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Symbolic sequences generated by coupled map lattices (CMLs) can be used to model the chaotic-
like structure of genomic sequences. In this study it is shown that diffusively coupled Chebyshev
maps of order 4 (corresponding to a shift of 4 symbols) very closely reproduce the multifractal
spectrum Dq of human genomic sequences for coupling constant α = 0.35 ± 0.01 if q > 0. The
presence of rare configurations causes deviations for q < 0, which disappear if the rare event statistics
of the CML is modified. Such rare configurations are known to play specific functional roles in
genomic sequences serving as promoters or regulatory elements.

PACS numbers: 89.75.Fb (Structure and organization in complex systems); 05.45.Df (Fractals); 05.45.Ra
(Coupled Map Lattices); 87.14.gk (DNA).

I. INTRODUCTION

Coupled Map Lattices (CMLs) are frequently used as
models for complex, often chaotic spatial and dynami-
cal structures observed in diverse physical systems [1–4].
Particular CMLs have been used to model hydrodynamic
systems, chemical kinetics, biological systems, and field
theoretical models [5, 6]. These types of models arise nor-
mally in situations where the nonlinear nature of the phe-
nomena is complimented by a nontrivial underlying spa-
tial geometry. Of particular interest are non-hyperbolic
coupled map lattices, where the local map is allowed to
have one or several points with zero slope.
In the current study we investigate the behavior of

coupled 4-th order Chebyshev maps, T4, and compare
their multifractal spectra with that of DNA sequences.
In fact, it is well-known that the dynamics of T4 is equiv-
alent to a Bernoulli shift of 4 symbols. Thus the coupled
map dynamics with T4 as a local map corresponds to a
coupled shift of information that is encoded by 4 sym-
bols. In this respect it is natural to study the potential
correspondence of statistics generated by coupled T4 as
compared to that of genomic sequences composed of the
four symbol-nucleotides, namely Adenine (A), Cytosine
(C), Guanine (G) and Thymine (T). Earlier studies on
the primary structure of DNA have shown that the statis-
tics of genomic sequences exhibits nontrivial correlations
and cannot be reproduced by a pure random stochas-
tic process involving 4 symbols [7–25]. A natural way to
gradually introduce correlations in the phase space struc-
ture of T4 is via coupling of many T4 maps on a lattice.
In our approach nontrivial correlations are introduced by
means of a coupling constant α which diffusively couples
nearest neighbor maps on the lattice and takes values
0 ≤ α ≤ 1.
Chebyshev maps are known to exhibit the strongest

possible chaotic behavior characterized by a minimum
skeleton of higher-order correlations [26, 27]. For weak
coupling α analytic results have been previously derived
on the perturbed invariant 1-point density [28] and on

the existence of periodic orbits [29]. These investigations
provide motivation for a discussion of the possibility of
CMLs to reproduce similar statistics as observed in ge-
nomic sequences for finite values of the coupling constant.
In this study, we investigate the multifractal spectrum
resulting by appropriately sectioning the phase space of
the CML to assimilate 4-symbol sequences. The choice
of the multifractal spectrum as the relevant observable
is particularly suitable for comparing genomic and CML
sequences because it reveals the characteristic details of
moments and symbol correlations of all orders.
In the next section we first recall the multifractal spec-

trum of a single Chebyshev map and we further explore
the spectra of coupled Chebyshev maps on a 1-D lattice
with periodic boundary conditions. In section III a 1-
1 correspondence is introduced between 4 appropriately
chosen sections of the local CML phase space and the 4
symbols of an artificial genomic sequence. The multifrac-
tal spectra of entire human chromosomes are compared
with the CML spectra for various values of α. Coupling
values of the order of α ∼ 0.34− 0.36 are shown to yield
multifractal spectra closely approximating the correla-
tions in DNA sequences for positive q. In section IV it
is shown that rare configurations need to be introduced
in the CML dynamics to closely approximate the DNA
spectra for both positive and negative q. In the conclud-
ing section the final results are summarized and open
problems are discussed.

II. MULTIFRACTAL SPECTRA OF CMLS

A. Multifractal Spectrum of 4-th order Chebyshev

map

The dynamics of the T4 map is generated by the re-
currence relation

xn+1 = T4(xn) = 8x4
n − 82n + 1,

with n = 0, 1, 2..., −1 ≤ x0 ≤ 1.
(1)
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xn ∈ [−1, 1] is a continuous variable and takes values
in the interval [−1, 1] and n is a discrete time variable.
This map is known to show strongest possible chaotic
behavior. The multifractal spectrum generated by its
invariant density is known analytically to take the form
[30, 31]:

Dq =

{

1, for q ≤ 2
q

q−1

1

2
, for q > 2

(2)

Generally the Renyi (multifractal) dimensions are defined
as

Dq = lim
ǫ→0

1

q − 1

1

log ǫ
log

∑

i

pqi (3)

where pi =
∫

i−th box
p(x)dx are the probabilities associ-

ated with a partitioning of the phase space into boxes of
equal size ǫ. The multifractal spectrum given by Eq. (2)
is easily obtained from the invariant probability density

p(x) =
1

π
√
1− x2

, −1 ≤ x ≤ 1, (4)

see, e.g. [30]. The presence of two singularities of
the probability density at x = ±1 produces a phase
transition-like point of Dq at q = 2, see Eq. (2) and
the corresponding Dq vs. q diagram in Fig. 1. This
multifractal spectrum is formally obtained in the limit of
infinitesimal (ǫ → 0) segmentation of the interval [−1, 1]
where T4 is defined. This idealized limit is hardly observ-
able in finite size systems, as is demonstrated in Fig. 1.
In particular, genomic sequences are finite in size, having
a definite number of nucleotides, hence it is not possible
to achieve infinitesimally small segmentations. For com-
parison with real data it is useful to explore finite size
effects, for small but nonzero values of ǫ. These are de-
picted in Fig. 1. For statistical reasons, large numbers of
L = 105 or 106 uncoupled Chebyshev maps were consid-
ered, iterated over 5000 time steps with random initial
values. The analytical result (black dotted curve) is ob-
tained in the limit ǫ → 0 and L → ∞.
For finite ǫ > 0 the abrupt critical point behavior is

deformed into a smooth but rapidly changing curve in
the region of 0 < q < 2. The second derivative of Dq as a
function of q is sometimes observed to switch sign. Such
’humps’ have also been observed for the Renyi dimensions
and Renyi entropies associated with symbol sequences of
the human genome, see Refs. [25, 32, 33] for more details.
Generally, the shape of numerically determined Dq

spectra of non-hyperbolic maps is heavily influenced by
finite size effects, and we expect similar finite size ef-
fects to be present for multifractal spectra of genomic
sequences.

B. Multifractal Spectra of Linearly Coupled

Chebyshev Maps

Our interest in coupling Chebyshev maps results from
the tendency of local interactions in systems with mul-
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Figure 1: (Color online) The multifractal spectrum of uncou-
pled (α = 0) T4’s as obtained numerically for finite ǫ and N .
The solid vertical line is the line q = 2. The dotted curve rep-
resents the analytical expression of the multifractal spectrum,
Eq. (2).

tiple components. In the current study we consider the
simplest possible diffusive nearest neighbor coupling on a
1-D lattice with periodic boundary conditions. Namely,
we assume a linear chain of units (’particles’) each of
which is labelled by the index i. Each unit evolves ac-
cording to Eq. (1) with additional, equal contributions
from the left and right nearest neighbor particles. In the
linear chain of size L, a coupling α is introduced so that
the variable xi of the i − th unit follows the recurrence
relation

xi
n+1 = (1 − α)T4(x

i
n) +

α

2

(

T4(x
i
n+1) + T4(x

i
n−1)

)

(5)

As initial conditions, a random distribution of xi
0 ∈

[−1, 1] is assumed. When Chebyshev maps are cou-
pled on lattices the invariant 1-point densities are gradu-
ally deformed and singularities tend to smooth out [28].
In particular, for α = 1 there are no singularities and
Dq = 1, ∀q, while the case α = 0 corresponds to a col-
lection of independent T4’s and the spectrum is given by
the relation (2).

In Fig. 2 a series of multifractal spectra for different
values of α are shown, for finite but small values of ǫ.
L = 106 coupled T4 maps are taken into account with
ǫ = 10−5 and ǫ = 10−3 in Figs. 2a and 2b, respectively.
In both cases, as α → 1, the multifractal spectrum is
seen to become uniform. In Fig. 2b humps are observed
due to finite size effects (ǫ as large as 10−3), for differ-
ent values of α. Note, in Fig. 2b, that the humps are
more evident for higher values of the coupling constant
α. These α-values are consistent with those that repro-
duce similar statistics as DNA sequences, as will be seen
in the subsequent sections.
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Figure 2: (Color online) a) Numerically obtained multifractal
spectra of coupled T4’s for various values of α, ǫ = 10−5. b)
Humps in the multifractal spectra for coupled T4 are observed
for relatively large values of ǫ (here ǫ = 10−3 is shown). L =
106 in both a and b plots.

III. SYMBOLIC SEQUENCES RESULTING

FROM CMLS

Having analyzed multifractal spectra that are directly
associated with the local distribution of the state vari-
ables xi

n of the CML we now want to go a step further
and produce symbol sequences from the CML. Compar-
ing with the multifractal spectra of genomic sequences
[32–35] we note that there are certain similarities in the
two spectra which suggests to explore the possibility of
a certain chaotic CML processes to reproduce the most
important genomic spectral features.
As a first step in this direction one has to reconstruct

a symbolic sequence of 4 letters, based on the distribu-
tion of the local CML variable x. When constructing
the artificial symbolic sequence one needs, at least, to re-
spect the symbol concentrations of the original genomic
sequence. If the genomic populations (mean concentra-
tions) of the 4 nucleotides are denoted as pA, pC , pG, pT =
1 − pA − pC − pG for Adenine, Cytosine, Guanine and
Thymine, respectively, then the artificial T4-based ge-
nomic sequence should contain the same frequency of
the symbols. To achieve consistency between the genome

basepair population and the symbolic sequence one needs
to consider again the 1-point distribution p(x) of the cou-
pled T4 map. The interval [−1, 1] is segmented into four
subintervals [−1, x1] ,[x1, x2],[x2, x3] and [x3, 1], to ac-
commodate the 4 basepairs. The values of x1, x2 and x3

were chosen to fulfill the basepair frequency constraints:

∫ x1

−1
dx p(x) = pA

∫ x2

x1

dx p(x) = pC
∫ x3

x2

dx p(x) = pG
∫ 1

x3

dx p(x) = pT

(6)

Having fixed the segmentation values [x1, x2, x3], the i-th
symbol Si

n of the artificial genomic sequence is chosen as

Si
n =















A if −1 < xi
n ≤ x1

C if x1 < xi
n ≤ x2

G if x2 < xi
n ≤ x3

T if x3 < xi
n ≤ 1

(7)

Hence, a symbolic sequence Sn(i), i = 1, ...L is produced
which on the one hand carries the complexity of the
CML and on the other hand respects the average con-
centrations of the DNA sequence under consideration,
(pA, pC , pG, pT ).
In the search for a proper value of the coupling con-

stant α which best describes the complexity of the
genomic sequences, it is important to create CML-
generated sequences of length comparable with the ge-
nomic ones. In the current study sequences of L = 107

were produced to assimilate the chromosomal DNA. To
avoid transient phenomena and to ensure that the CML
Chebyshev maps have unfolded all their chaotic state
space structure, we have chosen in the simulations to
use the results produced after n = 5000 iteration time
steps. This is a safe choice because, normally, the CML
sequences achieve their typical long-term behavior after
about 20 iteration time steps. Averages over time steps
n were not performed. Rather, our aim was to analyze
a given snapshot of symbols generated by the CML sys-
tem that spatially had comparable length to that of the
genomic sequence.
To locate the coupling constant which best reproduces

the complexity of the genomic sequences, we calculated
the multifractal spectra of the genomic sequence and
compared it with the spectra of the CML-symbol se-
quences for various values of α. The estimation of the
multifractal exponents Dq are based on the calculation
of the probabilities p(i1, i2, ...iN ) of finding blocks of sym-
bols i1, i2, ...iN along the sequence of size L, whereas N
is the linear size of the block [25, 33]:

Dq =
1

q − 1
lim

N→∞

log
∑

i1,i2,...iN

[p(i1, i2, ...iN )]q

logE
, q 6= 1(8)

D1 = lim
N→∞

log
∑

i1,i2,...iN

p(i1, i2, ...iN ) ln[p(i1, i2, ...iN )]

logE
,
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Figure 3: (Color online) The multifractal spectra for human
Chromosome 10, with N = 8 (black line) and CML-T4’s for
various values of the coupling constant α.

In Eq. (9) E represents the size (total number of con-
figurations) of the statespace. In this representation the
exponents Dq represent the increase of the phase space
when the size of the sequence (or window) increases. As
an example we consider the homogeneous case, where

p(i1, i2, ...iN) = 1/sN

E = sN

s = the number of symbols = 4







⇒ Dq = 1

as is expected for homogeneous sequences.
In Fig. 3 the multifractal spectrum of the human Chro-

mosome 10 is plotted and compared with CML-T4 for
various values of α. The calculations of the spectrum of
chromosome 10 are based on evaluating all possible sym-
bol sequences up to length N = 8. This is considered
as asymptotic behavior since the numerical result does
not change for values N > 6, as was previously shown
in references [32, 33]. For the calculation of the various
spectra based on the T4 map the 1-point probabilities
of the basepairs in chromosome 10 have been respected,
via Eqs. (6) and (7), by choosing appropriate borders
x1, x2, x3 of the intervals. The observed 1-point proba-
bilities for chromosome 10, used in this study, are [33]

pA = 0.291921, pC = 0.207966, (9)

pG = 0.207859, pT = 0.292219.

A first look at Fig. 3, in the negative q region, indicates
that the coarse graining of the state space into 4 segments
and the reduction of the continuous CML dynamics to a
4-symbol shift modifies the T4 spectrum, producingDq >
1 for q < 0. This is not surprising, since the multifractal
spectrum presented in Eq. (2) relates to the statistics of
the map and represents the frequency of iterates within
the interval [-1,1], while Eq. (9) relates to the increase
in the number of configurations in the symbolic sequence
resulting from this map.

-40 -20 0 20 40
q

0.5

0.75

1

1.25

1.5

D
q

p
A

=0.291921, p
C
=0.207966, p

G
=0.207859, p

T
=0.292219

p
A

=p
C
=p

G
=p

T
=0.25

Figure 4: (Color online) The multifractal spectra for two ar-
tificial DNA sequences, produced via the CML − T4. The
coupling constant is α = 0.35. The dashed (red) line repre-
sents equal composition of the four basepairs pA = pC = pG =
pT = 0.25, while the solid (black) line represents composition
given by Eq. (9).

In addition, the deviation from unity for the negative
q spectrum is accentuated by the unequal frequencies
of the four basepairs. In Fig. 4 the multifractal spec-
trum arising from the CML assimilating a random ar-
tificial DNA sequence with equal basepair distribution
pA = pC = pG = pT = 0.25 is compared to the case of
non-equal basepair composition, Eq. (9). In the case of
equal frequencies the CML process seems to create some
rare configurations with small probability which tend to
increase the Dq-values in the negative q region.
Returning to Fig. 3 one observes that the closest ap-

proximation to the Chromosome 10 spectrum is achieved
for α ∼ 0.35. This approximation is good only for posi-
tive q−values, which correspond to positive moments of
the probability density. This means that configurations
which are found often in the genome are well represented
by the CML process α = 0.35, while rare configurations,
which dominate the negative-q spectra, are not accounted
sufficiently in this approach.
In the next section, we will improve the model by ad

hoc introducing a small number of rare configurations.

IV. TAKING INTO ACCOUNT RARE

OLIGONUCLEOTIDES

To motivate the need for including rare oligonucleotide
configurations, we first discuss some DNA functional is-
sues related to the presence of specific rare segments.
Long-time studies of the primary structure of higher eu-
caryotes and other organisms have revealed certain par-
ticularities related mainly to the functionality of DNA se-
quences. In particular, in coding sequences all combina-
tions of the four letters are found with almost equal prob-
ability, without priority given to specific combinations.
This is not true for the noncoding parts which comprise
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95-97% of the human genome. In noncoding sequence
repetitive elements are very common with only the Alu-
(repetitive sequence) covering approximately 11% of the
human genome [37]. Other common elements which are
often met in eucaryotes are the poly-A and poly-T chains.
Likewise, sequences with specific functionality are very
rare and they are only present for specific purposes in
the noncoding region. Well known such examples are the
TATAA box and the GC and CG complexes and multi-
ple superpositions of them [16–24]. The presence of these
complexes is associated with the presence of promoters,
regulatory elements which designate the subsequent ap-
pearance of coding segments. These regulatory elements
have the very specific task of “chemically attracting” the
enzymes which will act on the closely following coding se-
quence in order to start the production of RNA which will
finally lead to the production of the corresponding pro-
tein. Thus the presence of promoters (and their sequence
structure) is very specific in the noncoding sequences and
they are not abundantly found in the genome. Promot-
ers are not the only sequences which are conserved for
specific purposes. Other regulatory elements, such as
the cis-acting and trans-acting elements, also have rare
sequence structure.

From the above discussion it becomes clear that the
structure of the noncoding segments, which dominate the
genome of higher eucaryotes, is far from being uniform.
The presence of rare configurations, which is mostly vis-
ible in the negative q spectrum, needs to be taken into
account for a proper modelling of the sequence dynamics.
Rare sequences with specificity, which are not accounted
for by the simple CML model presented in the previous
section, will be thus considered ad-hoc in this section.
This addition will mostly contribute to the negative q−
values of the multifractal spectrum, which is observed to
be lower for the CML than for the human chromosomes.

We modify the dynamics by assuming that some of the
rare symbol sequences generated by the CML become
even less frequent by an external coupling mechanism
(such as escape from the chaotic attractor). It is suffi-
cient to artificially modify the probability of occurrence
of a small fraction θ of configurations, eg. θ ∼ 1/1000,
creating thus Θ = θ × E rarified configurations. The
probability of occurrence of these rare configurations can
be reduced to as much as 10−1×(lowest− probability) for
a much better approximation of the chromosomal mul-
tifractal spectra. These values are indicative and they
depend weakly on the specific chromosome. In Fig. 5
the multifractal spectrum of human chromosome 10 is
plotted together with CML-T4 with coupling constant
α = 0.35 and with modifications to include Θ = 60 rare
configurations (blue line). For comparison the case of
CML-T4 with coupling constant α = 0.35 without rare
configurations is also included (green dotted line). Be-
cause the modified configurations are few and rare, their
contributions to the positive q region of the multifrac-
tal spectrum is negligible. On the contrary, for neg-
ative q they give an important contribution increasing
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Figure 5: (Color online) The multifractal spectrum for human
chromosome 10, with N = 8 (black solid line), and CML-
T4 with coupling constant α = 0.35 modified with few rare
configurations as described in the text (blue dashed line). The
green dotted line depicts the CML-T4 representation without
rare configurations.

significantly the Dq values and good agreement is then
achieved for both positive and negative q. Similar results
are also obtained for the other human chromosomes, with
adjustable values of α and θ.
In Fig. 6 we plot the variable σ which denotes the

mean square deviation between the multifractal curve of
chromosome 10 and CML-T4’s modified with rare config-
urations for various values of α.

σ2(α) =
1

N1

N
∑

q=−N

(

DCML
q (α) −D10

q

)2
(10)

In Eq. (10) DCML
q (α) denotes the multifractal exponent

of order q for the CML of T4 with coupling constant α,
while D10

q denotes the corresponding multifractal expo-
nent of order q for chromosome 10. The sum runs from
−N to N over positive and negative q−values at equal
distance ∆; N1 = (2N + 1)/∆ is the total number of q−
values considered. Figure 6 shows that the smallest σ
value for chromosome 10 is found for α = 0.35±0.01 and
thus the coupled Chebyshev string with coupling con-
stant α = 0.35 ± 0.01 best represents the correlations
found in chromosome 10. Similar values are also obtained
for the other human chromosomes.

V. CONCLUSION

The multifractal spectrum of CMLs has been deter-
mined using as a working example the 4-th order Cheby-
shev map T4 diffusively coupled on a 1-D lattice with
periodic boundary conditions. This choice of local map
is particularly suited for our biological application since
it corresponds to a shift of information encoded in 4 sym-
bols, just as the DNA string encodes information using
4 nucleotides.
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Figure 6: The deviation σ (black circles) as a function of
α between the multifractal spectra of human chromosome 10
and CML-T4’s modified with rare configurations. The dotted
line is a cubic fit to the data.

In the current study the CML was used to assimilate
the correlated structure of genomic sequences, based on
a comparison of the corresponding multifractal spectra.
It was shown that the CML of T4 can reproduce quite
closely the multifractal spectrum of genomic sequences
for positive q−values, while it deviates significantly for
negative q. In particular, for human chromosome 10
(complete sequence) the best approximation for the pos-
itive q spectrum is obtained for coupling constant value
α = 0.35.
In an attempt to model both positive and negative

q− spectra of chromosomes as closely as possible, we
consider the differences of the frequency representation
of various functional units. One particular property of
noncoding DNA is the presence of rare configurations
(oligonucleotide sequences) which have specific function-

ality serving as promoters for the production of proteins
or as regulatory elements. Such specific sequences are the
TATAA-box, various GC-complexes and other elements
which vary for different classes of organisms. We model
these rare configurations by introducing an additional
(artificial) escape process for the CML, which modifies
the probabilities of certain rare sequences. If rare config-
urations representing these particular sequences are con-
sidered via an ad-hoc modification of the simulated dis-
tribution in the symbolic sequences resulting from the
CML of T4, then we see that both negative and posi-
tive q multifractal spectra of genomic sequences are well
approximated by the CMLs.

It is interesting to mention here that a good represen-
tation of the distribution of base pair sequences in DNA
must be a superposition of (at least) two components.
One of these components represents mostly the coding
sequences and the second one contributes to the non-
coding ones. This is in line with earlier studies of DNA
sequences which have shown that the coding and non-
coding parts follow different statistics, related to their
different functionality [11, 25, 38].
In the current study, as a representative example, the

human chromosome 10 was investigated in detail and the
optimum value of the corresponding coupling constant of
the CML was determined. Likewise, additional studies
not described here have shown similar qualitative and
quantitative behavior for the other human chromosomes.
Further studies are required to show if the same approach
can be applied to different classes of organisms, where
the ratio of lengths of coding/noncoding sequences takes
on different values. In a future study it will be very
interesting to explore the range of values of the coupling
constant α and the rare configuration frequency θ that
may characterize the different classes of organisms.
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