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Abstract

The Lie algebras of types Go, F, and Eg have dimensions 14, 52 and
248 respectively. The classical explanation of these numbers is as the rank
plus the number of roots. Half the roots are positive and half are negative:
the number of positive roots is 6, 24 and 120 in the three cases. That is
3!, 4!, and 5!. Why?

Perhaps there is another ‘explanation’: divide by 2 and we get 7, 26
and 124. Add 1 and we get 23, 3% and 5%. Why?

1 Introduction

I have known Rob Curtis for over 20 years, during which time he has meant a
lot to me as mentor, colleague and, above all, friend. In fact our association goes
back further than that, to the ‘Atlas of Finite Groups’, which we both worked on,
though not together. (This remains, I am slightly embarassed to say, our only
joint mathematical publication.)

We are here to celebrate (somewhat belatedly) Rob’s 60th birthday, and in
particular his contributions to mathematics. One of his most important con-
tributions is surely the invention of the MOG (Miracle Octad Generator) for
facilitating calculation in the Mathieu group Ms,. Before then, if you wanted to
generate octads, you had to look up the list of all 759 of them in a paper of Todd.
Afterwards, all the octads were drawn on a postcard (not quite a postage-stamp!)
and calculation became immeasurably easier. The MOG was an essential ingre-
dient in the constructions of J; and the Monster, and remains an indispensable
tool for working in many of the sporadic groups. The real measure of Rob’s
achievement here is that nobody calls it Curtis’s MOG any more—it is just the
MOG.

The same principle of trying to find better definitions and better calculating
tools for studying groups (and other mathematical objects) can be found in much
of Rob’s work, and also underlies a great deal of the work of our mathematical
father, John Conway. Some of this has rubbed off on me, and I would like to tell
you today about some recent progress in this direction.



For some years I have been trying to understand the exceptional groups of
Lie type, and to find effective ways of constructing them and calculating with
them. Many of you have heard me talk about some new ways of constructing the
Ree groups. You will be relieved to hear I am not going to talk about that now.
Instead I want to turn my attention to the exceptional Lie algebras.

2 Lie algebras of type A

The Cartan—Killing—Weyl-Chevalley theory of Lie algebras has been so successful
that there is a tendency to think that there is no other way to describe finite-
dimensional Lie algebras, Lie groups, algebraic groups or finite groups of Lie
type. But in fact there are many other aspects to these theories which can be
illuminating or fruitful.

To take a simple case, consider the Lie algebra of type A;. This is a 3-
dimensional algebra over the complex numbers, which may be described in various
ways. The standard way is to define it as the algebra of 2 x 2 matrices of trace
0, with the Lie bracket [AB] := AB — BA (it would really be better to take
1(AB — BA)), and, following Chevalley, to take the basis

0 1 0 0 1 0
e::(0 0)’f‘:<1 0)’}“:(0 —1)’

so that the multiplication table is

e f h
el O h —2e
fl—=h O 2f
hi2e =2f 0

But this is not the only useful basis. Let us pick instead

Lo L0 L 10 1) 1[0
“olo —i )3 7321 0)% T3\ o)

so that the multiplication table is

i j k
il 0 k —j
jl-k 0 i
ki j -1 0

which I am sure you recognise! What is particularly nice about this basis is that
there is a symmetry of order 3 cyclically permuting the three basis vectors i, j, k.

In both cases you will observe that the multiplication table itself only involves
integer coefficients, so can be interpreted over any field whatsoever. In particular,
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over the real numbers these are non-isomorphic algebras. They are conventionally
known respectively as the split real form and the compact real form of A;.

A handy way to distinguish them is via the Killing form. Let adz denote the
linear map y — [zy], and define (z,y) := Tr(adz.ady) (the trace of the composite
linear map). This is obviously a symmetric bilinear form, known as the Killing
form. With respect to the ordered basis (e, f, h) the Killing form has matrix

O = O
O O =
co O O

which over the real numbers has two positive and one negative eigenvalues. On
the other hand, with respect to the ordered basis (i, j, k) the matrix of the Killing
form is

-2 0 0
0 -2 0
0 0 =2

which is negative definite over the real numbers.
In general, the compact real form of a Lie algebra is the one whose Killing form
is negative definite. It can be shown that it is unique (up to real equivalence).

3 Composition algebras

You know, of course, how to construct the complex numbers from the real num-
bers, by adjoining a square root of —1, called i, and defining multiplication by
(a+ bi)(c+di) = (ac — bd) + (bc + ad)i. For each complex number x = a + bi we
define its conjugate T = a — bi and its norm N(x) = z.7.

You probably also know how to construct the quaternions from the com-
plex numbers, by adjoining another square root of —1 called j, and defining
multiplication by (a + bj)(c + dj) = (ac — bd) + (b¢ + ad)j. For each quater-
nion x = a + bj we define its conjugate T = @ — bj and its norm N(x) = z.7.
And of course you know that this product is no longer commutative because
ji=(0+15)(i+0j) =0+ (1 +0)j = —i.j. Writing k = ij we see a remarkable
similarity with the compact real form of the Lie algebra of type A; described
above. (Multiply the matrices by 2 and use the ordinary matrix product instead
of the Lie bracket.)

You may even know how to construct the octonions from the quaternions, by
adjoining yet another square root of —1 called [, and defining multiplication by
a (a +bl)(c+dl) = (ac — db) + (b¢ + da)l, and conjugates and norms as before.
This product is no longer associative, as i(jl) = —(ij)l.

I am interested in integral forms of these algebras. Let us start with the
complex numbers. My favourite integral form is not Z[i|, but Z|w|, where w is a
primitive cube root of 1, that is a root of the polynomial 22 4+ + 1. The units in
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this algebra are +1, +w, £+, which, geometrically, form (a scaled version of) a
root system of type As. Adjoining also the sums of adjacent roots (that is, pairs
of roots with inner product 1/2) we obtain the root system of type G, in which
the long roots are +6, +wf, +@h, where 0 := w —w = /—3. The Weyl group
(generated by reflections in the roots) is a dihedral group of order 12 generated
by multiplication by —w together with complex conjugation.

What do you think is my favourite integral form of the quaternions? Surely
[ want it to contain a copy of Z[w]|! But now I can choose a particularly nice w,
that is w = $(=14 ¢+ j + k), so that Z[,w] has a finite group of units

{£1, +i, 5, £k} {1, w, T}

I will leave it as an exercise for you if you are bored, to show that this is a group,
of order 24, isomorphic to SLy(3). The crucial point is to observe that i = j.

These 24 units form a (scaled) copy of the root system of type Dy. There
are also 24 elements of norm 2 in this algebra, which extend the root system to
one of type Fy. The long roots are ¢ — 5 times the short roots, where i — j is
an (arbitrary) square root of —2 in the algebra. The Weyl group is generated
by left- and right-multiplications by the group of units, together with quaternion
conjugation, and the automorphism of the quaternions which negates ¢ and swaps
j with k. (I think this is right—I may have left something out.)

It is unlikely to surprise you at this point that there is an integral form of the
octonions in which the units are precisely the 240 roots of the Eg root system.
[ shall omit the details owing to shortage of time (and space). But note that
the units do not form a group, due to the failure of the associative law in the
octonions. However, the maps adx, where x is a root, generate the derived
subgroup of the Weyl group (of index 2). This extends to the whole Weyl group
by adjoining octonion conjugation.



4 Exceptional Lie algebras

The five exceptional Lie algebras are conventionally called Gy, Fy, Eg, E7 and
FEg, and their dimensions are respectively 14, 52, 78, 133 and 248. The subscript
denotes the rank, which we may as well define as the dimension of the largest
subalgebra on which the product is identically zero (a Cartan subalgebra). Con-
sidering the action of such a subalgebra (by Lie multiplication) on the algebra,
we find that its eigenspaces are 1-dimensional. For each eigenspace, there is a
corresponding hyperplane in the Cartan subalgebra which acts trivially. The ge-
ometry of these hyperplanes gives rise to much interesting combinatorics from
which the classification of simple complex Lie algebras can be derived.

You may notice that the rank divides the dimension. (This is true for the
classical Lie alegbras as well. Is there an obvious reason?) We have:

14 = 2x7

52 = 4x13

78 = 6x13
133 = 7x19
248 = 8 x 31

You may feel that there should be some way of writing the Lie algebra as a
direct sum of mutually orthogonal (with respect to the Killing form) Cartan
subalgebras. Indeed, it is known that this can be done. What I want to do is to
find the nicest possible way of doing this (over the complex numbers) so that the
multiplication table is as nice as possible. In particular, I want the entries in the
multiplication table to be integers so that they can be interpreted in any field.

I also want to use the algebraic structure that I have imposed on G,, Fj
and Fjg, if possible, to encode the Lie algebra. These three cases also exhibit
some more fascinating numerology, as the numbers of Cartan subalgebras in the
decomposition of the algebra are respectively

7 = 1+2+2°
13 = 14+3+4+32
31 = 1+5+5°

If this is not a complete coincidence, then surely these Cartan subalgebras must
be indexed by the points of a projective plane, of order 2, 3 and 5 respectively?!
The experts in the audience will also be thinking already of the non-toroidal local
subgroups

23 L3(2) < G4(C)
33L3(3) < F4((C)
53.L3(5) < Fx(C)

These groups act irreducibly on the Lie algebra, and in each case the representa-
tion may be obtained by inducing up a suitable 2-dimensional representation of
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the inertial subgroup p3.p?.SLy(p). This gives a slightly different interpretation
of the dimensions, which is also very suggestive:

14 = 2x (22 -1)
52 = 2x (3 —1)
248 = 2x (5% —1)

5 Projective planes

The projective plane of order 2 is well-studied. The best way of labelling it is
with the field of order 7: the lines are then the subsets {t,¢+ 1,¢+ 3}. Then the
symmetries ¢ — t + 1 and ¢t — 2t are clear, and generate a (maximal) subgroup
7:3 of PSL3(2).

The projective plane of order 3 may similarly be labelled by the field of order
13, with the lines {¢,t+1,t+3,t+9}. Then the symmetries t — ¢t+1 and ¢ — 3t
are clear and generate a (maximal) subgroup 13:3 of PSL3(3). For reference,
here is the affine part of plane, where the line at infinity is {0, 1, 3, 9}.

7110 8
416 |12
5111 2

We also want to label the projective plane of order 5 by the field of order 31,
so that ¢ — ¢t + 1 and t +— 5t are obvious symmetries. There are ten different
ways of doing this: the one I chose has the lines {¢t + 1,¢ + 5,t + 25,¢t + 11,¢ +
24,t+27}. For reference, here is the affine part of plane, where the line at infinity
is {1,5,25,11,24,27}.

14122126 17|15
16 | 30| 6 [29]10
21123128 20| 7
13/9 1214119
031218 8

You can easily work out for yourselves which directions point to which of the
points at infinity.

6 The compact real form of G,

I won’t bore you with the details of the calculations I did (with some help from
MAGMA), but just present you with the nicest definition I have so far for the
compact real form of Gs.



Take seven 2-spaces L;, labelled with the elements ¢t € F;. In each L; take
three vectors u = u;, v = v, w = w; summing to zero. The Lie bracket is defined

by the products
VU1 wWp

Uy | W3 U3
Vo | Uz W3

and their images under the group of order 21 generated by

(0, 1, 2, 3,4,5,6) DUt P U1, U P2 Vg1, W = Wy
( VW) 1 Uy Vg, Uy b Wy, Wy > Uy

together with the anti-symmetry.

It is obvious that this definition is invariant under the map negating Lo, Ly,
Ls and Lg, which extends the symmetry group to 23:7:3. It is possible to write
down another symmetry which extends it to 22L3(2), such as the following:

Ug, Vo, Wy +— —Ug, —Vo, —Wo
Ug, Vg, Wy '+ —Uy, —Uyg, —Wy
U5, Vs, W5 <= W5, Vs, Us
Uy, V1, W1 <> Vs, U3, W3
Ug, V2, W2 <= Vg, We, Ug

To show that this is a form of G, observe that L, is a Cartan subalgebra.
Therefore its non-trivial eigenspaces are 1-dimensional, and can be explicitly
calculated. Thus we may obtain an explicit base change between my basis and
a Chevalley basis. It is then not hard, merely tedious, to verify that over the
complex numbers they are the same algebra.

In fact, I have deliberately misled you into thinking there is more symmetry
than there really is. If I extend my multiplication table to include the three
distinguished vectors in each 2-space, you see something a little different:

Uy U1 W

Uo U3 w3 U3
Vo U3 us w3
Wy | — 2’03 V3 Vs

You also see that something remarkable happens in characteristic 3.

7 The compact real form of F}

Our construction here should make the Lie algebra as a direct sum of thirteen
4-spaces, each of which is a Cartan subalgebra so has an Fj root system natu-
rally embedded in it. However, there is actually more structure than this (and



so less symmetry), as we are really inducing up from a 2-dimensional complex
representation of 3%.32.5L,(3) = 31.(3 x 24,) contained in 3*. W (F}). Thus we
centralize a fixed-point-free element of order 3 in W (Fy), giving Fj the structure
of a 2-dimensional lattice over Z[w]. There are then four 1-spaces containing six
short roots each, namely the (left) unit multiples of 1, i, j and k respectively.
Similarly there are four 1-spaces containing six long roots each, namely the (left)
unit multiples of i — j, 7+ k, k+ 4, and ¢ + 7.

We have thirteen 4-spaces, labelled by the integers mod 13, and each coordi-
natised by Z[i,w]. We have a symmetry of order 13 which maps 1; — 1;,; and
1y — 1411, etc. We also have an element of order 3 acting as left multiplications
by (0,0, w,1,w,1,w,w,1,1,0,w,w). These together generate 3%:13. The rest of
the symmetries are not quite so easy to describe... but once we have them, we
only need to specify the Lie product on a few basis vectors, thus:

11 1
10 —CU’ig — kg wkg - Wig
io wlg + ig wi3 + wjg

(my current best shot, but I am sure this can be improved: I keep changing the
basis to make it look simpler) and then take images under the action of 3*:5L3(3).
(The details still remain to be sorted out.)

8 The compact real form of FEjy

We should be able to do the same sort of thing with Eg, but I haven’t done it
yet.



