Exercise Sheet 6 - Chaos and Fractals (MTH6107)

due: Thursday, 13 November 2008, 5pm

1. Determine the Liapunov exponent of the map $f(x)=1-a|x|$ on the interval $X=[-1,1] . a$ is a parameter that takes on values in $\mathbf{R}^{>0}$. For which values of a does the map exhibit chaotic behaviour? For which values of a does the map have a stable fixed point?
2. Determine the Liapunov exponent of the logistic map $f(x)=1-\mu x^{2}$ in the region $\mu \in\left(\frac{3}{4}, \frac{5}{4}\right)$, where the map has a stable periodic orbit of period length $L=2$. Show explicitly that $\lambda<0$.
3. Consider the map $y=f(x)=1-2 \sqrt{|x|}$ on $X=[-1,1]$.
a) Draw a graph of $f(x)$. Determine $f^{\prime}(x)$ and the two branches of the inverse function $f^{-1}(y)$.
b) Write down the Perron-Frobenius operator for this mapping.
c) Show that any function of the form $\rho(y)=C \cdot(1-y)(C$: a constant) is a fixed point of the Perron-Frobenius operator.
d) Determine the constant C from the normalization condition $\int_{-1}^{1} \rho(y) d y=1$.
