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This note gives some orbit theorems for subgroups of PΓL(n,q), proved by
using only simple facts about the permutation character. These theorems also fol-
low from Kantor’s theorem [1] and Block’s Lemma, but the proofs here are more
elementary. The theorems also have analogues for subgroups of the symmetric
groupSn acting on subsets of{1, . . . ,n}.

According to the Orbit-counting Lemma, ifG acts onΩ with permutation
characterπ, then the number of orbits ofG on Ω is equal to〈π,1〉G, where 1 de-
notes the principal character ofG. If G also acts onΩ′ with permutation character
π′, then the permutation character ofG on Ω×Ω′ is ππ′, and so the number of
orbits ofG on Ω×Ω′ is 〈ππ′,1〉G = 〈π,π′〉G. In particular, the rank ofG on Ω is
equal to〈π,π〉G.

Let V be ann-dimensional vector space over GF(q). For 0≤ i ≤ n, let Pi

denote the set ofi-dimensional subspaces ofV, and letπi denote the permutation
character of PΓL(n,q) onPi .

Lemma 0.1 There are irreducible charactersχ0,χ1, . . . ,χbn/2c of PΓL(n,q) such
that

πi = πn−i = χ0 + χi + · · ·+ χi

for i ≤ n/2.

Proof Let G = PΓL(n,q). We show first thatπ j = χ0+χ1+ · · ·+χ j for j ≤ n/2.
The proof is by induction onj, the result being clear forj = 0 (since|P0|= 1).

We claim that, for 0≤ i ≤ j ≤ n/2, we have

〈πi ,π j〉G = i +1.

Indeed, elementary linear algebra shows that, for 0≤ k≤ i, the subset

(X,Y) ∈ Pi×Pj : dim(X∩Y) = k
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is an orbit; and these are all the orbits. Hence

〈πi−πi−1,π j〉G = 1.

By the inductive hypothesis, ifi < j, thenπi−πi−1 = χi ; soχi occurs inπ j with
multiplicity 1. We conclude that

π j = χ0 + · · ·+ χ j−1 + ψ

for some characterψ containing none ofχ0, . . . ,χ j−1. The fact that〈π j ,π j〉G =
j +1 shows thatψ is irreducible. Takingχ j = ψ, we complete the inductive step.

Now again let 0≤ i ≤ j ≤ n/2. We claim that

〈πi ,πn− j〉G = i +1 and〈πn− j ,πn− j〉G = j +1.

This is proved by linear algebra as before: the orbits onPi×Pn− j are

{(X,Y) ∈ Pi×Pn− j : dim(X∩Y) = k}
for k = 0, . . . , i, while the orbits onPn− j ×Pn− j are

{(X,Y) ∈ Pn− j ×Pn− j : dim(X∩Y) = k}
for k = n−2 j, . . . ,n− j.

Then the same argument as before shows thatπn− j containsχi with multiplic-
ity 1 for i = 0, . . . , j, and nothing else.

We say that a characterπ of G is contained ina characterπ′ if π′ = π + ψ for
some characterψ. Now, if π andπ′ are permutation characters ofG on Ω andΩ′,
andπ is contained inπ′, then:

(a) 〈π,1〉G≤ 〈π′,1〉G; that is, the number of orbits ofG onΩ′ is not less than the
number of orbits onΩ;

(b) 〈π,π〉G≤ 〈π′,π′〉G; that is, the rank ofG onΩ′ is not less than the rank onΩ;

Theorem 1 Let G be any subgroup ofPΓL(n,q), having Ni orbits on Pi for 0≤
i ≤ n. Then the following hold:

(a) Ni = Nn−i for 0≤ i ≤ n/2.

(b) Ni ≤ Nj for 0≤ i ≤ j ≤ n/2.

For the Lemma shows that the permutation characters of PΓL(n,q) on Pi and
Pn−i are equal, and that the permutation character onPi is contained in the char-
acter onPj if 0 ≤ i ≤ j ≤ n/2; these facts remain true when the characters are
restricted to the subgroupG. Obviously the analogous statement to (b) also holds
if we replace “number of orbits” by “rank”.
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