Exercise Sheet 5 - Chaos and Fractals (MTH6107)

due: Thursday, 6 November 2008, 5pm

1. Show that the function $f(x)=x+\frac{1}{2} \sin x$ is a diffeomorphism $\mathbf{R} \rightarrow$ \mathbf{R}. Locate the fixed points and find whether they are attracting or repelling. Show that f has no periodic orbits of length $L>1$.
2. Let some arbitrary continuous mapping f be given. Assume that you have proved that the mapping has a periodic orbit of period length L_{1}. Does this imply that the mapping also has a periodic orbit of period length L_{2} ?
a) $L_{1}=2, L_{2}=3$
b) $L_{1}=38, L_{2}=84$
c) $L_{1}=16, L_{2}=24$
d) $L_{1}=17408, L_{2}=61440$
e) $L_{1}=835674463, L_{2}=296303332$

Give reasons.

3. (numerical exercise)

a) Iterate the logistic map $f(x)=1-\mu x^{2}$ for two different initial values that are very close to each other, for example $x_{0}^{(1)}=0.2000000$ and $x_{0}^{(2)}=0.2000001$. The orbit of $x_{0}^{(1)}$ is denoted by $x_{n}^{(1)}$, that of $x_{0}^{(2)}$ by $x_{n}^{(2)}$. Plot $\log \left|x_{n}^{(1)}-x_{n}^{(2)}\right|$ versus n for $n=0,1,2, \ldots, n_{\text {max }}$, where $n_{\max } \approx 40$. Do this for $\mu=2, \mu=1.7, \mu=1.2$ and a fourth parameter value μ of your choice. Briefly describe your findings. For which values of μ do you find sensitive dependence on initial conditions?
b) Numerically determine the Liapunov exponent λ of the logistic map for the above four values of μ. You should iterate some arbitrary initial value $x_{0} N$ times, where N is a large but finite number, and average the quantity $\log \left|f^{\prime}\left(x_{n}\right)\right|$ along the orbit.

