Exercise Sheet 4 — Chaos and Fractals (MTH6107)

due: Thursday, 23 October 2008, 5pm

1. Using the Intermediate Value Theorem show that the equation $x^3 + x - 1 = 0$ has a solution α between x = 0 and x = 1. Show that α is a fixed point of the dynamical system $x_{n+1} = (1 - x_n)^{1/3}$. Find the numerical value of α by iterating this dynamical system for an arbitrary initial point $x_0 \in (0, 1)$.

Show that the same point $x = \alpha$ is also a fixed point of the dynamical system $x_{n+1} = 1 - x_n^3$. Can one compute α by iterating this new dynamical system starting from an arbitrary initial value $x_0 \in (0, 1)$? Investigate the stability of the fixed point in both cases.

2. Decide which of the following are C^1 -diffeomorphisms or homeomorphisms (or neither) $\mathbf{R} \to \mathbf{R}$.

a)
$$f(x) = -7x + 17$$

- b) $f(x) = x^7$
- c) $f(x) = e^x 7$
- d) $f(x) = 2x + \sin x$
- e) f(x) = 1/x

In case f is a diffeomorphism $\mathbf{R} \to \mathbf{R}$, decide which periodic orbits are possible for this system.

- 3. Consider the map $y = f(x) = 1 x^2$, where x takes on values in **R**.
 - a) Is f a diffeomorphism?

b) Show that each value y has two different preimages x, except when y = 1. Determine the two branches of the inverse function $x = f^{-1}(y)$.

c) Given some value y, determine the set S_k of all values x that are mapped onto y after k iteration steps, k = 1, 2, 3. Write down these sets for the special example y = 0.