Sets, Logic and Categories
Solutions to Exercises: Chapter 2

2.1 Prove that the ordered sum and lexicographic product of totally ordered (resp.,
well-ordered) sets is totally ordered (resp., well-ordered).

This involves checking the axioms, case-by-case. For the ordinal sum, we simplify
the notation by usin andY in place ofX x {0} andY x {1}, assuming thaX andY
are disjoint.

(a) Call the three clauses of the definition (1), (2), (3).

Irreflexivity: z < z cannot be as a result of (3);4fc X thenz £ zsinceX is ordered;
and ifze Y thenz £ zsinceY is ordered.

Trichotomy: Suppose that # z. If z;,2, € X, then one of; < 7z, andz, < z; holds
sinceX is totally ordered. Similarly i,z € Y. If, say,z; € X andz, €Y, then
71 < 2, by (3).

Transitivity: Suppose tha < z andz, < z3. If z1,2,23 € X, thenz; < z3 sinceX
is ordered. So assume that at least one of the points¥s f&imilarly, we can
assume that at least one isXn Without loss of generalityz, € X. Thenz; € X
andzz €Y, soz; < z3.

(b) Call the two clauses (1) and (2).
Irreflexivity: Clear.

Trichotomy: Suppose thai = (X1,¥1) # 22 = (X2,¥2). If y1 # y», then without loss
y1 < Y2, 5071 < 23 by (1). If y1 = y», thenxy # xo (property of ordered pairs);
without loss X3 < X2, and s < 2 by (2).

Transitivity: Suppose that < z, andz, < z3, wherez = (X, Vi ). If y1,¥2,ys are not all
equal then (by considering four sub-casg@s¥ ys, s0z; < z3 by (1). Otherwise,
the ordering of the; is the same as that of the by (2), and transitivity forX
implies the result.

Now suppose that andY are well-ordered.

(a) LetSC XUY, S 0. If SNnX # 0then, sinceX is well-ordered, there is a least
elementsof SNX. By (1),s< yforally € SNY; sosis the least element & On the
other hand, iSNX = 0thenSCY, and scShas a least element sin¥es well-ordered.

(b) LetSC X xY, S#£0. Let
U={yeY: (IxeX)with (x,y) € S}.
ThenU # 0, soU has a least element Now let
T={xeX:(xu) S}

ThenT has a least elementWe claim thaf(t, u) is the least element & If (x,y) € S
(x,y) # (t,u), then eithel # u (whenceu < y, and(t,u) < (x,y) by (1)), ory=u, x#t
(whencet < x, and(t,u) < (x,y) by (2)).



2.2 Let X be any set, and defin€* to be the set of all finite sequences of elements of
X. Prove that, ifX can be well-ordered, then so caAri. Show that dictionary orde
on the seX* is never a well-ordering ifX| > 1.

=

If X is well-ordered, the? is well-ordered: take it to be the lexicographic product
of the ordered seX with itself. By induction,X" is well-ordered for alh > 1. Now
X0 has just one element, namely the empty sequence. Now take the ordered sum of the
well-ordered setX" for all n; that is, ifse X" andt € X™, puts< t if eithern < m, or
n=mands<t as element oK".

Suppose that, b € X with a < b. Then, in the dictionary order ox*, we have the
infinite decreasing sequence

b > ab> aab> aaab> aaaab> ---

2.3 According to our definition, any natural number can be described in symbols as a
sequence whose terms are the emptysepening and closing curly bracketsand
}, and commas. For example, the number 4 is

{0,{0}.{0,{0}},{0,{0}.{0,{0}} }}

with eight occurrences d, eight of each sort of bracket, and seven commas. How
many occurrences of each symbol are there in the expression for the naPnber

Forn> 1, if {X} is the sequence of symbols representinghenn+ 1 is repre-
sented by{X,{X}}. So, if ay,bn,cn,d, are the numbers of empty set symbols, left
braces, right braces, and commas respectively, then

ani1=28,, bni=2by, Chi1=2c,, dni1=2dq+1,
with initial conditions
aa=1 b=1 c¢=1 ,d=0.
By induction, the solutions are
an=2"1 b,=2"% c¢,=2"1 d,=2"1-1,

for n> 1. Of course, fon = 0 we haveay = 1 andbg = cy = dy = 0.

2.4 Prove the properties of addition and multiplication of natural numbers used in
Section 1.8.

We have to prove the following, for all natural numbarb, c:
(a)a+b=Db+g;
(b)a+ (b+c) = (a+b)+c;
(c)a+0=4q
(d)a+c=Db+cimpliesa=b;



(e)a< bimpliesa+c<b+c;

(f) ab=ba;
(9) a(bc) = (ab)zg
(hyal=zg;

(i) ac=bcandc # 0 implya=b;
(j) ac< bcandc # 0 implya < b.

(a) The proof is by induction ob. (This is induction on the well-ordered set
that is, ordinary ‘mathematical induction’.) Both the base case and the inductive step
require induction om. This double induction takes great care!

Base case: we have to show tlhat 0 = 0+ a. Sincea+ 0 = a by definition, we
must show that 8 a=a. This is true fora= 0. Su suppose thatPa=a. Then
0+s(a) = s(0+a) = s(a). So the statement is true, by inductionan

Inductive step: we have to show thaai-b = b+ afor some fixed thena+s(b) =
s(b) +a. Again this is proved by induction oa Clearly it holds fora= 0, as in the
previous paragraph. So suppose thats(b) = s(b) +a. Then

s(a) +s(b) = s(s(a) + b) = s(s(a+ b)) = s(a+s(b)) = s(s(b) + a) = s(b) 4+ s(a)

(some steps have been omitted!)
So the statement is proved.

(b) Proof by induction ore. Forc =0, we have
(a+b)+0=a+b=a+(b+0).
So assume the result for Then
(a+b)+s(c) =s((a+b)+c) =s(a+ (b+c)) =a+s(b+c) =a+ (b+5s(c)).

The result is proved.

(c) This is true by definition.

(d) First a lemmaif s(a)=s(b), then a = b. For suppose that(a) = s(b), that is,
aU{a} =bu{b}. If a# b, thena € bandb € a, which is impossible. Sa=b.

Induction onc. If a+ 0= b+ 0, then obviousla = b, so the induction starts. Now
suppose that it is true far, and suppose tha+ s(c) = b+ s(c). Thens(a+c) =
s(b+c). By our lemmaa+ c = b+ c. By the inductive hypothesig,= b.

(e) Again the proof is by induction om The result is trivial forc = 0.

This time the required lemma is: sfa) < s(b) thena < b. Now s(a) < s(b) means
au{a} c bu{b}, sothata € bora=h. The firstis impossible (since thefa) = s(b),
soa € b, which means < b as required.

Nw suppose thaa+ s(c),b+ s(c), that is,s(a+c) < s(b+c). By the lemma,
a-+ c < b+c/ by the inductive hypothesig, < b as required.

(H—-()): These are multiplicative analogues of (a)—(e); the proofs are similar.



‘ 2.5 Prove that the two definitions of ordinal addition and multiplication agree. ‘

For addition, we have to show that the sets- 3 and (a x {0}) U (B x {1}) are
isomorphic. This can be shown by transfinite inductiorfon

e Forp =0, the isomorphism betweenx {0} anda is clear: just throw away the
tag!

e Let B =5(y) and assume that 4y and (a x {0}) U (y x {1}) are isomorphic.
Then the sets + B and(a x {0}) U (B x {1}) are obtained by adding a greatest
element to each of them, and so are isomorphic.

e Suppose thaB is a limit ordinal, and thatt +y and (a x {0}) U (yx {1}) are
isomorphic for ally < a. Then the union of these isomorphisms is the required
isomorphism betweea + B and(a x {0}) U (B x {1}).

For multiplication, we have to show that  anda x (3 are isomorphic. Again we
use induction orf.

e If B =0, both sides are zero (the empty set).

e If B=5(y), then = yU{y}. Assume that: -y is isomorphic taa x y. Then
o-B=a-y+aXaxyuax{yt=axp,
since the elements of x {y} are greater than those inx y.

o If Bis alimit ordinal, then take the union of the (unique) isomorphisms between
o-yanda x yfory< .

2.6 Prove the following properties of ordinal arithmetic:
@) (a+B)+y=a+(B+v).
(b) (@ +PB)-y=0a-y+B-y.

(© aftY=qof.qaV.

(a) By induction ory. Suppose that= 0. Then
(@+B)+0=a+B=a+(B+0).
Suppose thag = s(d), and assume thét +B) +0=a + (B+9d). Then

(0+B)+s(d = s((a+B)+9d)
= s(a+(B+9))
= 0o+s(B+9)
= o+ (B+s(9)).



Finally, suppose thatis a limit ordinal, and thata + ) + &= a + (B + d) for all
d<y. Then
(@+B)+y = Usy(a+P)+d
= U5<ya + (B+ 6)
= a+ U6<y(B + 6)
= a+(B+y).
(b) This question is incorrect — it should read

y-(a+B)=y-a+y-B.

This can be proved by induction @) or by using the result of Exercise 2.5, as
follows.

yx (a+B)
= yx((ax{0})u(Bx{1}))
(yxax{0})u(yxpx{1})
(yx0) +(yxB).
(You should check carefully that, at each stage, the obvious bijection is an order-
isomorphism.) So the ordinays (o + ) and(y x a) + (y x B) are isomorphic.

For a counterexample to the version stated, note that

y-(a+B)

1%

1%

(W+1)-2=(w+1)+ (w+1)=w-2+1
(since 1+ w= w), notw-2+ 2.
(c) Proof by induction oy
e The resultis clear iff = 0, sincea® = 1.
e Suppose thag=s(d). Then
afts®  —  SB+d)
= QB+5 .a
— oBf.a%.qa

¢ If yis a limit ordinal, take the union.

2.7 (a) Show that, ify+ o = y+ 3, thena = .
(b) Show that, ify-a = y- B andy # 0, thena = 3.

(a) The identity map frony+ a to y+ 3 mapsy to y and induces an isomorphism
from a to 3. Now isomorphic ordinals are equal, by Theorem 2.3.

(b) Suppose that < 3; sayp = a + & for somed > 0. Theny-B=y-a+y-5. Now
it cannot be the case thatp = y- a; for the isomorphism would mag o to a proper
section of itself. Similarlyp < a is impossible. Sa = f3.



2.8 Let (X)iel be a family of non-empty sets. Prove that, under either of the follow-
ing conditions, the cartesian prodygi,, X; is non-empty:

(@)X =Xforalliel;

(b) X; is well-ordered for ali € 1.

(a) For eachkx € X, the functionf given by f (i) = xfor all i € | is a choice function.
This shows that the cartesian product is at least as lare as

(b) Letx; be the least element of. Then the functiorf given by f (i) = x; for all
i €1 is a choice function.

2.9 Let X be a subset of the set of real numbers, which is well-ordered by the natural
order onR. Prove thai is finite or countable.

The well-ordered seX is isomorphic to a unique ordinal; that is,X = {xg : B <
a}, andP < yimpliesxz < ;. Choose a real numbey in the interval(xg, xsg)) for
all B < a. (The apparent use of the Axiom of Choice here can be avoided: enumerate
the rational numbers, and take the rational number with smallest index in this interval.)
These rational numbers are all distinct. FOB ik y < a, then

So the cardinality oK does not exceed that §f.

2.10 (a) Show that any infinite ordinal can be written in the foxm n, whereh is a
limit ordinal andn a natural number.
(b) Show that any limit ordinal can be written in the fotma for some ordinabr.

(a) The proof is by induction. The conclusion is clear for a limit ordinal, so suppose
thata is a successor ordinal, say= s(p). By the inductive hypothesi§ = A+ m,
where) is a limit ordinal andm a natural number. Now

a=B+1=A+m+1=A+(m+1),

which is of the required form.

(b) LetA be a limit ordinal. By induction and part (a), every ordinal smaller than
can be written in the form- 3+ n for some ordinaP and natural numbaer. Leta be
the set of all the ordinal@ which occur in such expressions. Then we h@ve a, so
w-B+n<w-a; thus,A < w-a. On the other hand, every ordinal less tharm has
the formw- 3+ n for someP < a; sow-a < A, and we have equality.

2.11 Show that the sefm— % :mne N,m>1n> 2} of rational numbers is isa
morphic tow?. Find a set of rational numbers isomorphiat

The ordinals less thaa? are those of the fornw-m+n. We havew - m+n <
w-m +n' if and only if eitherm < m', orm=m andn < n’. Now it is clear that the
function mappingo-m+nto (m+1) — Flz is an order-isomorphism betweer and



the given set. This amounts to showing that+ 1) — -3 < (0 + 1) — 5% if and
only if eitherm< m, orm=m andn < n'.

To construct a set order-isomorphicds, we have to replace each interval in the
above construction with a set of order-typeNow the interval from(m+1) — -1 to

n+2
(m+1) — ;5 has length 1(n+2)(n+3); so take the set

1
n+2 (n+2)(n+3)(p+2

{(m+1)— ):m,n,peoo}.

Clearly this can be extended to constrwktfor anyk € w.

2.12 Show that there are uncountably many non-isomorphic countable ordinals. Us-
ing the fact that every countable totally ordered set is isomorphic to a subget of

(see Exercise 1.16), give another proof of Cantor's Theorem that the power set of a
countable set is uncountable.

The set of countable ordinals is an ordinal, since every section of it is a countable
ordinal. It cannot be a countable ordinal, else it would be smaller than itself. So it is
uncountable.

By Exercise 1.17, every countable ordered set (and in particular every countable
ordinal) is isomorphic to a subset of the ordered@etSoQ has uncountably many
non-isomorphic subsets.



