\left\{(X, Y) \in P_{n-j} \times P_{n-j}: \operatorname{dim}(X \cap Y)=k\right\}
$$

for $k=n-2 j, \ldots, n-j$.
Then the same argument as before shows that π_{n-j} contains χ_{i} with multiplicity 1 for $i=0, \ldots, j$, and nothing else.

We say that a character π of G is contained in a character π^{\prime} if $\pi^{\prime}=\pi+\psi$ for some character ψ. Now, if π and π^{\prime} are permutation characters of G on Ω and Ω^{\prime}, and π is contained in π^{\prime}, then:
(a) $\langle\pi, 1\rangle_{G} \leq\left\langle\pi^{\prime}, 1\right\rangle_{G}$; that is, the number of orbits of G on Ω^{\prime} is not less than the number of orbits on Ω;
(b) $\langle\pi, \pi\rangle_{G} \leq\left\langle\pi^{\prime}, \pi^{\prime}\right\rangle_{G}$; that is, the rank of G on Ω^{\prime} is not less than the rank on Ω;

Theorem 1 Let G be any subgroup of $\mathrm{P} \Gamma \mathrm{L}(n, q)$, having N_{i} orbits on P_{i} for $0 \leq$ $i \leq n$. Then the following hold:
(a) $N_{i}=N_{n-i}$ for $0 \leq i \leq n / 2$.
(b) $N_{i} \leq N_{j}$ for $0 \leq i \leq j \leq n / 2$.

For the Lemma shows that the permutation characters of $\mathrm{P} \Gamma \mathrm{L}(n, q)$ on P_{i} and P_{n-i} are equal, and that the permutation character on P_{i} is contained in the character on P_{j} if $0 \leq i \leq j \leq n / 2$; these facts remain true when the characters are restricted to the subgroup G. Obviously the analogous statement to (b) also holds if we replace "number of orbits" by "rank".

References

[1] W. M. Kantor, On incidence matrices of projective and affine spaces, Math. Z. 124 (1972), 315-318.

