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Abstract

When viewed as a (2 : 2) holomorphic correspondence on the Riemann
sphere, the modular group PSL2(Z) has a moduli space Q of non-trivial
deformations for which the limit set remains a topological circle. This
space is analogous to a Bers slice of the deformation space of a Fuchsian
group as a Kleinian group, but there are certain differences. A Bers slice
contains a single quasiconformal conjugacy class of Kleinian groups: we
show that for an open dense set of parameter values in Q the correspon-
dence belongs to a single quasi-conformal conjugacy class, but that at a
countable set C of isolated parameter values it satisfies an additional criti-
cal relation. We classify these relations, propose ‘pleating coordinates’ for
Q, and investigate how the correspondence degenerates on the boundary
of Q. In particular we show that there is a point on the boundary of Q
where the correspondence degenerates into a mating between PSL2(Z)
and the quadratic polynomial z → z2 +1/4. A key ingredient in our anal-
ysis is a bijection between Q \ C and an intermediate cover between the
moduli space of the space of non-critical grand orbits of the correspon-
dence, and its universal cover, the corresponding Teichmüller space.

∗The author thanks the Heilbronn Institute, University of Bristol for its support during
the writing of this paper, and the Fields institute, Toronto, for providing an ideal environment
for early work in March 2006 on the ideas presented here.
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1 The modular group as a quasifuchsian corre-
spondence

The modular group PSL2(Z) acts on the Riemann sphere Ĉ by Möbius trans-
formations

z → az + b

cz + d
.

It is well known that the two elements

S : z → −1
z

and T : z → z + 1

together generate PSL2(Z). As an abstract group, PSL2(Z) is the free product
C2 ∗ C3 of the cyclic group of order 2 generated by S and the cyclic group of
order 3 generated by ST .

Notation When dealing with the group C2 ∗ C3 rather than the particular rep-
resentation PSL2(Z), we shall denote generators of C2 and C3 by σ and ρ.

We can parameterise the representations of C2∗C3 in PSL2(C), up to conjugacy
by elements of PSL2(C), by the cross-ratio between the fixed points of σ on Ĉ
and those of ρ. Thus there is a one (complex) dimensional moduli space of repre-
sentations. Within this one-dimensional space is a subset D of parameter values
for which the representation is faithful and discrete. To fix ideas, normalise ρ to
be the rotation through positive angle 2π/3 about the origin (with fixed points
at the origin and infinity). Representations of C2 ∗ C3 in PSL2(C) are then
determined by the ratio α/β of the fixed points of σ. Since we have a choice as
to how to label these fixed points, α/β and β/α determine the same represen-
tation, and we may take their sum as our parameter. By Klein’s Combination
Theorem, the set D of parameter values for which the representation is faithful
and discrete is the set of parameter values for which there exist fundamental
domains for ρ and σ whose union covers the whole Riemann sphere. Topologi-
cally D is a punctured closed disc (the puncture point corresponds to α = β).
For parameter values in the interior of D the representations have connected
ordinary sets and their limit sets are Cantor sets. The modular group PSL2(Z)
lies on the boundary of D and is determined uniquely by the condition that σρ
be parabolic, with fixed point of multiplier +1, or equivalently by the condition
that the limit set of the representation be a topological circle, separating two
completely invariant domains. So there are no non-trivial deformations of the
representation PSL2(Z) of C2 ∗C3 which keep the limit set a topological circle.

However, as we shall show below, there is a natural way in which the orbits of
the representation PSL(2, Z) of the group C2 ∗ C3 may be regarded as those
of a holomorphic correspondence, that is to say a multivalued map z → w
defined by a polynomial relation p(z, w) = 0, and in this context there exists a
non-trivial space of deformations keeping the limit set a topological circle. We
shall completely classify correspondences which lie in the interior of the moduli
space of deformations, and make conjectures concerning correspondences which
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Figure 1: The modular group as a correspondence σ ◦CovQ0
0 : the dotted circle

is the limit set.

lie on the boundary of this space. A preliminary version of some of the ideas
presented here appeared in the final section of [1], but the underlying theory
has been substantially developed since then and the reader is warned that there
have also been some changes in notation (in particular for the patterns described
in Section 6 of the current paper).

We first introduce a class of ‘elementary’ holomorphic correspondences, analo-
gous to finite groups, which we can combine to create correspondences with more
complicated dynamical behaviour. Given any rational map Q of degree d, we
define the covering correspondence CovQ of Q to be the (d : d) correspondence
on Ĉ given by

z → w ⇔ Q(z) = Q(w).

We define the deleted covering correspondence CovQ
0 of Q to be the (d−1 : d−1)

correspondence given by

z → w ⇔ Q(z)−Q(w)
z − w

= 0.

This has graph obtained from that of CovQ by removing the component of the
identity (w = z). Thus for Q0(z) = z3 the (2 : 2) correspondence CovQ0

0 sends z
to {ρ(z), ρ−1(z)}, where ρ(z) = e2πi/3z (figure 1). Given α and β on the positive
real axis, let σ be the Möbius involution which has these as its fixed points. If
α and β are chosen such that σρ and σρ−1 each have just one fixed point (in
figure 1 these are the points A and B respectively), then both σρ and σρ−1

are parabolic and the orbits of σ ◦ CovQ0
0 are those of a subgroup of PSL2(C)

conjugate to PSL2(Z). In particular the correspondence σ ◦CovQ0
0 has a round

circle as its limit set.

We may deform the cyclic group C3 = {1, ρ, ρ−1} as a correspondence by de-
forming Q0 to Qε(z) = z3 − 3ε2z. The effect is to split the double critical point
z = 0 of Q0 into a pair of single critical points z = ±ε: the point z = ∞ remains
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Figure 2: The correspondence σ ◦ CovQε

0 : the limit set (sketched schematically
as a dotted line) is still a Jordan curve but is no longer a round circle.

a double critical point. To simplify the description we shall assume at first that
ε is real and positive.

The behaviour of CovQε

0 is no longer that of a group, though it still has a
fundamental domain, for example the region DQε to the right of the arc `2
passing through z = +ε in figure 2. By a fundamental domain, we mean a
maximal subset of Ĉ on which Qε is injective, in other words a transversal for
the branched covering map Qε. The transversal in the figure arises as follows.
Consider the inverse image under Qε of the segment of the negative real axis
between the critical values −∞ and −2ε3 of Qε. This inverse image is the set
[−∞,−2ε] ∪ `2, where `2 is a smooth curve through the critical point ε, as
illustrated in figure 2. The region DQε to the right of `2 has as its two mages
under CovQε

0 the intersection of Ĉ \DQε with the upper and lower half-planes:
the correspondence CovQε

0 maps DQε to each of these regions by opening up
a slit from z = +ε to z = +2ε, mapping one edge of this slit to the interval
[−2ε,−ε] and the other edge to the interval [−ε,+ε]; the arc `2 itself is folded at
+ε and mapped to the interval (−∞,−2ε]. Note that at ∞ the correspondence
CovQε behaves as a pair of rotations through angles ±2π/3. As ε tends to
zero the behaviour of CovQε

0 near the origin also approaches that of a pair of
rotations through angles ±2π/3.

If we now choose an involution σ which has the property that the circle `1
through its fixed points touches the curve `2 (at the points A and B in figure
2), or equivalently such that the correspondence σ ◦ CovQε has two double
fixed points, we may expect the limit set of the correspondence to remain a
topological circle, and the action of the correspondence outside this topological
circle to be conformally conjugate to the action of PSL2(Z) on the complex
upper half plane. We shall show that this is indeed the case, investigate how
far this behaviour persists as we move further away from the group case by
increasing the size of ε, and make conjectures about how it eventually breaks
down. Note that up to conformal conjugacy we have just one (complex) degree
of freedom in our family of correspondences σ ◦ CovQε . By rescaling z we may
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normalise Qε to Q1, and we may make a free choice for the position of one of
the fixed points, say α, of σ, but then the condition that the correspondence
σ ◦CovQ1 has two double fixed points determines the position of β up to a finite
number of possibilities (in fact two, as we shall see in the next section) and
hence determines σ up to the same number of possibilities.

Our interest is in those members of our family of (2 : 2) holomorphic correspon-
dences F = σ ◦ CovQε which possess the following properties:

(i) The action of F on the Riemann sphere is properly discontinuous except on
a topological circle Λ. (To say that F is properly discontinuous means that each
neighbourhood has only finitely many distinct returns under (mixed) iteration
of F and F−1: see [4] for details.)

(ii) The action of F on Λ is topologically conjugate to that of the correspondence
z → w defined by the relation (w−Tz)(w−ST−1Sz) = 0 on R̂ = R∪∞. (The
orbits of this correspondence are those of the modular group).

(iii) The action of F on one component, denoted Ω1, of the ordinary set Ω =
Ĉ \ Λ, is conformally conjugate to that of the correspondence (w − Tz)(w −
ST−1Sz) = 0 (the modular group) on the complex upper half-plane.

We shall see in due course that these conditions imply that the topological circle
Λ of (i) is a quasicircle (the image of a round circle on Ĉ under a quasiconformal
homeomorphism of Ĉ). It is natural to refer to holomorphic correspondences
satisfying (i) and (ii) as quasifuchsian deformations of the modular group. We
may view correspondences which satisfy (iii) as well as (i) and (ii) as matings
between a deformation of the modular group as a fuchsian correspondence,
acting on one component of Ω, and the modular group itself acting on the other.
Thus the region in moduli space where our correspondences satisfy conditions
(i),(ii) and (iii) is analogous to a Bers slice of the moduli space of a quasifuchsian
Kleinian group [10]. However we shall see that there are some differences - for
example our analogue of a Bers slice contains in its interior a countable infinity
of parameter values where there are critical relations.

We introduced the correspondences σ◦CovQε as a family of potential examples.
Before proceeding any further, we prove that this family contains a conformal
conjugate of every holomorphic correspondence F having the properties (i), (ii)
and (iii) listed above.

Definition 1 We say the holomorphic correspondences F , F ′ are conformally
conjugate if there is a Möbius transformation M such that F ′ = M−1 ◦F ◦M .

Proposition 1 Every (2 : 2) holomorphic correspondence satisfying (i), (ii) and
(iii) is conformally conjugate to a correspondence F of the form σ◦CovQε where
ε = 0 or 1, Qε is the function Qε(z) = z3 − 3εz, and σ is an involution such
that F has two double fixed points.

Proof Let F be a (2 : 2) correspondence satisfying (i),(ii) and (iii), and let Γ(F)
denote the graph of F (the pairs (z, w) ∈ Ĉ × Ĉ such that w ∈ F(z)). Let I−

5



and I+ denote the covering involutions for the two projections p− : (z, w) → z

and p+ : (z, w) → w from Γ(F) to Ĉ. Condition (iii) ensures that (I+I−)3 is the
identity on the part of Γ(F) covering the component Ω1 of Ω(F), and hence,
by analytic continuation, that (I+I−)3 is the identity on the whole of Γ(F). It
now follows that σ : z → p+(I+I−I+(p−1

− (z))) is a well-defined map from Ĉ to
Ĉ (that is to say both values of p−1

− (z) give the same value for σ(z)). Moreover
since σ2 is the identity on Ω1, it is the identity on the whole of Ĉ, by analytic
continuation. Also (σ ◦ F) ∪ I is an equivalence relation (where I denotes the
identity), again by analytic continuation, using the fact that it is an equivalence
relation on Ω1. But the projection map P from points of Ĉ to equivalence
classes, being holomorphic, is a rational map. Since on Ω1 the correspondence
(σ ◦F)∪ I is conjugate to a pair of rotations through angles ±2π/3, this map P
has a double critical point and hence there exist Möbius transformations M1 and
M2 such that M2PM1 is either the polynomial Q0(z) = z3 or the polynomial
Q1(z) = z3− 3z (depending on whether P has two double critical points or one
double and two simple critical points). Thus F is conjugate to σ ◦CovQ0 or to
σ ◦CovQ1 . As to the fact that F must have two double fixed points, this follows
at once from property (ii). 2

Remark 1 The Proposition above holds with only properties (i) and (ii) as
hypotheses, provided we allow a general rational function Q of degree three in
place of the polynomials Q0 and Q1. For (I+I−)3 to be the identity on Γ(F) it
is enough that it be the identity on an infinite subset, and in our case it is the
identity on Γ(F|Λ) by (ii). Similar reasoning applies in the other parts of the
proof where arguments concerning analytic continuation are applied.

Remark 2 When F is a holomorphic correspondence satisfying (i), (ii) and
(iii), we refer to Λ as the limit set of F . There is no single concept of limit set
that will make sense for a general holomorphic correspondence - the difficulty is
that the various equivalent conditions that characterise the limit set of a Kleinian
group are no longer equivalent to one another for correspondences (see [5] for
a discussion). However for F satisfying conditions (i), (ii) and (iii), one can
show that Λ, which we defined as the complement of the ordinary set Ω, can also
be characterised as the accumulation set of each grand orbit of F .

2 Two normalisations and an algebraic relation

We already have one normal form for our family of candidate correspondences,
namely Z → W , where

W ∈ σ ◦ CovQ1
0 (Z)

in other words where

(1) Z2 + Z(σ(W )) + (σ(W ))2 = 3
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and σ is an involution having fixed points (say) α and β. Thus

σ(Z) =
(α + β)Z − 2αβ

2Z − (α + β)

For the correspondence to be quasifuchsian, α and β must satisfy a certain alge-
braic relation, corresponding to the geometric condition that the correspondence
has two double fixed points (or one quadruple fixed point). We shall identify
this relation shortly.

An alternative normal form is given by taking a new coordinate z, where

Z =
αz + β

z + 1

Now the involution σ becomes z → −z, with fixed points at 0 and ∞, and the
correspondence becomes z → w, where

(2)
(

αz + β

z + 1

)2

+
(

αz + β

z + 1

) (
αw − β

w − 1

)
+

(
αw − β

w − 1

)2

= 3

Finally, to bring notation into line with that of [4], we may replace the pa-
rameters α and β by new parameters a = α/β and k = 1/β2 and write the
correspondence as

(3)
(

az + 1
z + 1

)2

+
(

az + 1
z + 1

) (
aw − 1
w − 1

)
+

(
aw − 1
w − 1

)2

= 3k

We shall use whichever of the coordinates Z or z, and whichever of the parameter
pairs (α, β) or (a, k), is most convenient for a particular computation, but we
shall employ a capital Z or small z to remind us which coordinate system we
are using.

To find when the correspondence (2) has two double fixed points (or one quadru-
ple fixed point), we observe that setting w = z in (2) yields a quadratic equation
in z2, and that this quadratic equation has a single solution if and only if α and
β satisfy the relation:

(4) (α + β)2 − 16αβ + 48 = 0

Note that if α is real, this relation yields a real value for β if and only if |α| ≥ 1.
Conversely, if β is real it yields a real value for α if and only if |β| ≥ 1. Relation
(4) translates in (a, k) coordinates to the relation

(5) k = 1− (a− 7)2

48

and the condition that both α and β lie in the real interval [+1,∞] translates
into the condition that a is real and lies in the interval [7, 7+4

√
3] or the interval
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[7− 4
√

3, 1/7] = [1/(7 + 4
√

3), 1/7]. Note that a = 7 corresponds to k = 1 and
that a = 7 + 4

√
3 corresponds to k = 0 (the modular group case).

Notation Fa for the correspondence

From now on we denote the correspondence z → w of the form (3), with param-
eter values (a, k) satisfying condition (5), by Fa.

Exchanging α with β corresponds to replacing a by 1/a in (3); indeed Fa is
conjugate to F1/a via by the conjugacy z → 1/z. Conversely:

Lemma 1 The conformal conjugacy class of Fa determines the value of the
parameter a uniquely up to a ∼ 1/a.

Proof In the normalisation (1) the correspondence has singular points at−1,+1
and ∞, and the only conformal automorphism compatible with this marking is
z → −z. The fixed points {α, β} of σ are also determined by the correspondence,
so it is apparent that any change in α or β other than an exchange of labels
(α ↔ β) or a change of signs ((α, β) ↔ (−α,−β), induced by the change of
coordinates z ↔ −z) alters the conformal conjugacy class of σ ◦ CovQ1

0 . Since
an exchange of labels changes a to 1/a, and a change of signs has no effect on
a(= α/β), the result follows. 2

3 Real correspondence deformations of the mod-
ular group

The case that the orbits of the correspondence are (up to conjugacy) those of the
modular group PSL2(Z), occurs when ε = 0 in the normalisation σ ◦CovQε

0 , or
equivalently when α and β tend to ∞ in the normalisation σ ◦CovQ1

0 (equation
(1)), or equivalently when the correspondence is Fa with a = 7 ± 4

√
3 (and so

k = 0). We now consider the dynamics of σ ◦CovQ1
0 when α and β are both real

and strictly greater than 2, in other words when we are dealing with a ‘small’
real perturbation from the group case.

When α and β are real and ≥ 1, the two double fixed points of σ ◦CovQ1
0 are a

complex conjugate pair: they are the points A and B where the arc `2 bounding
the region DQ1 touches the circle centred on the real axis which passes through
α and β (figure 2). Note that when α = 1 we have β = 7 (by relation (4)) and
the fixed point Z = 1 of the correspondence then has multiplicity four.

Proposition 2 [11] When α and β are real, both strictly greater than 2, and
satisfy relation (4) of Section 2, then the correspondence σ ◦ CovQ1

0 is a quasi-
fuchsian deformation of the modular group (in the sense of Section 1).

Proof See [11] for details, but for convenience we sketch an outline here.

Consider the round disc Dσ bounded by the circle passing through α and β
which has centre on the real axis (figure 3). Its image CovQ1(Dσ) consists of
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Figure 3: The disc Dσ (bounded by the circle through α, β, A and B) and its
images D1, D2, D3 and D4, discussed in the proof of Proposition 2.

pair of (no longer round) discs D1, D2 arranged as shown in the figure so that
each of Dσ, D1 and D2 touches the other two. Thus σ ◦CovQ1(Dσ) consists of
a pair of discs D3 = σ(D2) and D4 = σ(D1) touching at σ(C) as shown. Images
(σ ◦ CovQ1)n(Dσ) of Dσ for n > 1 yield nested families of discs inside D3 and
D4. The action of the correspondence is properly discontinuous except at the
set Λ of points which lie in infinitely many of these discs or in the σ-images of
infinitely many of them. There are two kinds of infinite intersections of nests of
discs to consider: those where every point in the intersection is an interior point
of every disc in the nest, and those which contain boundary points of discs. By
applying the Grötzsch inequality one can show the first type of intersection is a
single point, and by analysing the behaviour of the correspondence around its
fixed points one can show that the second type of intersection is also a single
point. Finally by combining these methods one can show that Λ is a topological
circle and that the action of the correspondence on it is conjugate to that of the
modular group on R̂.

A fundamental domain for the action of the correspondence σ ◦ CovQ1
0 on Ω =

Ĉ \Λ is given by DQ1 \Dσ. This has two components, ∆1 (containing Z = ∞),
and ∆2 (containing Z = 1): these are fundamental domains for the action of
the correspondence on the two components Ω1 and Ω2 of Ω. The only critical
or co-critical point of Q1 in Ω1 is at Z = ∞, which is a double critical point,
and thus CovQ1 acts on Ω1 as a pair of rotations {ρ, ρ−1}, fixing Z = ∞ and
such that ρ3 = I. It follows at once by the Klein Combination Theorem that
σ ◦CovQ1 acts on Ω1 as a faithful discrete representation of C2 ∗C3, with ∆1 as
fundamental domain. That this representation is conjugate to the repesentation
of C2 ∗ C3 on the upper half-plane as the modular group now follows from the
fact that the action has limit set homeomorphic to R̂. 2.

Still restricting attention to the case that both fixed points α, β of σ are real,
we next consider what happens when we allow one of them to take values ≤ 2.
When α = 2 (and so β = 26, and when the correspondence is written Fa the
value of a is a1 = 13) we encounter our first critical relation. The points −2
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Figure 4: Computer plots illustrating the dynamics of Fa for the parameter
values a1, a2 and a∞ (see Theorem 1). In the plot for a = a∞, restricted to the
left-hand grey disc as domain and codomain the correspondence Fa is conjugate
to q1/4(z) = z2 + 1/4 on its filled Julia set K(q1/4); restricted to the right-hand
grey disc it is conjugate to (q1/4)−1 on K(q1/4).

and +2 now lie on the same grand orbit of σ ◦CovQ1
0 and the topology of figure

3 changes: the boundaries of the discs D1 and D2 now touch the real axis at
Z = −1 as well as at the point labelled C. As we decrease α below the value
2, the boundaries of the discs D1 and D2 touch along an interval containing
Z = −1: in effect D1 and D2 fuse together to form a single disc, the boundary of
which has a ‘self-contact’ point at C. Further decreases give a sequence of critical
relations and corresponding topological changes to fundamental domains, but,
as is shown in [11], the correspondence continues to satisfy conditions (i), (ii)
and (iii) for all positive real values of α > 1. We list the real critical coincidence
values in Theorem 1 below. It is convenient to introduce some notation first,
so that we can label various points without reference to a particular coordinate
system.

Notation for critical and singular points

We denote the forward singular points of Fa by p1 and p2, that is to say p1

and p2 are the points which have one image rather than two under Fa. In
the normalisation (1) they are the co-critical points of Q1; thus p1 is the point
Z = −2 and p2 is the point Z = +2. We denote the corresponding critical
points of Q1 by c1 (Z = +1) and c2 (Z = −1). The backward singular points of
Fa are denoted by q1 = σ(p1) and q2 = σ(p2): these are the points which have
just one image under F−1

a .

Theorem 1 (i) On the segment [7, 7 + 4
√

3] of the real axis in the space of the
parameter a, there exist:

• a unique value a0 = 7 + 4
√

3 at which p1 = p2;

• for each positive integer n, a unique value an at which q2 maps to p2 under
n− 1 iterations of Fa;
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• a unique value a∞ = 7 at which a forward orbit of q2 under Fa is asymp-
totic to the fixed point α of σ.

(ii) When n is even, the grand orbits of p1 and p2 under Fan coincide. When n
is odd, the grand orbits of p2 and α coincide, and when n = ∞ the grand orbits
of p1 and α coincide.

Proof (i) At the value a0 = 7 + 4
√

3 the correspondence is conjugate to the
modular group. Here various marked points on the real z-axis become identified
and we see them laid out in the order

p1 = c2 = c1 = p2 < α < q2 = σ(c1) = σ(c2) = q1.

Note that the parameter value a0 corresponds to the limiting case α = β = ∞
in the Z-coordinate system.

Decreasing a below a0, the fixed points α and β of the involution σ lie on the real
Z-axis and the order of the marked points here (or on the real z-axis) becomes

p1 < c2 < c1 < p2 < α < q2 < σ(c1) < σ(c2) < q1.

The next critical coincidence is at the value a1 = 13, where the middle three
points in the order coincide, p2 = α = q2. Then for a just below a1, the order of
the middle three points is reversed, to q2 < α < p2. At a2 the point q2 coincides
with c1 (and so of course p2 coincides with σ(c1)). When a descends below a2,
the order of the points becomes:

p1 < c2 < q2 < c1 < α < σ(c1) < p2 < σ(c2) < q1

The relevant orbit of q2 is generated by the branch of σ ◦ CovQ that can be
described as a ‘reflection in c1 followed by a reflection in α’. This composite is
a translation to the right and it follows by an easy monotonicity argument that
as a decreases the number of steps taken for the orbit of q2 to pass p2 becomes
increasingly large. Thus each value an of the statement occurs exactly once, as
a descends from a0 = 7 + 4

√
3 to a∞ = 7.

(ii) We note that for n = 2m + 1 (with m ≥ 0), an may be defined to be the
(unique) real value of a > 7 at which the backward singular point q2 maps to
the fixed point α of σ under m iterations of Fa. As σ conjugates Fa to F−1

a , it
follows by symmetry under σ that q2 maps to p2 under 2m = n− 1 iterations of
Fa. Also, for n = 2m (with m ≥ 1), an may be defined to be the (unique) real
value of a > 7 at which q2 maps to the critical point c1 under m− 1 iterations
of Fa. Since Fa always sends c1 to σ(c1), it follows by symmetry under σ that
q2 maps to p2 under 2m − 1 = n − 1 iterations of Fa. For n = ∞, it is easily
seen that c1 = α. 2

A series of three computer plots in the z-plane, for decreasing real values of a,
is shown in figure 4. In each picture the lines plotted are the images of the
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a = 7 + 4
√

3

I
a = −17− 12

√
2

II

III

IV

a = 7

Figure 5: Schematic picture of the plane of the parameter a. The unit circle is
drawn as a dotted curve. The correspondence Fa is a quasifuchsian deformation
of the modular group when a is in region I or region IV (these regions map to
one another under a ↔ 1/a).

boundary of the disc Dσ and ∂DQ1 (in red and blue respectively). In the right-
hand plot, where α = 1 and β = 7, or equivalently when a = a∞ = 7 and k = 1
in the normalisation (3), we find that the limit set Λ has been pinched at a single
point to form a ‘figure of eight’, dividing the component Ω2 of the ordinary set
into two discs, restricted to which the correspondence is respectively a (2 : 1)
correspondence conjugate to the ‘cauliflower quadratic’ q1/4 : z → z2 + 1/4 on
its filled Julia set K(q1/4) and a (1 : 2) correspondence conjugate to q−1

1/4 on
K(q1/4). This is the correspondence described as a mating between PSL2(Z)
and q1/4 in [4]. We shall return to this example in the final section of this paper.

4 Behaviour of the correspondence for complex
values of the parameter

Experimental observation suggests that the plane of the parameter a can be
divided up into a number of regions corresponding to different types of behaviour
of the correspondence Fa. The situation is illustrated schematically in figure
5. Recall that to pass to moduli space we must identify a with 1/a: under this
identification the regions labelled I and IV are identified, the region labelled
III is quotiented by an involution fixing a = 1, and the region II is quotiented
by an involution fixing a = −1.

Regions I and IV are where the correspondence Fa appears to be a quasifuchsian
deformation of the modular group, in the sense defined in Section 1. These
regions will be our main concern. However we digress briefly to discuss the
geometry and dynamics of Fa when a lies in region III. For a real in the interval
1 < a < 7 the fixed points A and B of the correspondence become a pair of
real numbers rather than a pair of complex conjugates, and they are no longer
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points of contact between the boundary circle of Dσ and the boundary `2 of the
region DQ1 : the disc Dσ is now strictly contained within DQ1 , and we have a
geometric set-up which determines that the correspondence is a mating between
a quadratic polynomial qc : z → z2 + c and a discrete faithful representation
of C2 ∗ C3 [3, 4]. The condition that the fixed points of the correspondence be
a pair of double points translates into the condition that qc has just one fixed
point other than ∞, and hence that c = 1/4. Region III is the set of parameter
values where Fa is such a mating. This region is punctured at a = 1 (where Fa

becomes degenerate) and double covers the moduli space of all matings between
q1/4 and discrete faithful representations of C2 ∗C3. On the boundary of region
III we conjecture [2] that there is a dense set of ‘cusps’, one for each rational
0 ≤ p/q < 1, corresponding to the circle-packing representations of C2 ∗ C3 on
the boundary of the moduli space of discrete faithful representations of C2 ∗C3.
For parameter values in the region II (complementary to I, III and IV ) it
appears that every grand orbit of the correspondence is dense on the Riemann
sphere.

5 The space of orbits of a quasifuchsian corre-
spondence

We shall denote by Q the moduli space of quasfuchsian correspondences, that
is to say the space of conformal equivalence classes of quasfuchsian correspon-
dences, in the sense of Section 1. Formally we define Q to be a subset of the
quotient of the Riemann sphere parameterised by a under the identification
a ∼ 1/a.

However, since the experimental evidence suggests that there are no values of
a on the unit circle for which Fa is quasfuchsian, we shall abuse notation and
regard Q as a subset of {a : a ∈ Ĉ, |a| > 1}. In other words we shall regard Q as
region I of figure 5 together with ∞. This is merely a notational convenience:
the sceptical reader may replace all occurences of ‘a’ by ‘the equivalence class
of a under a ∼ 1/a’ in what follows.

Remark 3 We allow the value a = ∞, since although when written in the form
(3) the correspondence Fa becomes degenerate at a = ∞, this is just an artefact
of the normalisation and α = (4

√
3)i, β = 0 is a solution to relation (4) which

yields a perfectly good quasifuchsian correspondence.

For a ∈ Q, the ordinary set Ω of the correspondence Fa is a disjoint union of
two components: Ω1, containing the double fixed point of CovQ1

0 (the point
Z = ∞), and Ω2, containing the two critical points c1 and c2 of Q1 together
with the corresponding co-critical points (the forward singular points p1 and p2

of Fa). As before we use the notation q1 and q2 for the backward singular points
σ(p1) and σ(p2) of Fa. Note that σ is a branch of Fa ◦ F−1

a ◦ Fa, so for each of
i = 1, 2 the points pi and qi are always on the same grand orbit of Fa.

13



For every correspondence Fa with a ∈ Q the components Ω1/〈Fa〉 and Ω2/〈Fa〉
of the grand orbit space Ω/〈Fa〉 have the following structure:
(i) Ω1/〈Fa〉 is a Riemann surface homeomorphic to a sphere, with two marked
points and a cusp. The marked points correspond to the orbits of the fixed
points of the generators ρ and σ of PSL2(Z) acting on the upper half plane,
and the cusp corresponds to the fixed point of σρ (on the real axis).
(ii) Ω2/〈Fa〉 is a Riemann surface homeomorphic to a sphere with a cusp and
three marked points P1, P2 and Q (corresponding to the orbits of the singular
points p1 and p2 and the fixed point α of σ).

Definition 2 We say that the correspondence Fa, for a ∈ Q, satisfies a critical
relation if at least two of the three marked points in the grand orbit space Ω2/〈Fa〉
coincide, that is to say either
(a) p1 is on the same grand orbit as p2, or
(b) the fixed point of σ lies on the grand orbit of p1 or of p2.
We denote by C the set of parameter values in Q where critical relations occur.

LetM denote the moduli space of complex structures on once-punctured spheres
equipped with a marked pair of distinct points {P1, P2} (where it is not specified
which point is which) and a marked point Q distinct from the first two. Thus:

M = (((Ĉ)4 −Diag)/PSL2(C))/C2 = (((Ĉ)4 −Diag)/C2)/PSL2(C).

Here Diag denotes the ‘thick’ diagonal, PSL2(C) acts diagonally on (Ĉ)4, and
C2 acts by interchanging the middle two entries in a 4-tuple. For any each
a ∈ Q \ C the orbit space Ω2/〈Fa〉 determines a point π̂(a) ∈ M by regarding
the puncture point, the marked pair of points {P1, P2} and the marked point Q

as a 4-tuple of elements of Ĉ.

For any a ∈ Q \ C we may deform the complex structure on the orbit space of
Fa in any way we please, and obtain a new correspondence quasiconformally
conjugate to Fa. This new correspondence is conformally conjugate to Fa′ for
some a′ ∈ Q \ C (by Proposition 1). Thus π̂ : Q \ C →M is a surjection.

A correspondence Fa with a ∈ Q\C determines a point ofM, but to reconstruct
Fa from a point of M, that is to say from a complex structure on Ω2/〈Fab

〉
where ab is some chosen base point of Q\C, we need the additional information
as to which ‘tiles’ (sheets of the branched covering) contain the singular points
of Fa. To organise this information coherently it is convenient first to pass to
a double cover of Q \ C. Let (Q \ C)′ denote the space of pairs (a, p1), where
a ∈ Q \ C and p1 is one of the two singular points of Fa. Thus (Q \ C)′ is the
unramified double covering of Q \ C corresponding to the two ways the labels
p1, p2 can be attached to the singular points of Fa.

The projection from Q\ C to M is covered by a projection from (Q\ C)′ to the
moduli space of 4 distinct marked points on the Riemann sphere, that is:

M′ = ((Ĉ)4 −Diag)/PSL2(C) ∼= Ĉ \ {0, 1,∞}

14



The projection π̂′ : M′ → M (allowing the interchange of the middle two
entries in a 4-tuple) is a double cover ramified at the 4-tuple (0, 1,−1,∞) ∈
M′, since there is Möbius transformation sending (0, 1,−1,∞) to (0,−1, 1,∞).
The covering involution of π̂′ fixes the ramification point and one of the three
puncture points of M′ ∼= Ĉ \ {0, 1,∞}, and exchanges the other two puncture
points. Thus M is isomorphic to the punctured plane C∗ = C \ {0}.

Different points a ∈ Q \ C may yield grand orbit spaces Ω2/〈Fa〉 with the same
complex structure. In order to reconstruct a unique correspondence Fa from its
grand orbit space, we shall need some form of marking on this orbit space.

Definition 3 For a ∈ Q \ C, a fundamental tile for Fa = σ ◦ CovQ1 is any
triangle ∆ ⊂ Ω2 with the properties:
(i) ∆ is invariant under CovQ1 ;
(ii) The fixed points A and B of Fa are vertices of ∆;
(iii) The edge AB of ∆ contains the fixed point Q of σ and this edge is invariant
under σ;
(iv) The interior of ∆ contains the critical and co-critical points of CovQ1 .

The triangle ∆ = ∆2 ∪ CovQ1
0 (∆2) in figure 3 is an example of a fundamental

tile. The domain Ω2 is tiled by copies of ∆ which are mapped to one another
by branches of (σ ◦ CovQ1)n (n ∈ Z) in exactly the same way as in the case of
the modular group, so the information provided by a fundamental tile and the
positions of the critical points p1 and p2 of Q1 on it allows us to reconstruct the
correspondence.

A fundamental tile for Fa triple covers (with ramification) the grand orbit space
Ω2/〈Fa〉. We shall define a marking on the grand orbit space which is sufficient
to provide a fundamental tile together with the positions of p1 and p2 and a
labelling for these points.

Definition 4 A point of the Teichmüller space T consists of a point of M′

together with an isotopy class of a pair of non-intersecting paths, namely:
(i) a path `1 from the puncture point to Q, and
(ii) a path `2 from the puncture point to P1.

The Teichmüller space T is the universal cover of M′. The data provided by an
element of T is sufficent for us to reconstruct a pair (Fa, p1) with a ∈ Q\C from
the grand orbit space of the correspondence: it enables us to draw a fundamantal
tile ∆ containing the two singular points as marked points (figure 6) and hence
to construct Ω2 and to define (Fa, p1).

But the data provided by a point of T is more than we need to determine a
pair (Fa, p1). Suppose we change `1 to `′1 and `2 to `′2. When we lift `′1 and `′2
to Ω2, let L′1 denote that lift of `′1 which runs from the vertex A of ∆ (a fixed
point of the correspondence Fa) to the fixed point α of σ. Let ∆′ denote the
triangle formed by L′1 ∪σ(L′1) and its image under CovQ1

0 : this triangle has the
same vertices A,B, C as ∆.
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Figure 6: On the left: the punctured sphere Ω2/〈Fa〉 (the arrowed edges are
identified). On the right: a lift of Ω2/〈Fa〉 to a fundamental tile ∆ for Fa.

S(!2)

P2 Q p1 αp2

A

B

kS

kT

!2

CP1

Figure 7: On the left: Dehn twists S and T are about the curves kS and kT ;
the image S(`2) of `2 is shown dot-dashed. On the right: the lifts (dot-dashed)
of S(`2) to ∆.

Lemma 2 (`′1, `
′
2) ∈ T defines the same pair (Fa, p1) as (`1, `2) ∈ T if and

only if (`′1, `
′
2) satisfies the following condition:

(*) {p1, p2} ⊂ ∆′, and the lift of `′2 to ∆′ contains an arc from C to p1.

Proof Given an element of M′, the extra data that determines (Fa, p1) is that
of which lifts of P1, P2 and Q are the singular point p1 of the correspondence, the
singular point p2 of the correspondence and the fixed point α of the associated
involution σ. 2

The fundamental group π1(M′) of the moduli space M′ is generated by a Dehn
twist S about the curve kS in figure 7 and a Dehn twist T about the curve kT

in the same figure. Indeed π1(M′) is the free group on these two generators:
each word in the group generated by S and T sends the marking (`1, `2) to a
new marking (`′1, `

′
2) and all markings are obtained in this way.

Let Γ = π1(M′) and let G denote the subgroup of Γ consisting of all words W
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in S and T for which (`′1, `
′
2) = (W (`1),W (`2)) satisfy condition (*) of Lemma

2.

Proposition 3 (i) There is a commutative diagram:

T π′′

→ T /G
π′

→ T /Γ
∼=↓ ↓∼=
(Q \ C)′ π′

→ M′ ∼= Ĉ \ {0,∞}
π ↓ ↓ π̂′

Q \ C π̂→ M∼= C∗

where π′′ and π′ are (unramified) coverings of infinite degree.
(ii) π1(Q \ C) acts freely on T and contains G as a subgroup of index 2.

Proof Part (i) is an immediate consequence of Lemma 2 by standard covering
space theory; (ii) follows since π is an (unramified) covering of degree two. 2

Corollary 1 π̂ : Q \ C → M is a branched covering. Every branch point in
Q \ C has (local) degree 2.

Proof This follows at once from Proposition 3 and the fact that π̂′ : M′ →M
is a branched cover of degree 2. 2

We identify some specific elements of G, and derive some consequences:

Proposition 4 (i) (`′1, `
′
2) = (S3(`1), S3(`2)) and (`′1, `

′
2) = (T 2(`1), T 2(`2))

each satisfy condition (*) of Lemma 2.
(ii) On a punctured disc neighbourhood of a0 (the parameter value where the
correspondence is conjugate to the modular group), π̂ : Q \ C → M is an un-
ramified covering of degree 3. On a punctured disc neighbourhood of a1 (where
the first real critical relation occurs), it is an unramified covering of degree 2.

Proof For part (i) in the case of S, consider the right hand diagram in figure
7, showing the lifts to ∆ ⊂ Ω2 of the image of `2 under S: it is only after the
third iteration of S that the lift of `2 starting at C returns to a path linking C
to p1. When we apply T it is `1 that moves rather than `2, and so the triangle
∆ in the lift moves to a new position ∆′. One can check that p2 lies in σ(∆′)
and not in ∆′, but that after two applications of T the shifted triangle contains
both p1 and p2. Part (ii) follows at once from (i). 2

We next consider the consequences of our analysis of Q\C for the quasifuchsian
region Q itself.

Proposition 5 (i) C is a discrete subset of Q.
(ii) π̂ : Q\C →M extends to a locally ramified cover Q → (M∪{point}) ∼= C.
(iii) Q is open and path-connected.
(iv) For every a ∈ Q the limit set of Fa is a quasicircle.
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Proof (i) This is implicit in our earlier proofs, but to make it explicit we observe
that if Fa satisfies a critical relation then a small perturbation of the parameter
a ensures that the projections onto Ω2/〈Fa〉 of the singular points and the fixed
point of σ become three distinct points. Thus points of C are isolated in Q.
(ii) Similar reasoning to part (ii) of Proposition 4 applies to punctured disc
neighbourhoods in Q of all other points of C.
(iii) That Q is open and path-connected follows from the facts that T → Q \ C
is a branched covering projection and that T is path-connected.
(iv) Since one can move from any Fa with a ∈ Q \ C to any Fa′ with a′ ∈ Q \ C
by a continuous deformation of the complex structure on the grand orbit space
of Fa, it is immediate that there is a quasiconformal homeomorphism between
the limit sets of Fa and Fa′ : indeed there is an equivariant holomorphic motion
on Ĉ taking Fa to Fa′ . In a disc neighbourhood of the parameter value a0 ∈ Q,
although there can no longer be a holomorphic motion of the whole of Ĉ which
is equivariant with respect to the correspondences Fa (since Fa0 has a critical
relation), nevertheless the limit set Λa of Fa moves holomorphically. This follows
from the fact that the periodic points of Fa which lie in Λa have expressions
which are analytic in a and therefore move holomorphically, the fact that these
periodic points are dense in Λa, as is observed in the proof of Proposition 2,
and the fact that any holomorphic motion of a set extends to its closure [9, 12].
But Λa0 is a round circle, since the branches of Fa0 are conjugate to those of
the modular group acting on the upper half-plane. Thus we now know that for
a ∈ {a0} ∪ (Q \ C) the limit set of Fa is a quasicircle. The same reasoning we
have just applied to a neighbourhood of a0 applies to a neighbourhood of any
other critical relation parameter value c ∈ C: it follows that Λa is a quasicircle
for all a ∈ Q. 2

Remark 4 An alternative proof of (iii) follows from the observation that for
any parameter value a close to (but not equal to) a0 one may modify Fa to Fa0

by an equivariant quasiconformal surgery supported on an open set disjoint from
the limit set.

Remark 5 It is enlightening to establish the relationship between our moduli
spaces and the moduli space of complex structures on once-punctured tori. By
its definition, M′ is the moduli space of spheres marked at four distinct points.
Puncturing the sphere at the first point and double covering it, ramifying at all
four marked points, yields a punctured torus. Moreover every punctured torus
with a complex structure comes equipped with a unique involution under which
its quotient is a punctured sphere marked at three distinct points. So M′ can also
be viewed as the moduli space of complex structures on the punctured torus. This
close connection between quasifuchsian correspondences and complex structures
on the punctured torus will underlie much of what we do in the next section.
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Figure 8: Patterns P1,0, ρ(P1,0), P1,1 and ρ(P2,3): the vertical edge is E1.

6 Patterns on tiles and global laminations

The correspondences associated to parameter values in Q \ C form a single
quasiconformal conjugacy class. We choose a base point ab ∈ Q \ C, very close
to the parameter value a0 corresponding to the modular group (which is a point
of C), and for simplicity we take ab to be real. The correspondence Fab

is
conjugate to some σ ◦ CovQε

0 , with ε = ε0 some fixed small (but non-zero) real
value. Choose a marking (`1, `2) for the corresponding point of M and let ∆
denote the fundamental tile in Ω2 corresponding to this marking.

Let c ∈ C. For a ∈ Q \ C sufficiently close to c, the two singular points which
become identified at the parameter value c are joined by an arc `a in Ω2, which
can be chosen so as to project injectively to the grand orbit space Ω2/〈Fa〉. If
we now follow a path in Q \ C from a to the base point ab, deforming Fa to
Fab

, the arc `a is deformed to an arc `ab
which projects injectively to Ω2/〈Fab

〉.
Contracting `ab

to a point corresponds to transforming Fab
to Fc. We are

therefore led to consider isotopy classes of embedded arcs in Ω2/〈Fab
〉 which

have ends at two of the three marked points.

Given such an embedded arc in Ω2/〈Fab
〉, consider all its lifts to Ω2. The cor-

respondence Cov
Qε0
0 = σ ◦ Fab

, maps the fundamental tile ∆ to itself. Globally
the forward and backward iterates (Fab

)n (n ∈ Z) of Fab
permute the copies of

∆ in exactly the same manner as the elements of PSL2(Z) in the group case.
We call the union of lifts of the arc `ab

to ∆ a simple invariant pattern. Some
examples of such patterns are illustrated in figure 8. The copies of such a pat-
tern on the images of ∆ fit together to form a global lamination on Ω2, invariant
under Fab

(figure 9). Global laminations obtained in this way are of two types:

Type 1. The leaves are all arcs with end points within Ω2. The lamination on
the right in figure 9 is an example. For such a lamination, contracting the leaves
to points corresponds to following a path in Q\C from ab to a point of C. Such
a contraction can be performed in practice by defining a one-parameter family
of ellipse fields on a neighbourhood of each arc, and applying the Measurable
Riemann Mapping Theorem.

Type 2. The leaves are all non-compact arcs, each with either one or both ends
on the boundary of Ω2. The lamination on the left in figure 9 is an example.
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Figure 9: The global laminations corresponding to P1,0 and ρ(P1,0).

We conjecture that in this case contracting the leaves to points corresponds to
converging to a boundary point of Q, but we do not yet have the technology to
prove this.

We set about classifying patterns on tiles and the resulting global laminations.
In what follows ∆ is an ideal triangle, invariant under Cov

Qε0
0 , and a fundamen-

tal domain for the action of Fab
on Ω2 (and therefore containing a fixed point

of σ on one of its edges).

Definition 5 A set P of non-intersecting arcs on ∆, each with either one or
both end points on ∂∆, is called a simple invariant pattern if:
(i) The set P is the lift of a simple arc in Ω2/〈Fab

〉 joining the images of two
of the three singular points (p1, p2 and the fixed point of σ).
(ii) Every arc in P is ‘essential’ in the sense that it cannot be removed by an
isotopy of Ω2/〈Fab

〉 keeping the marked points fixed.

We say that two patterns are isotopic if one can be deformed to the other by
an isotopy of ∆ sending edges to edges and vertices to vertices.

A simple invariant pattern is mapped (2 : 2) to itself by the correspondence
Cov

Qε0
0 , and so in particular each side of ∆ must contain the same number of

end points of arcs. We denote the three edges of ∆ by E1, E2 and E3, where
E1 is the edge containing the fixed point of σ and (for definiteness) the edges
are labelled in anticlockwise order.

Lemma 3 For each coprime pair of positive integers m,n, and also for (m.n) =
(0, 0), (0, 1) and (1, 0), there is a unique simple invariant pattern Pm,n which has
the following two properties:
(i) Pm,n has m + n end-points on each edge of ∆.
(ii) The m + n arcs starting on E1 all continue to another edge; m of them
finish on E2 and n of them finish on E3.

Proof. This is immediate from the definition. Examples are illustrated in figure
8. If m + n is odd, then the fixed point of σ is an end point, and in this case
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Figure 10: An arc on the punctured sphere joining two marked points (left), its
lift to the pattern ρ(P1,2) on the fundamental tile ∆ (centre), and its lift to the
geodesic of slope 2/3 on the punctured torus (right).

if m is even there are m/2 ‘loops’ with both ends on E3, (n − 1)/2 loops with
both ends on E2 and a single arc from p1 to E2. If m + n is even then the fixed
point of σ is not an end point, but as both m and n are then odd, there are arcs
from p1 to E2 and from p2 to E3. 2

Proposition 6 Every simple invariant pattern is of the form Pm,n, ρ(Pm,n) or
ρ−1Pm,n (where ρ denotes rotation through 2π/3) for (m,n) as in Lemma 3.

Proof. A simple invariant pattern descends to a geodesic (or to a union of
geodesics) on Ω2/〈Fab

〉, which in turn lifts to a closed geodesic (or union of
closed geodesics) on the punctured torus which double covers Ω2/〈Fab

〉, rami-
fied at the puncture point and the three marked points. On this torus, marked by
the generating curves given by the lifts of our markings on Ω2/〈Fab

〉, the closed
geodesics correspond one-to-one to the rational numbers (figure 10). Moreover
each closed geodesic on the punctured torus passes through exactly two of the
three ramification points and thus gives rise to one of the simple invariant pat-
terns Pm,n, ρ(Pm,n) or ρ−1Pm,n on ∆. 2

Remark 6 (i) The various patterns Pm,n, ρ(Pm,n) and ρ−1Pm,n for (m,n) are
distinct for (m,n) with m + n > 1, but there are obvious identities ρ(P0,0) =
ρ−1(P0,0) = P0,0, P1,0 = ρ(P0,1), P0,1 = ρ−1(P1,0) and ρ(P1,0) = ρ−1(P0,1).
(ii) For future reference we record the explicit correspondence between patterns
of the form ρ(Pm,n) and closed geodesics on the punctured torus. With the torus
marked as in figure 10, the pattern ρ(Pm,n) corresponds to the geodesic on the
torus of slope n/(m + n), and the pattern Pm,n corresponds to the geodesic of
slope (m + 2n)/(m + n).

More examples of simple invariant patterns and associated global laminations
are illustrated in figure 11. These global laminations are obtained by applying
words in σ and ρ to the fundamental tile in exactly the same way that one would
apply them to the corresponding fundamental tile for the modular group. It is
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Figure 11: The global laminations corresponding to P1,1 and ρ(P1,2).

easily proved that that the global laminations corresponding to patterns Pm,n

are of type 2: the leaves which cross the central vertical axis E1 are ‘infinite’
arcs, ending on the boundary of Ω2. The global laminations corresponding to
patterns ρi(Pm,n), with i = ±1, can be of either type 1 or type 2.

Each element of the group G = π1((Q\ C)′, ab), defined in the previous section,
sends the fundamental tile ∆ to a new fundamental tile ∆′, with the same
vertices as ∆ and containing the same marked points of the correspondence
Fab

. The global lamination on Ω2 is unchanged but its intersection with ∆′

provides a new invariant pattern.

Theorem 2 Under the action of π1((Q\C)′, ab), every simple invariant pattern
is equivalent to one of the following:
(i) Pm,n for some pair m,n;
(ii) ρ(P1,n) for some n ≥ 0, or ρ−1(Pm,1) for some m ≥ 0.

Proof Let P be an invariant pattern which has m+n arcs meeting each edge of
∆. If P is not of the form Pm,n, then by Proposition 6 it has the form ρ(Pm,n)
or ρ−1(Pm,n). Assume it has the form ρ(Pm,n) (the other case being completely
analogous). Now the top m points of P ∩ E1 are end points of ‘non-traversing’
arcs, that is to say arcs which start and end on E1, or an arc (at most one) which
starts on E1 and ends at a singular point in the interior of ∆. The remaining n
points of P ∩ E1 are joined by arcs to E2.

Assume that m > 1 (since if m = 1 we are done). It will suffice to show that
we can replace ∆ by an alternative fundamental domain ∆′ for Fab

, with the
same vertices and containing the same marked points as ∆, but such that the
cardinality of the intersection of each edge of ∆′ with the lamination is strictly
less than m + n.

First suppose that m > n. Consider the new arc E′
1 between the vertices

A and B of ∆ illustrated in the lefthand part of figure 12. This is obtained
by applying the Dehn twist T 2 to the image of E1 on the grand orbit space
Ω2/〈Fab

〉. The sides E′
2 and E′

3 of ∆′ are obtained by applying CovQ
0 to E′

1,
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Figure 12: Left: the arc E′
1 from A to B and the fundamental tile ∆′ (shaded).

Right: the arc E′′
1 from A to B. (See the proof of Theorem 2.)

and we end up with the new fundamental domain ∆′ shown, containing precisely
the same marked critical and singular points as ∆. If m > n then E′

1 has smaller
cardinality of intersection with the lamination than does E1. We can see this
by using the explicit lift to the punctured torus described in Remark 6. The
arc E′

1 lifts to the geodesic λ of slope 1/4 through the puncture point. On the
cylinder obtained by identifying top and bottom sides of the square λ has four
components. Every geodesic on the cylinder of slope p/q strictly between 0 and
1/2 has the property that all its q components meet λ at most once, and at
least one of these components is disjoint from λ: hence the intersection of such
a geodesic with λ has cardinality strictly less than q.

If m < n, the arc E′
1 from A to B in the lefthand illustration in figure 12 no

longer has the desired property. However for 1/2 < n/(n+m) < 2/3 the arc E′′
1

illustrated in the righthand part of figure 12, which corresponds to the geodesic
on the torus of slope 7/12, through the puncture point, does the trick. This arc
is obtained by applying the composition TS2T of Dehn twists to the image of
E1 in the grand orbit space. The reader is invited to draw his or her own picture
of the fundamental tile ∆′′ bounded by E′′

1 and its images under CovQ
0 . Next,

for 2/3 < n/(n+m) < 3/4 we use the arc E′′′
1 corresponding to the geodesic on

the torus of slope 17/24 through the puncture point.

To complete the proof, it may verified that:
(i) for each positive integer q the arc E

(q)
1 corresponding to the geodesic on

the torus of slope 1 − (1/q + 1/(q + 1))/2 through the puncture point has the
property that the corresponding ∆(q) contains the same marked points as ∆,
and
(ii) for every coprime pair (m,n) having 1 − 1/q < n/(n + m) < 1 − 1/(q + 1)
this E

(q)
1 has fewer points of intersection with the pattern ρ(Pm,n) than does

E1. 2
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7 The classification of correspondences having
critical relations

In this section we prove that C consists only of the real parameter values an listed
in Theorem 1 (Section 3). We first formalise what we mean by contracting the
global lamination Γ (a union of arcs) associated to a pattern P . Let p0(z, w) = 0
be the polynomial relation defining the correspondence Fab

.

Definition 6 [2] A convergent pinching deformation for Γ is a family of qua-
siconformal maps (φt)0≤t<1 of the Riemann sphere such that the conjugate cor-
respondences pt defined by

pt(z, w) = p0(φ−1
t (z), φ−1

t (w))

are holomorphic and satisfy the following :

• (pt, φt) are uniformly convergent to a pair (p1, φ1) as t tends to 1 ,

• the non-trivial fibres of φ1 are exactly the closure of the connected compo-
nents of Γ.

Proposition 7 If the global lamination Γ associated to a pattern has leaves
which are intervals with end points in the interior of Ω2, then Γ supports a
pinching deformation converging to a correspondence associated to some pa-
rameter value in the interior of Q.

Proof Γ projects to an arc in the grand orbit space. All we need is a neigh-
bourhood of this arc on which to define a one parameter family of ellipse fields
giving rise to a convergent pinching deformation. The technical details are as
explained in [2] (but the setting here is much simpler). 2

As all critical relations that occur at interior points of Q are obtained by con-
tracting laminations satisfying the hypothesis of Proposition 7, it just remains
for us to identify the pinched correspondences.

Theorem 3 (i) The global lamination corresponding to P0,0 supports a pinching
deformation which converges to the real correspondence Fa0 of Theorem 1, that
is to say a real correspondence which has grand orbits those of a group conjugate
to PSL2(Z).
(ii) For each n ≥ 0 the global laminations corresponding to the patterns ρ(P1,n)
and ρ−1(Pn,1) both support pinching deformations converging to the real corre-
spondence Fan+1 of Theorem 1.

Proof Statement (i) is self-evident. For (ii) we examine a typical case: ρ(P1,n)
for n = 2 (proofs for other values of n and for ρ−1(Pn,1) are analogous). Figure
13 illustrates the global lamination ρ(P1,2) after pinching: the leaves in figure
11 have now become dots, but the regions are mapped to one another by the
correspondence in exactly the same fashion as that implied by figure 11. The
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Figure 13: The global lamination associated to ρ(P1,2) (the pattern on the right
in figure 11), after the leaves of the lamination have been pinched to points.

pinched correspondence is rigid: it has a 0-dimensional deformation space, since
the grand orbit space is a sphere with just two marked points in addition to the
puncture point. It is apparent from figure 13 that this pinched correspondence
has a reflection symmetry in the horizontal axis, and thus that it is conjugate
to one of our Fa with a ∈ R̂. It is immediate from figure 11 that under one
iteration of the correspondence the leaf containing the backward singular point
q2 maps to that containing the fixed point point of σ, so q2 maps to p2 under
two iterations, and hence, by Theorem 1, the pinched correspondence is Fa3 .2

Corollary 2 The only correspondences which satisfy critical relations and whose
parameter values lie in the interior of Q are the real correspondences Fan (where
0 ≤ n < ∞) listed in Theorem 1 .

8 ‘Pleating rays’ for the quasifuchsian region,
and examples on its boundary

A quasifuchsian once-punctured tous group acting on the Riemann sphere has
limit set a quasicircle and regular set a pair of topological discs. A Bers slice of
the moduli space of such groups consists of groups which have a fixed conformal
conjugacy type on one component of the regular set and a variable type on the
other. One may assign pleating coordinates (see [8]) to such a Bers slice. These
coordinates lift to the corresponding Teichmüller space T and so provide us
(albeit indirectly) with a coordinate system on Q \ C. Taking ab as base point,
pleating rays in T project to rays in Q, as illustrated in figure 14.

As one moves along a particular ray, the corresponding arc in Ω2/〈Fab
〉 is con-

tracted. In T itself the assignment of pleating coordinates is one-to-one: there
is a ray for each p/q ∈ Q, and these rational rays are dense in T [8]. But pro-
jected onto Q\C the labelling of rays emanating from a0 is projected from Q to
Q/3Z, so we may choose to label the rays here by rationals −3/2 < p/q ≤ 3/2.
Although the projected rays criss-cross one another after intersecting the real
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Figure 14: Schematic illustrations of pleating rays on Q. Here region I of figure
5 has been inverted, to put a = ∞ on the inside. The base point of the rays
is taken close to a0 (where the correspondence is the modular group), and the
critical relation parameter values an are shown as black dots. In the close-up on
the right are indicated some of the rays which cross the real axis: the 1/4-ray
returns to the base point (as does the 7/12-ray in the next gap), the 1/3 and
2/7-rays head to the same boundary value as the 1 and −1-rays (namely a∞),
and the 3/10-ray ends at the same boundary value as the 3/2 and −3/2-rays.

axis (see the figure), we conjecture that up to their first crossing of the real axis
they remain disjoint and moreover that their union is dense in Q.

Remark 7 ‘Pleating coordinates’ are assigned to the moduli space of quasifuch-
sian once-punctured torus groups in a natural way arising from the geometry of
the action of such groups as hyperbolic isometries of the Poincaré three-disc:
the boundary of the convex hull of the limit set of the group carries a ‘pleating’
which determines the ray on which the group lies in moduli space [8]. An obvi-
ous question is whether there is some analogous geometric definition of ‘pleating
rays’ for Q. We do not know of any way to extend the action of a holomorphic
correspondence on Ĉ into the interior of the Poincaré disc that would enable
us to read off ‘pleating coordinates’ from the geometric structure of the limit
set of the correspondence, but the following is an alternative approach which
appears promising. We label the two branches of Fa, and for each rational p/q
we consider the iterate Fq

a corresponding to a ‘Sturmian’ word Wp/q in the two
labels. Then we say that a lies on the p/q-ray if this iterate has real derivative
when applied at whichever of the marked points lies on a leaf of the lamination
of Ω2 corresponding to p/q: the size of the derivative can be used as a measure
of distance along the ray.

Recall that the patterns Pm,n give global laminations of Type 2, that is to say
the leaves all have at least one end on the boundary of Ω2. Contracting such
a lamination corresponds to moving towards the end of the corresponding ray
in Q. Topologically there is no difficulty about contracting the leaves of the
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corresponding global lamination to points, yielding a topological model for a
‘pinched’ correspondence, but there are technical difficulties in performing the
contraction holomorphically.

Conjecture 1 (i) For each coprime pair (m,n), with 1 < m < n, the global
lamination associated to the pattern Pm,n supports a pinching deformation which
converges to some Fa(m,n) , with a(m,n) on the boundary of Q.
(ii) The values a(m,n) are dense in the boundary of Q.
(iii) The boundary of Q is a simple closed curve.

To prove part (i) of the Conjecture we need to construct an appropriate con-
vergent pinching deformation. However the leaves of the global lamination end
at a dense set in the boundary of Ω2 and to define the support of a pinching
deformation we need the leaves to have equivariant neighbourhoods, necessarily
extending a small distance into Ω1. While it is unclear how to construct such
neighbourhoods in our situation, there is some hope that it may be possible,
as equivariant neighbourhoods have been constructed for an analogous problem
[2], where z → z2 rather than PSL2(Z) acts on the other side of the boundary.

In two particular cases we can show directly that the pinched correspondences
are indeed holomorphic.

Example 1: pinching the global lamination associated to P0,1

Topologically pinching either the global lamination associated to P0,1, or equally
well that associated to P1,0, it is easy to see that the resulting pinched corre-
spondence has the dynamics of a mating of PSL2(Z) with the quadratic map
z → z2 + 1/4 in the sense of [4]. The pinching splits Ω2 into two topological
discs, a lefthand disc which we denote Ωl, and a righthand disc which we denote
Ωr. The pinched correspondence has a 2-to-1 branch Ωl → Ωl, a 1-to-2 branch
Ωr → Ωr, and a 1-to-1 branch Ωl → Ωr, the 2-to-1 branch being topologically
conjugate to the quadratic map q1/4 : z → z2 + 1/4 on its filled Julia set, and
the 1-to-2 branch being conjugate to (q1/4)−1. But we already know from [4]
that for the parameter value a = 7 the correspondence Fa in our family realises
this mating. It is pictured in the rightmost plot in Figure 4.

Remark 8 A good way to view correspondences in the quasifuchsian region Q is
to regard them as perturbations of this mating example. Recall that the quadratic
map q1/4 is characterised by the property that it has a parabolic fixed point of
multiplier 1. Its critical point, zero, is attracted towards this fixed point but takes
infinitely many iterations to get there. As we perturb the value of the parameter
away from a = 7 (where the mating example occurs), the double parabolic fixed
point of Fa at which Ωl meets Ωr opens up into a ‘gateway’ through which the
orbit of the critical point of q1/4 on Ωl can pass and reach the corresponding
point of Ωr in a finite number n of steps, where n goes down as the perturbation
increases. This viewpoint can be formalised using Ecalle-Voronin cylinders and
Fatou coordinates, and gives an alternative derivation of the existence of the
real critical coincidence correspondences Fan classified in Theorem 1.
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Figure 15: Example 2: A fundamental domain DQ1 (bounded by the heavier
line) for CovQ1

0 , and a fundamental domain Dσ (bounded by the circle through
α, A, B, −1 and +1) for the involution σ, such that the pair (DQ1 , Dσ) satisfy
the Klein combination condition. The limit set of the correspondence consists
of three topological circles (shown as dotted lines).

Example 2: pinching the global lamination associated to P1,1

Our second special case concerns the pattern P1,1. The corresponding global
lamination (figure 11) has symmetries which allow us to compute a candidate
value of a (on the negative real axis) where the pinched version should occur,
and to show that it does indeed occur there.

We work in the Z-plane and consider the two images under CovQ1
0 of the imag-

inary axis. These cross the real axis at the points Z = ±
√

3. The part of
the upper half of the Z-plane which lies between these lines is a fundamental
domain DQ1 for CovQ1

0 . For a real and negative the fixed points α and β of σ

lie on the imaginary axis; the parabolic fixed points A and B of σ ◦ CovQ1
0 are

the points where the circle Cσ through α and β with centre on the imaginary
axis touches the boundary of this DQ1 . Clearly, if α and β are both on the
upper half of the imaginary axis, the disc Dσ bounded by Cσ lies inside DQ1 ,
and so σ ◦ CovQ1

0 is quasifuchsian by a standard Klein combination argument.
But for β on the imaginary axis just below 0 we can alter the lower boundary of
DQ1 to an alternative curve invariant under CovQ1

0 , as shown in figure 15, and
retain the Klein combination condition. The lowest position of β which permits
this is when Cσ passes through the singular points Z = ±1 (as illustrated).
In this configuration Cσ and ∂DQ1 are tangent at four points A,B, Z = +1
and Z = −1, and the component Ω2 of the regular set of the correspondence
σ ◦ CovQ1

0 is pinched into three topological discs.

It is easy to compute the value of the parameter a at which this configuration
occurs, since the circle through α and β passes through +1 and −1 if and only
if β = 1/α. Inserting this relation into equation (4) yields α = (3 + 2

√
2)i

and β = (2
√

2 − 3)i. As a = α/β we deduce that the configuration occurs at
a = −17−12

√
2. Figure 16 is a computer plot of the images of the imaginary axis
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Figure 16: Computer plot of example 2 (Fa for the value a = −17 − 12
√

2).
This is plotted in the z-plane: the circle through A, α and B in the Z-plane in
figure 15 has now become the imaginary axis. The images of the imaginary axis
are shown in red, and the limit set is plotted in black (due to the limitations of
the program the plot is incomplete near the ‘pinch points’).

under Fa for this value of a. Labelling the top, centre, and bottom components
of Ω2 for this correspondence as Ωt, Ωc, and Ωb, one can see that Fa has branches
sending Ωc → Ωt, Ωc → Ωb, Ωt → Ωc, Ωb → Ωc, Ωt → Ωt and Ωb → Ωb. Each
of these branches is bijective and the stabiliser of each component under iterates
Fn

a , n ∈ Z, is a group. Finally we note that the points at which the boundaries
of the components touch are the critical points c1 and c2 and that under the
appropriate branches of the correspondence these form a (parabolic) 2-cycle.

When pinched topologically, the global laminations associated to all patterns
Pm,n, other than the two examples just considered, pinch Ω2 into a countable
infinity of discs. Numerical experiments suggest that these examples can all
be realised as holomorphic correspondences, and that these lie densely in the
boundary of the quasifuchsian region Q (Conjecture 1). It is an interesting
question as to whether one can realise pinchings of irrational laminations and
obtain examples where Ω2 is pinched to a dendrite: one would expect examples
of this type to provide the remaining points of the boundary of Q.
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[2] S Bullett and P Häıssinsky, Pinching holomorphic correspondences, Con-
formal Geometry and Dynamics 11 (2007) 65–89

[3] S Bullett and W Harvey, Mating quadratic maps with Kleinian groups via
quasiconformal surgery, Electronic Research Announcements of the AMS
6 (2000) 21–30

[4] S Bullett and C Penrose, Mating quadratic maps with the modular group,
Inventiones Math. 115 (1994) 483–511

[5] S Bullett and C Penrose, Regular and limit sets for holomorphic correspon-
dences, Fundamenta Math. 167 (2001) 111–171

[6] A Douady and C J Earle, Conformally natural extensions of homeomor-
phisms of the circle, Acta Math. 157 (1986) 23–48

[7] A Douady and J H Hubbard, On the dynamics of polynomial-like mappings,
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