Exercise Sheet 1 - Chaos and Fractals (MTH6107)

due: Thursday, 2 October 2008, 5pm

1. Find all solutions of the continuous-time dynamical system

$$
\begin{aligned}
\dot{x} & =y \\
\dot{y} & =-x
\end{aligned}
$$

for a given initial condition $x(0)=x_{0}, y(0)=y_{0}$. Hint: Try a linear combination of sin and cos functions.

Draw the phase portrait.
2. Sketch (or plot accurately) graphical analyses of the first 4 iterations of each of the following maps f, with the given initial value x_{0}. For each map describe the limiting behaviour of the nth point of the orbit as $n \rightarrow \infty$.
a) $f(x)=x^{2}, x_{0}=0.8$
b) $f(x)=1-x^{2}, x_{0}=0.3$
c) $f(x)=x^{x}, x_{0}=0.25$
3. (Numerical exercise) Write a MAPLE program (or use any other language, e.g. FORTRAN, $\mathrm{C}++, \ldots$) that iterates the logistic map $x_{n+1}=$ $1-\mu x_{n}^{2}$ about 10000 times. Choose, for example, the initial value $x_{0}=0.3$ and iterate for the following parameter values:
a) $\mu=1.2$
b) $\mu=1.8607825$
c) $\mu=1.7548777$
d) $\mu=1.5437$
e) $\mu=1.8848036$
f) $\mu=2$

Run the program and print out the last 20 iterates. For which of the above values of μ do you find a stable periodic orbit? In case there is a stable periodic orbit, what is the period length?

