Exercise Sheet 5 — Chaos and Fractals (MTH6107)

due: Thursday, 6 November 2008, 5pm

- 1. Show that the function $f(x) = x + \frac{1}{2} \sin x$ is a diffeomorphism $\mathbf{R} \to \mathbf{R}$. Locate the fixed points and find whether they are attracting or repelling. Show that f has no periodic orbits of length L > 1.
- 2. Let some arbitrary continuous mapping f be given. Assume that you have proved that the mapping has a periodic orbit of period length L_1 . Does this imply that the mapping also has a periodic orbit of period length L_2 ?
 - a) $L_1 = 2, L_2 = 3$
 - b) $L_1 = 38, L_2 = 84$
 - c) $L_1 = 16, L_2 = 24$
 - d) $L_1 = 17408, L_2 = 61440$
 - e) $L_1 = 835674463, L_2 = 296303332$

Give reasons.

3. (numerical exercise)

a) Iterate the logistic map $f(x) = 1 - \mu x^2$ for two different initial values that are very close to each other, for example $x_0^{(1)} = 0.2000000$ and $x_0^{(2)} = 0.2000001$. The orbit of $x_0^{(1)}$ is denoted by $x_n^{(1)}$, that of $x_0^{(2)}$ by $x_n^{(2)}$. Plot $\log |x_n^{(1)} - x_n^{(2)}|$ versus *n* for $n = 0, 1, 2, \ldots, n_{max}$, where $n_{max} \approx 40$. Do this for $\mu = 2, \mu = 1.7, \mu = 1.2$ and a fourth parameter value μ of your choice. Briefly describe your findings. For which values of μ do you find sensitive dependence on initial conditions?

b) Numerically determine the Liapunov exponent λ of the logistic map for the above four values of μ . You should iterate some arbitrary initial value x_0 N times, where N is a large but finite number, and average the quantity $\log |f'(x_n)|$ along the orbit.