Exercise Sheet 3 - Chaos and Fractals (MTH6107)

due: Thursday, 16 October 2008, 5pm

1. Consider the map $f:[0,1] \rightarrow[0,1]$ defined by

$$
f(x)= \begin{cases}x+2 x^{2} & 0 \leq x<\frac{1}{2} \\ 2-2 x & \frac{1}{2} \leq x \leq 1\end{cases}
$$

a) Prove that the map has no stable fixed point.
b) Show by graphical analysis how a typical orbit evolves near $x=0$.
c) Show that the function $f(x)$ satisfies for x in a small vicinity of 0

$$
\alpha f\left(f\left(\frac{x}{\alpha}\right)\right)=f(x) \quad(x \rightarrow 0) .
$$

Show that the rescaling factor α is different from the Feigenbaum constant for this particular map.
2. Consider the function $g: \mathbf{R} \rightarrow \mathbf{R}$ given by

$$
g(x)=\frac{1}{\frac{1}{x}-b}
$$

where b is some constant.
a) Calculate $g(0)=\lim _{x \rightarrow 0} g(x)$ and $g^{\prime}(0)$.
b) Show that g is an exact solution of the Feigenbaum-Cvitanovic equation

$$
\alpha g\left(g\left(\frac{x}{\alpha}\right)\right)=g(x) .
$$

What do you get for the rescaling factor α in this case?
3. Prove that the doubling operator R is nonlinear.

