
Sets, Logic and Categories
Solutions to Exercises: Chapter 2

2.1 Prove that the ordered sum and lexicographic product of totally ordered (resp.,
well-ordered) sets is totally ordered (resp., well-ordered).

This involves checking the axioms, case-by-case. For the ordinal sum, we simplify
the notation by usingX andY in place ofX×{0} andY×{1}, assuming thatX andY
are disjoint.

(a) Call the three clauses of the definition (1), (2), (3).

Irreflexivity: z< z cannot be as a result of (3); ifz∈ X thenz 6< z sinceX is ordered;
and ifz∈Y thenz 6< z sinceY is ordered.

Trichotomy: Suppose thatz1 6= z2. If z1,z2 ∈ X, then one ofz1 < z2 andz2 < z1 holds
sinceX is totally ordered. Similarly ifz1,z2 ∈Y. If, say,z1 ∈ X andz2 ∈Y, then
z1 < z2 by (3).

Transitivity: Suppose thatz1 < z2 andz2 < z3. If z1,z2,z3 ∈ X, thenz1 < z3 sinceX
is ordered. So assume that at least one of the points is inY. Similarly, we can
assume that at least one is inX. Without loss of generality,z2 ∈ X. Thenz1 ∈ X
andz3 ∈Y, soz1 < z3.

(b) Call the two clauses (1) and (2).

Irreflexivity: Clear.

Trichotomy: Suppose thatz1 = (x1,y1) 6= z2 = (x2,y2). If y1 6= y2, then without loss
y1 < y2, soz1 < z2 by (1). If y1 = y2, thenx1 6= x2 (property of ordered pairs);
without loss,x1 < x2, and soz1 < z2 by (2).

Transitivity: Suppose thatz1< z2 andz2< z3, wherezi = (xi ,yi). If y1,y2,y3 are not all
equal then (by considering four sub-cases)y1 < y3, soz1 < z3 by (1). Otherwise,
the ordering of thezi is the same as that of thexi by (2), and transitivity forX
implies the result.

Now suppose thatX andY are well-ordered.

(a) LetS⊆ X∪Y, S 6= /0. If S∩X 6= /0 then, sinceX is well-ordered, there is a least
elementsof S∩X. By (1),s< y for all y∈ S∩Y; sos is the least element ofS. On the
other hand, ifS∩X = /0 thenS⊆Y, and soShas a least element sinceY is well-ordered.

(b) LetS⊆ X×Y, S 6= /0. Let

U = {y∈Y : (∃x∈ X) with (x,y) ∈ S}.

ThenU 6= /0, soU has a least elementu. Now let

T = {x∈ X : (x,u) ∈ S}.

ThenT has a least elementt. We claim that(t,u) is the least element ofS. If (x,y) ∈ S,
(x,y) 6= (t,u), then eithery 6= u (whenceu< y, and(t,u)< (x,y) by (1)), ory= u, x 6= t
(whencet < x, and(t,u)< (x,y) by (2)).
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2.2 Let X be any set, and defineX∗ to be the set of all finite sequences of elements of
X. Prove that, ifX can be well-ordered, then so canX∗. Show that dictionary order
on the setX∗ is never a well-ordering if|X|> 1.

If X is well-ordered, thenX2 is well-ordered: take it to be the lexicographic product
of the ordered setX with itself. By induction,Xn is well-ordered for alln≥ 1. Now
X0 has just one element, namely the empty sequence. Now take the ordered sum of the
well-ordered setsXn for all n; that is, ifs∈ Xn andt ∈ Xm, puts< t if eithern<m, or
n = mands< t as element ofXn.

Suppose thata,b∈ X with a< b. Then, in the dictionary order onX∗, we have the
infinite decreasing sequence

b> ab> aab> aaab> aaaab> · · ·

2.3 According to our definition, any natural number can be described in symbols as a
sequence whose terms are the empty set/0, opening and closing curly brackets{ and
}, and commas,. For example, the number 4 is

{ /0,{ /0},{ /0,{ /0}},{ /0,{ /0},{ /0,{ /0}}}}

with eight occurrences of/0, eight of each sort of bracket, and seven commas. How
many occurrences of each symbol are there in the expression for the numbern?

For n≥ 1, if {X} is the sequence of symbols representingn, thenn+ 1 is repre-
sented by{X,{X}}. So, if an,bn,cn,dn are the numbers of empty set symbols, left
braces, right braces, and commas respectively, then

an+1 = 2an, bn+1 = 2bn, cn+1 = 2cn, dn+1 = 2dn +1,

with initial conditions

a1 = 1, b1 = 1, c1 = 1, ,d1 = 0.

By induction, the solutions are

an = 2n−1, bn = 2n−1, cn = 2n−1, dn = 2n−1−1,

for n≥ 1. Of course, forn = 0 we havea0 = 1 andb0 = c0 = d0 = 0.

2.4 Prove the properties of addition and multiplication of natural numbers used in
Section 1.8.

We have to prove the following, for all natural numbersa,b,c:

(a)a+b = b+a;

(b) a+(b+c) = (a+b)+c;

(c) a+0 = a;

(d) a+c = b+c impliesa = b;
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(e)a< b impliesa+c< b+c;

(f) ab= ba;

(g) a(bc) = (ab)zc;

(h) a1 = a;

(i) ac= bcandc 6= 0 imply a = b;

(j) ac< bcandc 6= 0 imply a< b.

(a) The proof is by induction onb. (This is induction on the well-ordered setω,
that is, ordinary ‘mathematical induction’.) Both the base case and the inductive step
require induction ona. This double induction takes great care!

Base case: we have to show thata+ 0 = 0+ a. Sincea+ 0 = a by definition, we
must show that 0+ a = a. This is true fora = 0. Su suppose that 0+ a = a. Then
0+s(a) = s(0+a) = s(a). So the statement is true, by induction ona.

Inductive step: we have to show that ifa+b= b+a for some fixedb thena+s(b) =
s(b) + a. Again this is proved by induction ona. Clearly it holds fora = 0, as in the
previous paragraph. So suppose thata+s(b) = s(b)+a. Then

s(a)+s(b) = s(s(a)+b) = s(s(a+b)) = s(a+s(b)) = s(s(b)+a) = s(b)+s(a)

(some steps have been omitted!)
So the statement is proved.

(b) Proof by induction onc. Forc = 0, we have

(a+b)+0 = a+b = a+(b+0).

So assume the result forc. Then

(a+b)+s(c) = s((a+b)+c) = s(a+(b+c)) = a+s(b+c) = a+(b+s(c)).

The result is proved.

(c) This is true by definition.

(d) First a lemma:if s(a)=s(b), then a = b. For suppose thats(a) = s(b), that is,
a∪{a}= b∪{b}. If a 6= b, thena∈ b andb∈ a, which is impossible. Soa = b.

Induction onc. If a+0 = b+0, then obviouslya = b, so the induction starts. Now
suppose that it is true forc, and suppose thata+ s(c) = b+ s(c). Thens(a+ c) =
s(b+c). By our lemma,a+c = b+c. By the inductive hypothesis,a = b.

(e) Again the proof is by induction onc. The result is trivial forc = 0.
This time the required lemma is: ifs(a)< s(b) thena< b. Now s(a)< s(b) means

a∪{a}⊂ b∪{b}, so thata∈ b or a= b. The first is impossible (since thens(a) = s(b),
soa∈ b, which meansa< b as required.

Nw suppose thata+ s(c),b+ s(c), that is,s(a+ c) < s(b+ c). By the lemma,
a+c< b+c/ by the inductive hypothesis,a< b as required.

(f)–(j): These are multiplicative analogues of (a)–(e); the proofs are similar.
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2.5 Prove that the two definitions of ordinal addition and multiplication agree.

For addition, we have to show that the setsα + β and(α×{0})∪ (β×{1}) are
isomorphic. This can be shown by transfinite induction onβ.

• Forβ = 0, the isomorphism betweenα×{0} andα is clear: just throw away the
tag!

• Let β = s(γ) and assume thatα + γ and(α×{0})∪ (γ×{1}) are isomorphic.
Then the setsα + β and(α×{0})∪ (β×{1}) are obtained by adding a greatest
element to each of them, and so are isomorphic.

• Suppose thatβ is a limit ordinal, and thatα + γ and(α×{0})∪ (γ×{1}) are
isomorphic for allγ < α. Then the union of these isomorphisms is the required
isomorphism betweenα + β and(α×{0})∪ (β×{1}).

For multiplication, we have to show thatα ·β andα×β are isomorphic. Again we
use induction onβ.

• If β = 0, both sides are zero (the empty set).

• If β = s(γ), thenβ = γ∪{γ}. Assume thatα · γ is isomorphic toα× γ. Then

α ·β = α · γ + α∼= α× γ∪α×{γ}= α×β,

since the elements ofα×{γ} are greater than those inα× γ.

• If β is a limit ordinal, then take the union of the (unique) isomorphisms between
α · γ andα× γ for γ< β.

2.6 Prove the following properties of ordinal arithmetic:

(a) (α + β)+ γ = α +(β + γ).

(b) (α + β) · γ = α · γ + β · γ.

(c) αβ+γ = αβ ·αγ.

(a) By induction onγ. Suppose thatγ = 0. Then

(α + β)+0 = α + β = α +(β +0).

Suppose thatγ = s(δ), and assume that(α + β)+ δ = α +(β + δ). Then

(α + β)+s(δ) = s((α + β)+ δ)
= s(α +(β + δ))
= α +s(β + δ)
= α +(β +s(δ)).
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Finally, suppose thatγ is a limit ordinal, and that(α + β) + δ = α + (β + δ) for all
δ< γ. Then

(α + β)+ γ =
⋃

δ<γ(α + β)+ δ
=

⋃
δ<γ α +(β + δ)

= α +
⋃

δ<γ(β + δ)
= α +(β + γ).

(b) This question is incorrect — it should read

γ · (α + β) = γ ·α + γ ·β.

This can be proved by induction onβ, or by using the result of Exercise 2.5, as
follows.

γ · (α + β) ∼= γ× (α + β)
= γ× ((α×{0})∪ (β×{1}))
∼= (γ×α×{0})∪ (γ×β×{1})
∼= (γ×α)+(γ×β).

(You should check carefully that, at each stage, the obvious bijection is an order-
isomorphism.) So the ordinalsγ · (α + β) and(γ×α)+(γ×β) are isomorphic.

For a counterexample to the version stated, note that

(ω +1) ·2 = (ω +1)+(ω +1) = ω ·2+1

(since 1+ ω = ω), notω ·2+2.

(c) Proof by induction onγ:

• The result is clear ifγ = 0, sinceα0 = 1.

• Suppose thatγ = s(δ). Then

αβ+s(δ) = αs(β+δ)

= αβ+δ ·α
= αβ ·αδ ·α
= αβ ·αs(δ).

• If γ is a limit ordinal, take the union.

2.7 (a) Show that, ifγ + α = γ + β, thenα = β.
(b) Show that, ifγ ·α = γ ·β andγ 6= 0, thenα = β.

(a) The identity map fromγ + α to γ + β mapsγ to γ and induces an isomorphism
from α to β. Now isomorphic ordinals are equal, by Theorem 2.3.

(b) Suppose thatα< β; sayβ = α+δ for someδ> 0. Thenγ ·β = γ ·α+γ ·δ. Now
it cannot be the case thatγ ·β = γ ·α; for the isomorphism would mapγ ·α to a proper
section of itself. Similarly,β< α is impossible. Soα = β.
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2.8 Let (Xi)i∈I be a family of non-empty sets. Prove that, under either of the follow-
ing conditions, the cartesian product∏i∈I Xi is non-empty:

(a)Xi = X for all i ∈ I ;

(b) Xi is well-ordered for alli ∈ I .

(a) For eachx∈X, the functionf given by f (i) = x for all i ∈ I is a choice function.
This shows that the cartesian product is at least as large asX.

(b) Let xi be the least element ofXi . Then the functionf given by f (i) = xi for all
i ∈ I is a choice function.

2.9 Let X be a subset of the set of real numbers, which is well-ordered by the natural
order onR. Prove thatX is finite or countable.

The well-ordered setX is isomorphic to a unique ordinalα; that is,X = {xβ : β <
α}, andβ < γ impliesxβ < xγ. Choose a real numberqβ in the interval(xβ,xs(β)) for
all β < α. (The apparent use of the Axiom of Choice here can be avoided: enumerate
the rational numbers, and take the rational number with smallest index in this interval.)

These rational numbers are all distinct. For ifβ< γ< α, then

qβ < xs(β) ≤ xγ < qγ.

So the cardinality ofX does not exceed that ofQ.

2.10 (a) Show that any infinite ordinal can be written in the formλ +n, whereλ is a
limit ordinal andn a natural number.
(b) Show that any limit ordinal can be written in the formω ·α for some ordinalα.

(a) The proof is by induction. The conclusion is clear for a limit ordinal, so suppose
that α is a successor ordinal, sayα = s(β). By the inductive hypothesis,β = λ + m,
whereλ is a limit ordinal andm a natural number. Now

α = β +1 = (λ +m)+1 = λ +(m+1),

which is of the required form.

(b) Let λ be a limit ordinal. By induction and part (a), every ordinal smaller thanλ
can be written in the formω ·β + n for some ordinalβ and natural numbern. Let α be
the set of all the ordinalsβ which occur in such expressions. Then we haveβ < α, so
ω ·β + n< ω ·α; thus,λ ≤ ω ·α. On the other hand, every ordinal less thanω ·α has
the formω ·β +n for someβ< α; soω ·α≤ λ, and we have equality.

2.11 Show that the set{m− 1
n : m,n∈ N,m≥ 1,n≥ 2} of rational numbers is iso-

morphic toω2. Find a set of rational numbers isomorphic toω3.

The ordinals less thanω2 are those of the formω ·m+ n. We haveω ·m+ n<
ω ·m′+ n′ if and only if eitherm< m′, or m= m′ andn< n′. Now it is clear that the
function mappingω ·m+ n to (m+ 1)− 1

n+2 is an order-isomorphism betweenω2 and
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the given set. This amounts to showing that(m+ 1)− 1
n+2 < (m′+ 1)− 1

n′+2 if and
only if eitherm<m′, or m= m′ andn< n′.

To construct a set order-isomorphic toω3, we have to replace each interval in the
above construction with a set of order-typeω. Now the interval from(m+ 1)− 1

n+2 to
(m+1)− 1

n+3 has length 1/(n+2)(n+3); so take the set{
(m+1)− 1

n+2
− 1

(n+2)(n+3)(p+2)
: m,n, p∈ ω

}
.

Clearly this can be extended to constructωk for anyk∈ ω.

2.12 Show that there are uncountably many non-isomorphic countable ordinals. Us-
ing the fact that every countable totally ordered set is isomorphic to a subset ofQ

(see Exercise 1.16), give another proof of Cantor’s Theorem that the power set of a
countable set is uncountable.

The set of countable ordinals is an ordinal, since every section of it is a countable
ordinal. It cannot be a countable ordinal, else it would be smaller than itself. So it is
uncountable.

By Exercise 1.17, every countable ordered set (and in particular every countable
ordinal) is isomorphic to a subset of the ordered setQ. SoQ has uncountably many
non-isomorphic subsets.
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