
WWW TRAFFIC MEASURE AND ITS PROPERTIES

MARCUS R. KEOGH-BROWN
SCHOOL OF MEDICINE HEALTH POLICY AND PRACTICE

UNIVERSITY OF EAST ANGLIA
NORWICH NR4 7TJ

M.KEOGH-BROWN@UEA.AC.UK
UK

AND BARBARA BOGACKA
SCHOOL OF MATHEMATICAL SCIENCES

QUEEN MARY
UNIVERSITY OF LONDON

LONDON
E1 4NS

UK
B.BOGACKA@QMUL.AC.UK

Abstract. We present a method to extract a time series (Number of Ac-
tive Requests (NAR)) from web cache logs which serves as a transport level
measurement of internet traffic. This series also reflects the performance or
Quality of Service of a web cache. It has long-memory properties but is not
self-similar and does not have a heavy-tailed distribution.

However, the long-memory and autocorrelation structure of NAR are pre-
served through aggregation, that is the aggregated series has similar statistical
properties to the original one. We call this property aggregation similarity.

Aggregation similarity is a very useful property, which makes management
of large data sets easier and speeds up the asymptotic properties of time series.

Key Words: Long memory process; Cache log data; Number of Active Requests

1. Introduction

Over recent years the internet has become an essential tool for communica-
tion and data transfer. As is the case for most computer related services, users
constantly require faster, more flexible and more reliable performance from their
internet transfers and, in order to provide for these requirements, a greater under-
standing of the traffic is needed.

The perspective of our work is more closely related to the internet user’s view
of the traffic than the underlying machine view. We do not study each tiny item
of data (packet) in detail, but instead, we study the data at a fairly high level,
monitoring its behavior over long timescales. By examining the data in this way,
some of the properties of detailed packet level traffic are filtered out, but we are
able to study the Quality of Service (QoS) perceived by the internet user and we
hope our studies will help to provide ways in which this QoS can be improved.

Various attempts have been made to model web traffic. There is a vast litera-
ture in engineering journals on some traffic measures and their properties, see for
example [12] and [7] which study file popularity and fitted Zipf curves to internet
data, [14], a study of data from personalised web content to improve caching of

1

personalised content, or [13], a study of TCP packet flows and of a new method for
timing out TCP flows to reduce delays. However, there is much less attention given
to the problem in the literature on data analysis. In fact, there are either very theo-
retical papers on long memory processes (for example [10] provides a description of
parameter estimation methods for long-memory FARIMA processes and fractional
differencing of a time series, and [4] describes short and long range processes to-
gether with their properties) or there are papers presenting some simulation studies
of internet traffic behaviour (like [3], which presents a tool to simulate web cache
traffic and [1] which presents a simulation of long-range dependent packet trains
which commence according to a poisson process). Each of these pieces of research
makes a valuable contribution to their field either by providing statistical methods
or tools to use in analysis, or by studying aspects of network traffic, or by produc-
ing synthesised data which can test theoretical web cache or networking situations.
Our research takes a different approach: rather than focussing on an attribute of
web users or requests, we study internet traffic at a high level over long timescales
and thus gain a view of the overall quality of service provided by a web cache.

What we propose in this paper is a new traffic measure based on real data sets.
We examine its statistical properties and suggest further analysis.

In Section 2 we present the data sources (caches and their log files), we briefly
discuss the problems with working on the row data and we introduce a new variable,
called Number of Active Requests (NAR), a traffic measure built on the available
information in the cache log files. In Section 3 we introduce a definition of a very
interesting new property (aggregation-similarity) we have discovered in all NAR
series studied in this work. We further use this property to examine the behaviour
of NAR and so of the internet traffic. Section 4 briefly describes the numerical
programs used for the calculations. We conclude in Section 5.

2. Number of Active Requests

2.1. Data Source. Internet traffic datasets have been extracted and analysed in
many different ways. However, internet and network datasets are very difficult to
obtain, and, even when they are released for analysis, only certain items of data
are provided. The data chosen for our analysis was web cache logs.

The web cache logs we use were provided by three main organisations: NLANR
(National Laboratory for Applied Network Research), the University of Essex and
Queen Mary, University of London. Our main study is based on long-term traces
from eleven web caches, nine of which are administered by NLANR. The list of
the caches and their location is given in Table 4 in Appendix A. The University of
Essex cache is one of two web caches serving University of Essex computer users.
These two caches were configured in round-robbin sharing formation. This cache
has used the JANET server network as a parental cache in the past, but, at the
time we obtained log files, it no longer utilised this link. The JANET cache network
is a caching service provided jointly by Manchester University and Loughborough
University for the UK Academic Research Community. The Queen Mary cache is
the single web cache serving Queen Mary, University of London and is linked to
the JANET cache network. However, the choice of situation under which this link
to JANET is utilised is determined by the Queen Mary Web Cache Administrator.

Although the NLANR caches are administered by the same organisation, the user
communities and rules governing the caches’ service vary. The NLANR stp and sj

2

caches serve as network caches on internet or network exchange points. Their brief
job description is to cache files transferred through the network exchange points
on which they are situated. For the other NLANR caches, the setup is slightly
different. Individual users wishing to subscribe to the NLANR caching service may
query the sd cache. Otherwise, the cache administrator of the organisation wishing
to subscribe to the caching service may choose to use any two of the remaining
NLANR caches (bo1, bo2, pa, pb, rtp, sv, uc). It is reasonable to assume that
the choice of cache would be made according to locality of the web cache or the
parental links of that cache. The web cache size, in terms of the number of requests
received per day is given in Table 1 in Appendix A.

As Table 1 shows, Essex University is the largest of our caches receiving, on
average, more than 2 million requests per day. sv, rtp and pb are the next largest
caches, each receiving over 1 million requests per day.

For completeness we should point out that values in Table 1 are calculated from
the data sets used for our analysis and to which we will refer throughout this work.
The precise periods of data collection for our study are in Table 2 in Appendix A.

2.2. Raw Data. Web cache logs are vast. They frequently contain up to 2 million
rows of data per day, each representing a single file request. Every row is separated
into 10 columns, each representing an attribute of that request. However, just three
of the data columns contain numerical values useful for analysis of traffic as a whole,
the others represent attributes of the file.

The three raw data items of interest are Request Time (the time at which the
file transfer was completed by the cache), Elapsed Time (the duration of the file
transfer in milliseconds) and File Size (the size in bytes of the transferred file).
An example of a log file is given in Appendix B. However, Request Time is an
approximately linear set of time points making it difficult to use by itself for traffic
analysis. The other two attributes, Elapsed Time and File Size, have inconsistent
statistical properties. A single day data of Elapsed Time or of File Size may be
uncorrelated on one day, but significantly correlated on the next day. Similarly,
there may be huge bursts of very large Elapsed Time or File Size values which
cluster together on one day, but just a few isolated bursts or large values the next
day.

These statistical inconsistencies would make raw data difficult to analyse, since
a conclusion which might hold for one period of data might not apply to another
period of data. In addition to this, as we have already mentioned, the web cache log
datasets are vast, and, for some caches it would be very difficult to even consider a
single day’s raw data.

2.3. A New Series. It was our intention to find a dataset which was manageable
in size, accurately reflected the properties of internet traffic and had consistent
statistical properties between different timescales. We introduce a new variable
called Number of Active Requests or NAR(t), t = 0, 1, 2, NAR(t) is the number
of file requests that are undergoing transfer from a web cache at time t. The diagram
in Figure 1 explains the method of calculating the values of NAR(t). For example,
at t = 3 there are five files being transferred from the cache, so NAR(3) = 5 for
this cache. For our purposes, we always calculate NAR at one second intervals.
Time series plots of a week-long NAR for two different caches are shown in Figures
2 and 3.

3

NLANR rtp cache remains active almost all of the time, whereas Queen Mary
cache is frequently inactive. Both caches show daily peaks with much shorter peaks
at weekends, although the pattern of daily peaks is more clearly shown in the Queen
Mary plot. The rtp cache plot is typical of NAR activity in NLANR caches, where
a NAR value of zero is rare. Similarly the University of Essex cache remains active
at all times, though the daily trends are less visible. The Queen Mary cache has the
most clearly defined daily pattern of the caches we have studied. All of the cashes
studied present the NAR series as having local trends and cycles and peaks, but
over a long period being stationary. This suggest that it is a long memory process,
which we examine in Section 3.1

The calculation of the NAR data series was implemented using a Perl program.
Perl was selected for its’ ability to process large files. A broad illustration of the
algorithm implemented in the Perl program is shown in Figure C in Appendix C.
The Perl code is available on request from the first author.

[11] presents a study of internet data in perhaps the most similar way to our
studies that we have seen. Traffic flows, where the length of a flow is the time from
the start of the first packet transmission to the end of the last, are considered. Flow
lengths are plotted on the horizontal axis in the order in which they occur with
horizontal length proportional to flow length, and are plotted vertically according
to a random shift element. These plots are similar to our Figure 1, when rotated
through 90 degrees, where the lines indicating requests are ordered randomly. The
idea behind this visualisation is to distinguish the short transfers (mice) from the
long flows (elephants) causing the possibly heavy-tailed nature of the data distri-
bution. The authors agree with the popular theory that long flows also lead to
long-range dependence of the data (significant correlation at large lags), and il-
lustrate that the heavy tail of the data distribution is attributable to a very few
elephants.

Although no conclusion section is featured in the paper, the authors show that
random sampling of heavy-tailed data does not produce a representative sample
since elephants are easily omitted and that sub-sampling such data to produce a
representative sample would be a very difficult task.

These traffic flows correspond to the internet data which NAR time series mea-
sures. The main difference between the traffic data presented in [11] and the NAR
is that NAR measures the number of requests active at a regular specific time
point, and we model these values as a time series, while [11] considers the number
of large (elephant) and small (mice) file transfers that occur within wide and nar-
row intervals of time. Therefore, we concentrate on the number of requests that
are active at various time points but do not consider the duration of each of those
requests directly. Conversely [11] studies the number of large or small transfers in
an interval, without having any direct knowledge of the business in that interval.

3. Properties of the Number of Active Requests

3.1. Long-Memory. Here we follow the definition of long memory given by [2],
though the original reference for long memory process is [8]. First we introduce
notation which we use throughout the paper. Let X = {X1, X2, . . .} be a random
stationary process with a finite expectation E(X) = µ, a finite variance V ar(X) =
σ2 and covariances Cov(Xt, Xt+τ) = γ(τ), t = 1, 2, . . ., τ = 0, 1, That is

4

γ(0) = σ2 and ρ(τ) = γ(τ)
γ(0) is the autocorrelation function at lag τ . Also, we denote

by f(λ) the spectral density function of the series at frequency λ.
Furthermore, we denote by

(3.1) X(m) =
{

X
(m)
1 , X

(m)
2 , . . . , X

(m)
t , . . .

}
,

where

(3.2) X
(m)
t =

1
m

(Xtm−m+1 + . . . + Xtm) ,m = 1, 2, . . . ,

is a new aggregated process with the aggregation parameter m. That is, process
X(m) is built up by replacing each non-overlapping set of m values of X with their
mean.

In Figures 4 and 5, we show an example of the autocorrelation function and
periodogram for the NAR process. According to the definition of a long-memory
process, which we recall below, both plots indicate that NAR has this property.

Definition 3.1. From [2].
A stationary process X = {X1, X2, . . .} is called long-range dependent or long-

memory process, if it satisfies the following equivalent conditions
(i):

∑∞
τ=0 γ(τ) is divergent,

(ii): f(λ) is singular at λ = 0,
(iii): mσ2

m →∞ as m →∞,
where σ2

m denotes variance of the aggregated series X(m).

The slow autocorrelation decay in Figure 4 suggests that the NAR fulfills crite-
rion (i), while criterion (ii) in the above definition is exhibited by the periodogram
plot in Figure 5. As the frequency approaches zero, the values of the periodogram
increase rapidly indicating a pole in the spectrum at zero.

The long memory parameter commonly used in the literature (see for example
[5]) is the so called Hurst parameter H. For long-memory processes H ∈ (1

2 , 1),
and the autocorrelation function is asymptotically approximated by

(3.3) ρ(τ) −→
τ→∞

cτ2H−2.

As H → 0.5, we expect rapid decay of the autocorrelation function. On the other
hand as H → 1 the autocorrelation function tends to a constant, which means that
there is strong correlation for all lags.

The concepts of long-memory and self-similarity are frequently connected, which
leads us to consider whether NAR also exhibits self-similarity. In order to investi-
gate this property, we aggregate the time series.

Although the aggregation factor m = 1000 is very large, Figures 6 and 7 have a
clear resemblance to Figures 2 and 3 respectively. This suggests that the original
and aggregated datasets, though different in size, have similar distribution. We
consider the benefits of this fact in the next section.

3.2. Aggregation Similarity. The definition of self-similarity, see [2] or [4], de-
clares that the re-scaled, or in our case aggregated, process will be equal in distri-
bution to the original process.

Therefore a self-similar process will satisfy the property

(3.4) ρ(m)(τ) ≈ ρ(τ),
5

where ρ(m)(τ) denotes the autocorrelation function of the aggregated series X(m)

at lag τ .
However, if we examine the autocorrelation function of the NAR time series for

various aggregation levels, see Figure 8, we see that the autocorrelation function of
the NAR time series satisfies a different property, namely

(3.5) ρ(m)(τ) ≈ ρ(mτ).

This is a property which we have examined at long and short timescales, for large
and small autocorrelation lags for all caches and we have found this relation to hold
without exception for all NAR datasets. This is not a property that we have seen
described elsewhere. We therefore give a formal definition as follows.

Definition 3.2 (aggregation-similarity). We call a second-order stationary process
with long-memory satisfying condition (3.5) an aggregation-similar process.

Since NAR data does not satisfy (3.4), it cannot be self-similar in the usual
sense, but nevertheless, aggregation similarity is a very useful property. The two
main advantages of aggregation similarity are

(1) Analysis of large datasets is possible using aggregation.
(2) The asymptotic properties of the original data are sped up using aggrega-

tion.
Property (1) is particularly useful in the context of the vast cache logs from

which the NAR data is extracted. As we have already commented, it would be
very difficult to analyse a one week NAR time series, calculated at one second
intervals. However, by aggregating the NAR series, we obtain a much smaller,
more manageable dataset which bears similar statistical properties to the original.

Property (2) is demonstrated in the next section where we discuss estimation of
the long-memory parameter H and a distribution tail index α. Also, estimation of
the values of autocorrelation function of an NAR series for a very large maximum
lag is time consuming and, for long-term NAR datasets, quickly goes beyond the
power of the average computer as the lag increases. However, using the property
(3.5), we see that the m aggregated NAR dataset autocorrelation function at lag
τ , may be used to estimate the autocorrelation of the original NAR at mτ .

These properties of aggregation-similarity have been used in the estimation of
the distribution tail index and the Hurst parameter.

3.3. Estimation. It is reasonable to expect that the sample autocorrelations ρ̂(τ)
for sufficiently large τ can be used to estimate H. As we are interested in the
strength of the correlation rather than in its direction we use the model |ρ̂(τ)| =
cτ2H−2 to which we apply a non-linear least squares fit. This yields estimates of c
and H. An example of an autocorrelation function and this fit is shown in Figures
9 and 10 respectively.

We use aggregated series X(m) in order to speed up the asymptotic behavior
of the autocorrelation function. Also, X(m) is a smaller, more manageable size
data set. If, as expected, the data is aggregation-similar, then we can use the
aggregated series for analysis, knowing that it has similar statistical properties to
the original series. Because of the re-scaling property of aggregated similarity, the
sample autocorrelation function for say τ = 10, 000 in the original series should
correspond to the estimate for τ = 10 in the aggregated data set with m = 1000.
This makes the calculations very fast.

6

Other methods, presented for example in [2], are linear fit plots using long-
memory properties. One is a linear fit to the plot of log(ρ̂(τ)) against log τ .

The other method uses the fact that for long-memory processes, the variance of
the mean decays with the sample size more slowly than for the uncorrelated data,

(3.6) var(X̄) ≈ ak2H−2,

where X̄ = 1
k

∑k
i=1 Xi and a > 0. Then the estimate of the slope of the linear

regression fit

(3.7) log var(X̄) ≈ log a + (2− 2H) log k

gives the estimate of H.
We examine plots of these three methods for comparison in Figure 11. Of these

three methods, the non-linear autocorrelation fit is the only one that provides a
consistent estimate of H which is relatively invariant to changes in aggregation and
maximum lag of the autocorrelation. The consistence is maintained for all NAR
datasets considered here. The other two methods are successful for some datasets,
but the inconsistencies and variability in some cases make it difficult to trust those
estimation methods in general. We therefore select the non-linear autocorrelation
fit as our preferred method of initial estimation of H.

The Hurst parameters for NAR data vary between 0.75 and 0.85 for the caches
we study. This confirms the long-memory property of the NAR series. Table 5 in
Appendix A gives the estimates of H and its standard deviation for all the caches
considered in this paper.

Aggregation similarity can also be used when examining the distribution of NAR
enabling conclusions to be drawn from smaller aggregated datasets that are appli-
cable to the original NAR data. We consider the distribution of the NAR data in
the next section.

3.4. Marginal Distribution of NAR. The probability distribution of the NAR
data is skewed (see Figure 12). However, if we examine the body of the distribution
shown in Figure 12, it is clear from the small scale of the vertical axis on the
probability histogram that a significant proportion of the data does not feature in
the main body of the plot. Since NAR cannot take negative values, this suggests
that a reasonable proportion of the data falls into the tail of the distribution. This
raises the question ‘Is our NAR data heavy-tailed?’

[6] presents theory and estimation methods for the tail index, α, of heavy-tailed
probability distributions. We include their definition.

Definition 3.3 (Heavy-Tailed Distribution). A random variable X follows a heavy-
tailed distribution (with tail index α) if

(3.8) P (X > x) ≈ cx−α as x →∞, 0 < α < 2.

where c is a positive constant, the ≈ implies that the ratio of the two sides tends
to 1 as x →∞.

This distribution has infinite variance and, if α ≤ 1, it has infinite mean. Hence,
we should not expect this definition be satisfied by our data. Anyway, we followed
the computer program in [6] called aest to estimate the tail index α of our data. We
have also applied another heavy tail estimator given by [9]. However, in each case
the estimator failed to converge or to produce a reasonable tail index estimate. For
the aest estimator, the estimate of α was very variable and often greater than 2. We

7

followed the guidelines of [6] to randomize the data to remove correlations, but the
estimates were still unreasonable. Many of our Hill estimates failed to converge also
preventing us from obtaining a valid estimate of the distribution tail. We therefore
attempted to model the NAR variable with several distributions including Pareto,
Weibull, and Gamma using non-linear regression. None of these distributions could
be well fitted to all of the datasets we considered. Hence we decided to focus on a
fit to the tail part of the distribution only.

For this purpose we used an exponential function

(3.9) b exp(αx),

where x > x0 ≥ 0, b < 1 and α denotes a tail index, to model the tail of the
distribution, that is the tail of Complementary Cumulative Distribution Function
(CCDF) F̄ (x) = P (X > x). x0 is chosen as a point at which the probability mass
function attains maximum. The function (3.9) gives a very good fit to the tail of
the NAR data for all the caches; an example of a fit is given in Figure 13.

However, the shape of the NAR distributions differ between different caches
and different weeks and some of these distributions are easier to fit than others.
Figure 14 shows an example of the more awkward shape which is difficult to find
an accurate fit for its tail.

We should point out that x0 can occur at various points in the distribution
and, as a result, we ignore anywhere between approximately 5% and 70% of the
distribution by omitting the data before the peak. Table 3 in Appendix D gives the
estimates of b and α, as well as the percentage of the data used for the tail fit, that
is the percentage of all x > x0. The estimates were calculated for 24 five-day weeks
for one of the caches considered. The very different values of the ignored part of
the sample mass function indicate that the peak or mode of the distribution varies
greatly between weeks, so it would be very difficult to find a distribution to fit all
data for all timescales. Similar behavior occurs for all the caches we examine.

4. Numerical Calculations

The programs we have produced for this analysis were written in Perl (for data
preparation) and in S programming language for statistical analysis and graphs.
They can be used in both Windows and Unix environments. The Perl programs
included the NAR production program, aggregation programs, and pre-processing
programs so as not to allow our calculations to be affected by anomalies in the data.
Computer programming language S was used for statistical analysis (in S-plus 2000)
to produce plots and programs for Hurst estimation, tail index estimation and other
tasks.

The main consideration for the data analysis programs is the size of the data
files being processed. Our main NAR calculation program, totalqd.pl was designed
to process an unlimited number of log files of unlimited size. Each line of data
is sequentially processed since, in most cases, it is not possible for the entire data
set to be held in memory at one time. The limitations on this program’s use are
therefore determined by the computer running the program. Similar considerations
were made for the simpler aggregation programs we have used.

For statistical analysis of such large data sets, a clear visualisation of the data
through plots was important as was the ability to produce our own programs for
calculations such as Hurst estimation. S-plus 2000 provided these graphical and

8

programming capabilities. Size was once again an important consideration, and
calculation of functions such as the autocorrelations for very large lags was prob-
lematic and required both time and a powerful computer. Earlier calculations were
performed by a computer with 1GHz processor and 512MB of memory, later calcu-
lations used a 3.1GHz machine with 1GB of memory. The programs are available
on request from the first author.

5. Conclusions

In this paper we have presented a method to calculate the time series we call
Number of Active Requests. This data set exhibits a useful property called aggre-
gation similarity which can be shown experimentally for different timescales and
different web caches. The NAR data exhibits long-memory properties, but is not
self-similar in the usual sense.

Aggregation similarity permits the use of smaller and therefore more manageable
datasets for statistical analysis in place of the original NAR series. This aggregated
dataset not only reflects the asymptotic properties of original series’ autocorrelation
function, but also illustrates the approximate behavior of the original data. This
allows conclusions to be drawn on the original data from the aggregated data.

Aggregation similarity has been used to estimate the Hurst parameter for the
NAR data. It is well suited to the non-linear estimation method we have used.

Analysis of the distribution of NAR data has also been made. This revealed a
skewed distribution which is not heavy-tailed. We have shown that the tail of the
NAR distribution, though variable in the proportion of data it represents, can be
well approximated by the exponential function.

We therefore present NAR as a long-memory time series which is not self-similar
and does not have a heavy tailed distribution. However, it does exhibit aggregation
similarity which is a very useful property for analysis of large data sets.

In this paper we have illustrated the calculations with graphs obtained for various
caches. They well represent all the caches we studied.

NAR can also be used to study the Quality of Service (QoS) provided by a web
cache. A series which is prone to more rapid upward than downward bursts might
indicate a web cache that does not provide a good service at busy times since its
service is not as fast as the arriving requests. Conversely, a web cache, such as
those studied here, are prone to rapid bursts of activity, followed by corresponding
downward bursts which indicate that the cache, though prone to rapid activity
increase, is able to manage these increases in workload.

The properties of NAR presented in this paper make it a very good measure
of internet traffic. Its further analysis may show some traffic properties, such as
business and burstiness. It may also be used for cache performance comparison.
These aspects of this new variable will be presented in our future work.

9

References

[1] M. Barenco. A simple stochastic model for long-range dependence. Preprint,
2001.

[2] J. Beran. Statistics For Long-Memory Processes. Chapman and Hall, New
York, 1994.

[3] G. Bilchev, C. Roadknight, I. Marshall, and S. Olafsson. WWW cache mod-
elling toolbox. Proceedings of the 4th International Web Caching Workshop,
San Diego, California, March 31 - April 2 1999, 1999.

[4] D. R. Cox. Long-range dependence: a review. Statistics: An Appraisal, Pro-
ceedings 50th Anniversary Conference, Iowa State Statistical Library, pages
55–74, 1984.

[5] M. E. Crovella and A. Bestavros. Explaining world wide web traffic self-
similarity. Technical Report, Tr-95-015 Boston University Computer Science
Department, 1995.

[6] M. E. Crovella and M. S. Taqqu. Estimating the heavy tail index from scaling
properties. Methodology and Computing in Applied Probability, 1:1–21, 1999.

[7] C. R. Cunha, A. Bestavros, and M. E. Crovella. Characteristics of WWW
client-based traces. Technical Report TR-95-010, Boston University, July 1995,
1995.

[8] C. W. J. Granger and R. C. Joyeux. An introduction to long-range time series
models and fractional differencing. Journal of Time Series Analysis,, 1:15–29,
1980.

[9] B. M. Hill. A simple general approach to inference about the tail of a distri-
bution. The Annals of Statistics, 3:1163–1174, 1975.

[10] J. R. M. Hosking. Fractional differencing. Biometrika, 68:165–176, 1981.
[11] J. S. Marron, F. Hernandez-Campos, and F. D. Smith. Mice and elephants vi-

sualization of internet traffic. In Proceedings of Compstat 2002, Berlin, August
2002, 2002.

[12] I. Marshall and C. Roadknight. Linking cache performance to user behaviour.
Computer Networks and ISDN Systems,, 30:2123–2130, 1998.

[13] B. Ryu, D. Cheney, and H. Braun. Internet flow characterization: Adaptive
timeout strategy and statistical modelling. In Proceedings of Passive and Active
Measurement Workshop (PAM2001), Amsterdam, April 2001, 2001.

[14] W. Shi, R. Wright, E. E. Collins, and V. Karamcheti. Workload character-
ization of a personalized web site and its implications for dynamic content
caching. New York University Technical Report TR2002-829, 2002.

10

Start Time

End Time

NAR(t)
0
2
5
4
3

t[s]
1
2
3
4
5

Figure 1. Diagram of Number of Active Requests Calcu-
lation. End Time - Start Time = Elapsed Time

11

N
um

be
r

of
 A

ct
iv

e
R

eq
ue

st
s

0
50

10
0

15
0

20
0

M
on

T
ue

W
ed

T
hu F

ri

S
at

S
un

Time Series Plot

Figure 2. NAR Plot for NLANR rtp cache 7-13 January 2002

N
um

be
r

of
 A

ct
iv

e
R

eq
ue

st
s

0
10

0
20

0
30

0

M
on

T
ue

W
ed

T
hu F

ri

S
at

S
un

Figure 3. NAR Plot Queen Mary cache 7-13 January 2002

12

Lag

A
C

F

0 10000 20000 30000 40000 50000

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : rtpNAR$V1[((count * 604800) + start1k):((count * 604800) + (start1k +

Figure 4. NAR Correlogram for NLANR rtp cache, 7-11
January 2002, maximum lag = 50000

frequency

sp
ec

tr
um

0.0 0.1 0.2 0.3 0.4 0.5

-6
0

-4
0

-2
0

0
20

40
60

80

Series: rtpNAR$V1[((count * 604800) + start1k):((count * 604800) + (start1k +
 Raw Periodogram

 bandwidth= 4.77148e-007 , 95% C.I. is (-5.87651 , 17.5717)dB
Frequency

P
er

io
do

gr
am

Figure 5. Periodogram plot for NLANR rtp cache, 7-11
January 2002

13

N
um

be
r

of
 A

ct
iv

e
R

eq
ue

st
s

0
20

40
60

80
10

0
12

0

M
on

T
ue

W
ed

T
hu F

ri

S
at

S
un

Figure 6. Aggregated NAR Plot, m=1000, for NLANR
rtp cache, 7-13 January 2002

N
um

be
r

of
 A

ct
iv

e
R

eq
ue

st
s

0
50

10
0

15
0

20
0

25
0

M
on

T
ue

W
ed

T
hu F

ri

S
at

S
un

Figure 7. Aggregated NAR Plot, m=1000, for Queen
Mary cache, 7-13 January 2002

14

Lag

A
C

F

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : wks1and2sv$V1[1:604800](a)

Lag

A
C

F

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : wks1and2sv100$V1[1:6048](b)

Lag

A
C

F

0 10 20 30 40 50

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : wks1and2sv1k$V1[1:604.8](c)

Figure 8. Correlogram of NAR for NLANR sv cache, 15-
19 January 2002. (a) m=1, maximum lag = 50,000, (b)
m=100, maximum lag = 500, (c) m=1000 maximum lag
= 50

15

Lag

A
C

F

0 100 200 300 400

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : pa1k$V1[(i + 519):(i + 519 + 432)]

Figure 9. Autocorrelation plot for NLANR pa 15th to
19th April 2002

16

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Autocorrelation And Fitted Curve

Autocorrelation Lag

A
ut

oc
or

re
la

tio
n

F
un

ct
io

n

Figure 10. Example of Non-linear fit to autocorrelation
function NLANR pa, 15-19 April 2002

17

Aggregation Level m/200

H
ur

st
 E

st
im

at
e

10 20

0.
6

0.
7

0.
8

Nonlinear Fit
Linear Fit
Variance Method

Figure 11. Comparrison plots of three Hurst estimation
methods for NLANR bo1 14th-20th January 2002

18

0 20 40 60 80 100 120 140

0.
0

0.
02

0.
04

0.
06

0.
08

Value of NAR

P
ro

ba
bi

lit
y

of
 N

A
R

 V
al

ue

Figure 12. Sample Probability distribution for NLANR
bo1 cache, 21-25 January 2002

19

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

CCDF

Figure 13. Sample CCDF and the exponential Fit, dotted
line are fitted values; NLANR bo1 cache, 21-25 January
2002

20

0 20 40 60 80 100

0.
0

0.
01

0.
02

0.
03

0.
04

Value of NAR

P
ro

ba
bi

lit
y

of
 N

A
R

 V
al

ue

Figure 14. Example NAR data (NLANR sd cache, 10-14
Feb 2002) a data set which is difficult to fit a distribution
tail to.

21

Appendix A. Tables

Cache Average Requests
Per Day

Queen Mary 826,044
Essex 2,095,534
NLANR bo1 179,853
NLANR bo2 197,849
NLANR pa 399,697
NLANR pb 1,004,530
NLANR rtp 1,618,619
NLANR sd 625,004
NLANR sj 278,335
NLANR stp 127,772
NLANR sv 1,795,244

Table 1. Average number of requests per day for each cache

22

Cache Name Start of First Request End of Last Request
Queen Mary 21/10/2001 26/5/2002
Essex 14/1/2002 12/6/2002
NLANR bo1 1/1/2002 22/6/2002
NLANR bo2 1/1/2002 16/4/2002
NLANR pa 1/1/2002 28/5/2002
NLANR pb 2/1/2002 29/5/2002
NLANR rtp 1/1/2002 28/5/2002
NLANR sd 1/1/2002 7/4/2002
NLANR sj 1/1/2002 21/6/2002
NLANR startap 1/1/2002 15/6/2002
NLANR sv 1/1/2002 21/3/2002

Table 2. Measurement periods of cache datasets

23

Week b α % of Distribution
Used in Fit

1 0.95 0.94 0.75
2 1.00 0.94 0.93
3 0.81 0.93 0.51
4 1.00 0.87 0.66
5 1.00 0.88 0.78
6 1.00 0.87 0.74
7 1.00 0.84 0.56
8 1.00 0.88 0.73
9 1.00 0.86 0.68
10 1.00 0.84 0.41
11 1.00 0.83 0.68
12 1.00 0.87 0.46
13 1.00 0.96 0.75
14 1.00 0.93 0.64
15 1.00 0.93 0.69
16 0.67 0.97 0.57
17 0.41 0.96 0.40
18 1.00 0.90 0.36
19 0.70 0.96 0.72
20 1.00 0.89 0.69
21 1.00 0.92 0.50
22 0.73 0.94 0.61
23 1.00 0.93 0.69
24 1.00 0.94 0.73

Table 3: Exponential fit parameters for NLANR bo1 cache

24

Cache Location
Queen Mary Queen Mary University, London, UK
Essex Essex University, Wivenhoe Park, Colchester, UK
bo1 and bo2 (bo.us.ircache.net) Boulder, Colorado
pa (pa.us.ircache.net) Palo Alto, California
pb (pb.us.ircache.net) Pittsburgh, Pennsylvania
rtp (rtp.us.ircache.net) Research Triangle Park, North Carolina
sd (sd.us.ircache.net) San Diego, California
sj (sj.us.ircache.net) MAE-West San Jose, California
stp (startap.us.ircache.net) STARTAP the international connection point in Chicago, IL
sv (sv.us.ircache.net) Silicon Valley, California (FIX-West)

Table 4. location of web caches

25

Cache Mean Hurst Estimate Variance of Hurst Estimate
Queen Mary 0.836 0.0005

Essex 0.814 0.0008
NLANR bo1 0.750 0.0025
NLANR bo2 0.764 0.0013
NLANR pa 0.750 0.0029
NLANR pb 0.750 0.0019
NLANR rtp 0.813 0.0012
NLANR sd 0.843 0.0015
NLANR sj 0.751 0.0044

NLANR stp 0.764 0.0018
NLANR sv 0.788 0.0014

Table 5. Mean Hurst estimates for caches and their variances

26

Appendix B. An example of a log file.

Columns are separated by a single space.

27

1018137607.017 314 88.121.141.160 T
C

P
_M

ISS
/403 2676 G

E
T

 http://slashdot.org/slashdot.rdf
-

D
IR

E
C

T
/64.28.67.150 text/htm

l

1018137607.165 8 88.121.141.160 T
C

P_N
E

G
A

T
IV

E
_H

IT
/403 2683 G

E
T

 http://slashdot.org/slashdot.rdf
-

N
O

N
E

/-
text/htm

l

1018137607.682 168 88.121.141.160 T
C

P
_M

ISS
/403 2676 G

E
T

 http://slashdot.org/~N
ugget94M

/ -
D

IR
E

C
T

/64.28.67.150 text/htm
l

1018137607.835 12 88.121.141.160 T
C

P
_N

E
G

A
T

IV
E

_H
IT

/403 2675 G
E

T
 http://slashdot.org/~N

ugget94M
/ -

N
O

N
E

/-
text/htm

l

1018137607.936 253 80.21.198.72 T
C

P_R
E

F
R

E
S

H
_H

IT
/200 4738 G

E
T

 http://w
w

w
.looksm

art.com
/h/info/bad_ad.htm

l -
D

IR
E

C
T

/64.241.242.202 text/htm
l

1018137608.158 17 80.21.198.72 T
C

P
_M

ISS
/304 259 G

E
T

 http://m
ercury.beseen.com

/im
ages/chat/heart.gif -

D
IR

E
C

T
/209.249.66.57 -

1018137608.731 171 88.121.141.160 T
C

P
_M

ISS
/403 2676 G

E
T

 http://slashdot.org/~N
ugget/ -

D
IR

E
C

T
/64.28.67.150 text/htm

l

1018137608.882 11 88.121.141.160 T
C

P
_N

E
G

A
T

IV
E

_H
IT

/403 2675 G
E

T
 http://slashdot.org/~N

ugget/ -
N

O
N

E
/-

text/htm
l

1018137608.971 89 80.21.198.72 T
C

P
_M

ISS
/304 259 G

E
T

 http://m
ercury.beseen.com

/im
ages/chat/w

ink.gif -
D

IR
E

C
T

/209.249.66.57 -

1018137609.300 45 80.21.198.72 T
C

P
_M

ISS
/304 260 G

E
T

 http://m
ercury.beseen.com

/im
ages/chat/stop.gif -

D
IR

E
C

T
/209.249.66.57 -

1018137609.339 38 80.21.198.72 T
C

P
_C

L
IE

N
T

_R
E

FR
E

S
H

_M
ISS

/304 258 G
E

T
 http://m

ercury.beseen.com
/im

ages/chat/frow
n.gif -

D
IR

E
C

T
/209.249.66.57 -

1018137610.040 164 88.121.141.160 T
C

P
_M

ISS
/403 2676 G

E
T

 http://slashdot.org/~
grub/ -

D
IR

E
C

T
/64.28.67.150 text/htm

l

1018137610.192 12 88.121.141.160 T
C

P
_N

E
G

A
T

IV
E

_H
IT

/403 2683 G
E

T
 http://slashdot.org/~grub/ -

N
O

N
E

/-
text/htm

l

1018137610.570 63 80.21.198.72 T
C

P
_M

ISS
/304 259 G

E
T

 http://m
ercury.beseen.com

/im
ages/chat/heart.gif -

D
IR

E
C

T
/209.249.66.57 -

1018137610.748 113 80.21.198.72 T
C

P_M
ISS

/304 260 G
E

T
 http://m

ercury.beseen.com
/im

ages/chat/rose.gif -
D

IR
E

C
T

/209.249.66.57 -

1018137611.047 68 80.21.198.72 T
C

P
_M

ISS
/304 260 G

E
T

 http://m
ercury.beseen.com

/im
ages/chat/stop.gif -

D
IR

E
C

T
/209.249.66.57 -

1018137611.158 32 80.21.198.72 T
C

P
_M

ISS
/304 259 G

E
T

 http://m
ercury.beseen.com

/im
ages/chat/w

ink.gif -
D

IR
E

C
T

/209.249.66.57 -

1018137611.208 160 88.121.141.160 T
C

P
_M

ISS
/403 2676 G

E
T

 http://slashdot.org/~L
eto2/ -

D
IR

E
C

T
/64.28.67.150 text/htm

l

1018137611.360 6 88.121.141.160 T
C

P_N
E

G
A

T
IV

E
_H

IT
/403 2683 G

E
T

 http://slashdot.org/~L
eto2/ -

N
O

N
E

/-
text/htm

l

1018137611.791 23 80.21.198.72 T
C

P
_C

L
IE

N
T

_R
E

FR
E

S
H

_M
ISS

/304 258 G
E

T
 http://m

ercury.beseen.com
/im

ages/chat/frow
n.gif -

D
IR

E
C

T
/209.249.66.57 -

1018137611.863 59 80.21.198.72 T
C

P
_M

ISS
/304 259 G

E
T

 http://m
ercury.beseen.com

/im
ages/chat/sm

ile.gif -
D

IR
E

C
T

/209.249.66.57 -

1018137611.900 36 80.21.198.72 T
C

P
_M

ISS
/304 327 G

E
T

 http://w
w

w
.beseen.com

/sm
allchat.gif -

D
IR

E
C

T
/209.249.66.60 -

1018137612.145 171 88.121.141.160 T
C

P
_M

ISS
/403 2676 G

E
T

 http://slashdot.org/~
B

ovineO
ne/ -

D
IR

E
C

T
/64.28.67.150 text/htm

l

1018137612.296 12 88.121.141.160 T
C

P
_N

E
G

A
T

IV
E

_H
IT

/403 2683 G
E

T
 http://slashdot.org/~B

ovineO
ne/ -

N
O

N
E

/-
text/htm

l

1018137612.402 53 80.21.198.72 T
C

P
_M

ISS
/304 273 G

E
T

 http://bsads.looksm
art.com

/plainads/blank.gif -
D

IR
E

C
T

/64.241.242.203 -

1018137612.564 236 80.21.198.72 T
C

P_R
E

F
R

E
S

H
_H

IT
/304 254 G

E
T

 http://17tahun.com
/htm

l/cerita/K
onvensional/m

ore27.htm
l -

D
IR

E
C

T
/209.103.167.115 -

1018137613.127 170 88.121.141.160 T
C

P
_M

ISS
/403 2676 G

E
T

 http://slashdot.org/~
dbaker/ -

D
IR

E
C

T
/64.28.67.150 text/htm

l

28

Appendix C. Perl Program

Explanatory diagram of Perl totalqd.pl program. The circles and ovals indicate
loops in the program structure.

29

 Read Request Time and Elapsed Time data columns

 Subtract (or add) Elapsed Time to/from Request time

 Output Start and End times to temporary file

 Read Start and End Times calculating:

• Minimum Start Time
• Maximum End Time

 Subtract Minimum Start Time from all requests (time measurements are now from time zero)

 Produce output files according to user instruction

 Sort new Start and End times into output files

 Read output files in order: Test = 1

 If Start Time < Test Add (End Time – Test) to Buffer Read next Start Time Sort Buffer Read Top of Buffer If < 0, Remove

• Continue loop Else
• Terminate loop
• Output buffer size
• Output buffer sum Increment Test

30

