Sets, Logic and Categories Solutions to Exercises: Chapter 2

2.1 Prove that the ordered sum and lexicographic product of totally ordered (resp., well-ordered) sets is totally ordered (resp., well-ordered).

This involves checking the axioms, case-by-case. For the ordinal sum, we simplify the notation by using X and Y in place of $X \times \{0\}$ and $Y \times \{1\}$, assuming that X and Y are disjoint.

(a) Call the three clauses of the definition (1), (2), (3).

Irreflexivity: z < z cannot be as a result of (3); if $z \in X$ then $z \nleq z$ since X is ordered; and if $z \in Y$ then $z \nleq z$ since Y is ordered.

Trichotomy: Suppose that $z_1 \neq z_2$. If $z_1, z_2 \in X$, then one of $z_1 < z_2$ and $z_2 < z_1$ holds since X is totally ordered. Similarly if $z_1, z_2 \in Y$. If, say, $z_1 \in X$ and $z_2 \in Y$, then $z_1 < z_2$ by (3).

Transitivity: Suppose that $z_1 < z_2$ and $z_2 < z_3$. If $z_1, z_2, z_3 \in X$, then $z_1 < z_3$ since X is ordered. So assume that at least one of the points is in Y. Similarly, we can assume that at least one is in X. Without loss of generality, $z_2 \in X$. Then $z_1 \in X$ and $z_3 \in Y$, so $z_1 < z_3$.

(b) Call the two clauses (1) and (2).

Irreflexivity: Clear.

Trichotomy: Suppose that $z_1 = (x_1, y_1) \neq z_2 = (x_2, y_2)$. If $y_1 \neq y_2$, then without loss $y_1 < y_2$, so $z_1 < z_2$ by (1). If $y_1 = y_2$, then $x_1 \neq x_2$ (property of ordered pairs); without loss, $x_1 < x_2$, and so $z_1 < z_2$ by (2).

Transitivity: Suppose that $z_1 < z_2$ and $z_2 < z_3$, where $z_i = (x_i, y_i)$. If y_1, y_2, y_3 are not all equal then (by considering four sub-cases) $y_1 < y_3$, so $z_1 < z_3$ by (1). Otherwise, the ordering of the z_i is the same as that of the x_i by (2), and transitivity for X implies the result.

Now suppose that *X* and *Y* are well-ordered.

- (a) Let $S \subseteq X \cup Y$, $S \neq \emptyset$. If $S \cap X \neq \emptyset$ then, since X is well-ordered, there is a least element s of $S \cap X$. By (1), s < y for all $y \in S \cap Y$; so s is the least element of S. On the other hand, if $S \cap X = \emptyset$ then $S \subseteq Y$, and so S has a least element since Y is well-ordered.
 - (b) Let $S \subseteq X \times Y$, $S \neq \emptyset$. Let

$$U = \{ y \in Y : (\exists x \in X) \text{ with } (x, y) \in S \}.$$

Then $U \neq \emptyset$, so U has a least element u. Now let

$$T = \{x \in X : (x, u) \in S\}.$$

Then *T* has a least element *t*. We claim that (t, u) is the least element of *S*. If $(x, y) \in S$, $(x, y) \neq (t, u)$, then either $y \neq u$ (whence u < y, and (t, u) < (x, y) by (1)), or y = u, $x \neq t$ (whence t < x, and (t, u) < (x, y) by (2)).

2.2 Let X be any set, and define X^* to be the set of all finite sequences of elements of X. Prove that, if X can be well-ordered, then so can X^* . Show that dictionary order on the set X^* is never a well-ordering if |X| > 1.

If X is well-ordered, then X^2 is well-ordered: take it to be the lexicographic product of the ordered set X with itself. By induction, X^n is well-ordered for all $n \ge 1$. Now X^0 has just one element, namely the empty sequence. Now take the ordered sum of the well-ordered sets X^n for all n; that is, if $s \in X^n$ and $t \in X^m$, put s < t if either n < m, or n = m and s < t as element of X^n .

Suppose that $a, b \in X$ with a < b. Then, in the dictionary order on X^* , we have the infinite decreasing sequence

$$b > ab > aab > aaab > aaaab > \cdots$$

2.3 According to our definition, any natural number can be described in symbols as a sequence whose terms are the empty set \emptyset , opening and closing curly brackets $\{$ and $\}$, and commas ,. For example, the number 4 is

$$\{0, \{0\}, \{0, \{0\}\}, \{0, \{0\}, \{0, \{0\}\}\}\}\}$$

with eight occurrences of \emptyset , eight of each sort of bracket, and seven commas. How many occurrences of each symbol are there in the expression for the number n?

For $n \ge 1$, if $\{X\}$ is the sequence of symbols representing n, then n+1 is represented by $\{X, \{X\}\}$. So, if a_n, b_n, c_n, d_n are the numbers of empty set symbols, left braces, right braces, and commas respectively, then

$$a_{n+1} = 2a_n$$
, $b_{n+1} = 2b_n$, $c_{n+1} = 2c_n$, $d_{n+1} = 2d_n + 1$,

with initial conditions

$$a_1 = 1$$
, $b_1 = 1$, $c_1 = 1$, $d_1 = 0$.

By induction, the solutions are

$$a_n = 2^{n-1}$$
, $b_n = 2^{n-1}$, $c_n = 2^{n-1}$, $d_n = 2^{n-1} - 1$,

for $n \ge 1$. Of course, for n = 0 we have $a_0 = 1$ and $b_0 = c_0 = d_0 = 0$.

2.4 Prove the properties of addition and multiplication of natural numbers used in Section 1.8.

We have to prove the following, for all natural numbers a, b, c:

- (a) a + b = b + a;
- (b) a + (b+c) = (a+b) + c;
- (c) a + 0 = a;
- (d) a+c=b+c implies a=b;

- (e) a < b implies a + c < b + c;
- (f) ab = ba;
- (g) a(bc) = (ab)zc;
- (h) a1 = a;
- (i) ac = bc and $c \neq 0$ imply a = b;
- (j) ac < bc and $c \neq 0$ imply a < b.
- (a) The proof is by induction on b. (This is induction on the well-ordered set ω , that is, ordinary 'mathematical induction'.) Both the base case and the inductive step require induction on a. This double induction takes great care!

Base case: we have to show that a+0=0+a. Since a+0=a by definition, we must show that 0+a=a. This is true for a=0. Su suppose that 0+a=a. Then 0+s(a)=s(0+a)=s(a). So the statement is true, by induction on a.

Inductive step: we have to show that if a+b=b+a for some fixed b then a+s(b)=s(b)+a. Again this is proved by induction on a. Clearly it holds for a=0, as in the previous paragraph. So suppose that a+s(b)=s(b)+a. Then

$$s(a) + s(b) = s(s(a) + b) = s(s(a + b)) = s(a + s(b)) = s(s(b) + a) = s(b) + s(a)$$

(some steps have been omitted!)

So the statement is proved.

(b) Proof by induction on c. For c = 0, we have

$$(a+b)+0 = a+b = a+(b+0).$$

So assume the result for c. Then

$$(a+b)+s(c) = s((a+b)+c) = s(a+(b+c)) = a+s(b+c) = a+(b+s(c)).$$

The result is proved.

- (c) This is true by definition.
- (d) First a lemma: if s(a)=s(b), then a=b. For suppose that s(a)=s(b), that is, $a \cup \{a\} = b \cup \{b\}$. If $a \neq b$, then $a \in b$ and $b \in a$, which is impossible. So a=b.

Induction on c. If a+0=b+0, then obviously a=b, so the induction starts. Now suppose that it is true for c, and suppose that a+s(c)=b+s(c). Then s(a+c)=s(b+c). By our lemma, a+c=b+c. By the inductive hypothesis, a=b.

(e) Again the proof is by induction on c. The result is trivial for c = 0.

This time the required lemma is: if s(a) < s(b) then a < b. Now s(a) < s(b) means $a \cup \{a\} \subset b \cup \{b\}$, so that $a \in b$ or a = b. The first is impossible (since then s(a) = s(b), so $a \in b$, which means a < b as required.

Nw suppose that a + s(c), b + s(c), that is, s(a + c) < s(b + c). By the lemma, a + c < b + c/ by the inductive hypothesis, a < b as required.

(f)–(j): These are multiplicative analogues of (a)–(e); the proofs are similar.

2.5 Prove that the two definitions of ordinal addition and multiplication agree.

For addition, we have to show that the sets $\alpha + \beta$ and $(\alpha \times \{0\}) \cup (\beta \times \{1\})$ are isomorphic. This can be shown by transfinite induction on β .

- For $\beta = 0$, the isomorphism between $\alpha \times \{0\}$ and α is clear: just throw away the
- Let $\beta = s(\gamma)$ and assume that $\alpha + \gamma$ and $(\alpha \times \{0\}) \cup (\gamma \times \{1\})$ are isomorphic. Then the sets $\alpha + \beta$ and $(\alpha \times \{0\}) \cup (\beta \times \{1\})$ are obtained by adding a greatest element to each of them, and so are isomorphic.
- Suppose that β is a limit ordinal, and that $\alpha + \gamma$ and $(\alpha \times \{0\}) \cup (\gamma \times \{1\})$ are isomorphic for all $\gamma < \alpha$. Then the union of these isomorphisms is the required isomorphism between $\alpha + \beta$ and $(\alpha \times \{0\}) \cup (\beta \times \{1\})$.

For multiplication, we have to show that $\alpha \cdot \beta$ and $\alpha \times \beta$ are isomorphic. Again we use induction on β .

- If $\beta = 0$, both sides are zero (the empty set).
- If $\beta = s(\gamma)$, then $\beta = \gamma \cup \{\gamma\}$. Assume that $\alpha \cdot \gamma$ is isomorphic to $\alpha \times \gamma$. Then

$$\alpha \cdot \beta = \alpha \cdot \gamma + \alpha \cong \alpha \times \gamma \cup \alpha \times \{\gamma\} = \alpha \times \beta$$

since the elements of $\alpha \times \{\gamma\}$ are greater than those in $\alpha \times \gamma$.

- If β is a limit ordinal, then take the union of the (unique) isomorphisms between $\alpha \cdot \gamma$ and $\alpha \times \gamma$ for $\gamma < \beta$.
- **2.6** Prove the following properties of ordinal arithmetic:

(a)
$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$
.

(b)
$$(\alpha + \beta) \cdot \gamma = \alpha \cdot \gamma + \beta \cdot \gamma$$
.
(c) $\alpha^{\beta + \gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$.

(c)
$$\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$$

(a) By induction on γ . Suppose that $\gamma = 0$. Then

$$(\alpha + \beta) + 0 = \alpha + \beta = \alpha + (\beta + 0).$$

Suppose that $\gamma = s(\delta)$, and assume that $(\alpha + \beta) + \delta = \alpha + (\beta + \delta)$. Then

$$(\alpha + \beta) + s(\delta) = s((\alpha + \beta) + \delta)$$

$$= s(\alpha + (\beta + \delta))$$

$$= \alpha + s(\beta + \delta)$$

$$= \alpha + (\beta + s(\delta)).$$

Finally, suppose that γ is a limit ordinal, and that $(\alpha+\beta)+\delta=\alpha+(\beta+\delta)$ for all $\delta<\gamma.$ Then

$$\begin{array}{rcl} (\alpha+\beta)+\gamma & = & \bigcup_{\delta<\gamma}(\alpha+\beta)+\delta \\ & = & \bigcup_{\delta<\gamma}\alpha+(\beta+\delta) \\ & = & \alpha+\bigcup_{\delta<\gamma}(\beta+\delta) \\ & = & \alpha+(\beta+\gamma). \end{array}$$

(b) This question is incorrect — it should read

$$\gamma \cdot (\alpha + \beta) = \gamma \cdot \alpha + \gamma \cdot \beta.$$

This can be proved by induction on β , or by using the result of Exercise 2.5, as follows.

$$\begin{array}{ll} \gamma \cdot (\alpha + \beta) & \cong & \gamma \times (\alpha + \beta) \\ & = & \gamma \times ((\alpha \times \{0\}) \cup (\beta \times \{1\})) \\ & \cong & (\gamma \times \alpha \times \{0\}) \cup (\gamma \times \beta \times \{1\}) \\ & \cong & (\gamma \times \alpha) + (\gamma \times \beta). \end{array}$$

(You should check carefully that, at each stage, the obvious bijection is an order-isomorphism.) So the ordinals $\gamma \cdot (\alpha + \beta)$ and $(\gamma \times \alpha) + (\gamma \times \beta)$ are isomorphic.

For a counterexample to the version stated, note that

$$(\omega+1)\cdot 2=(\omega+1)+(\omega+1)=\omega\cdot 2+1$$

(since $1 + \omega = \omega$), not $\omega \cdot 2 + 2$.

- (c) Proof by induction on γ:
- The result is clear if $\gamma = 0$, since $\alpha^0 = 1$.
- Suppose that $\gamma = s(\delta)$. Then

$$\alpha^{\beta+s(\delta)} = \alpha^{s(\beta+\delta)}
= \alpha^{\beta+\delta} \cdot \alpha
= \alpha^{\beta} \cdot \alpha^{\delta} \cdot \alpha
= \alpha^{\beta} \cdot \alpha^{s(\delta)}.$$

• If γ is a limit ordinal, take the union.

2.7 (a) Show that, if
$$\gamma + \alpha = \gamma + \beta$$
, then $\alpha = \beta$.
(b) Show that, if $\gamma \cdot \alpha = \gamma \cdot \beta$ and $\gamma \neq 0$, then $\alpha = \beta$.

- (a) The identity map from $\gamma+\alpha$ to $\gamma+\beta$ maps γ to γ and induces an isomorphism from α to β . Now isomorphic ordinals are equal, by Theorem 2.3.
- (b) Suppose that $\alpha < \beta$; say $\beta = \alpha + \delta$ for some $\delta > 0$. Then $\gamma \cdot \beta = \gamma \cdot \alpha + \gamma \cdot \delta$. Now it cannot be the case that $\gamma \cdot \beta = \gamma \cdot \alpha$; for the isomorphism would map $\gamma \cdot \alpha$ to a proper section of itself. Similarly, $\beta < \alpha$ is impossible. So $\alpha = \beta$.

- **2.8** Let $(X_i)_{i \in I}$ be a family of non-empty sets. Prove that, under either of the following conditions, the cartesian product $\prod_{i \in I} X_i$ is non-empty:
- (a) $X_i = X$ for all $i \in I$;
- (b) X_i is well-ordered for all $i \in I$.
- (a) For each $x \in X$, the function f given by f(i) = x for all $i \in I$ is a choice function. This shows that the cartesian product is at least as large as X.
- (b) Let x_i be the least element of X_i . Then the function f given by $f(i) = x_i$ for all $i \in I$ is a choice function.
- **2.9** Let X be a subset of the set of real numbers, which is well-ordered by the natural order on \mathbb{R} . Prove that X is finite or countable.

The well-ordered set X is isomorphic to a unique ordinal α ; that is, $X = \{x_{\beta} : \beta < \alpha\}$, and $\beta < \gamma$ implies $x_{\beta} < x_{\gamma}$. Choose a real number q_{β} in the interval $(x_{\beta}, x_{s(\beta)})$ for all $\beta < \alpha$. (The apparent use of the Axiom of Choice here can be avoided: enumerate the rational numbers, and take the rational number with smallest index in this interval.)

These rational numbers are all distinct. For if $\beta < \gamma < \alpha$, then

$$q_{\beta} < x_{s(\beta)} \le x_{\gamma} < q_{\gamma}$$
.

So the cardinality of X does not exceed that of \mathbb{Q} .

- **2.10** (a) Show that any infinite ordinal can be written in the form $\lambda + n$, where λ is a limit ordinal and n a natural number.
- (b) Show that any limit ordinal can be written in the form $\omega \cdot \alpha$ for some ordinal α .
- (a) The proof is by induction. The conclusion is clear for a limit ordinal, so suppose that α is a successor ordinal, say $\alpha = s(\beta)$. By the inductive hypothesis, $\beta = \lambda + m$, where λ is a limit ordinal and m a natural number. Now

$$\alpha = \beta + 1 = (\lambda + m) + 1 = \lambda + (m+1),$$

which is of the required form.

- (b) Let λ be a limit ordinal. By induction and part (a), every ordinal smaller than λ can be written in the form $\omega \cdot \beta + n$ for some ordinal β and natural number n. Let α be the set of all the ordinals β which occur in such expressions. Then we have $\beta < \alpha$, so $\omega \cdot \beta + n < \omega \cdot \alpha$; thus, $\lambda \leq \omega \cdot \alpha$. On the other hand, every ordinal less than $\omega \cdot \alpha$ has the form $\omega \cdot \beta + n$ for some $\beta < \alpha$; so $\omega \cdot \alpha \leq \lambda$, and we have equality.
- **2.11** Show that the set $\{m-\frac{1}{n}: m, n \in \mathbb{N}, m \geq 1, n \geq 2\}$ of rational numbers is isomorphic to ω^2 . Find a set of rational numbers isomorphic to ω^3 .

The ordinals less than ω^2 are those of the form $\omega \cdot m + n$. We have $\omega \cdot m + n < \omega \cdot m' + n'$ if and only if either m < m', or m = m' and n < n'. Now it is clear that the function mapping $\omega \cdot m + n$ to $(m+1) - \frac{1}{n+2}$ is an order-isomorphism between ω^2 and

the given set. This amounts to showing that $(m+1) - \frac{1}{n+2} < (m'+1) - \frac{1}{n'+2}$ if and only if either m < m', or m = m' and n < n'.

To construct a set order-isomorphic to ω^3 , we have to replace each interval in the above construction with a set of order-type ω . Now the interval from $(m+1)-\frac{1}{n+2}$ to $(m+1)-\frac{1}{n+3}$ has length 1/(n+2)(n+3); so take the set

$$\left\{ (m+1) - \frac{1}{n+2} - \frac{1}{(n+2)(n+3)(p+2)} : m, n, p \in \omega \right\}.$$

Clearly this can be extended to construct ω^k for any $k \in \omega$.

2.12 Show that there are uncountably many non-isomorphic countable ordinals. Using the fact that every countable totally ordered set is isomorphic to a subset of \mathbb{Q} (see Exercise 1.16), give another proof of Cantor's Theorem that the power set of a countable set is uncountable.

The set of countable ordinals is an ordinal, since every section of it is a countable ordinal. It cannot be a countable ordinal, else it would be smaller than itself. So it is uncountable.

By Exercise 1.17, every countable ordered set (and in particular every countable ordinal) is isomorphic to a subset of the ordered set \mathbb{Q} . So \mathbb{Q} has uncountably many non-isomorphic subsets.