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We introduce a new model for dark energy in the Universe in which a small cosmological
constant is generated by ordinary electromagnetic vacuum energy. The corresponding
virtual photons exist at all frequencies but switch from a gravitationally active phase at
low frequencies to a gravitationally inactive phase at higher frequencies via a Ginzburg–
Landau type of phase transition. Only virtual photons in the gravitationally active state
contribute to the cosmological constant. A small vacuum energy density, consistent with
astronomical observations, is naturally generated in this model. We propose possible
laboratory tests for such a scenario based on phase synchronization in superconductors.
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1. Introduction

Current astronomical observations1–4 provide compelling evidence that the Uni-
verse is presently in a phase of accelerated expansion. This accelerated expansion
can be formally associated with a small positive cosmological constant in the Ein-
stein field equations, or more generally with the existence of dark energy. The
dark energy density consistent with the astronomical observations is at variance
with typical values predicted by quantum field theories. The discrepancy is of the
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order 10122, which is the famous cosmological constant problem.5 A large number
of theoretical models exist for dark energy in the Universe (see e.g. Refs. 6 and 7
for reviews). It is fair to say that none of these models can be regarded as being
entirely convincing, and that further observations and experimental tests7–9 are
necessary for deciding on the nature of dark energy.

The most recent astronomical observations4 seem to favor constant dark energy
with an equation of state w = −1 as compared to dynamically evolving models. In
this paper we introduce a new model for constant dark energy in the Universe which
has several advantages relative to previous models. First, the model is conceptu-
ally simple, since it associates dark energy with ordinary electromagnetic vacuum
energy. In that sense the new physics underlying this model does not require the
postulate of new exotic scalar fields such as the quintessence field. Rather, one just
deals with particles (ordinary virtual photons) whose existence is experimentally
confirmed. Secondly, the model is based on a Ginzburg–Landau type of phase tran-
sition for the gravitational activity of virtual photons which for natural choices of
the parameters generates the correct value of the vacuum energy density in the Uni-
verse. In fact, the parameters in our dark energy model have a similar order of mag-
nitude to those that successfully describe the physics of superconductors. Finally,
since the phase of the macroscopic wave function that describes the gravitational
activity of the virtual photons in our model may synchronize with that of Cooper
pairs in superconductors, there is a possibility of testing this electromagnetic-dark-
energy model by simple laboratory experiments.

2. Ginzburg–Landau Model of Dark Energy

Recall that quantum field theory formally predicts an infinite vacuum energy den-
sity associated with vacuum fluctuations. This is in marked contrast to the observed
small positive finite value of dark energy density ρdark consistent with the astro-
nomical observations. The relation between a given vacuum energy density ρvac and
the cosmological constant Λ in Einstein’s field equations is

Λ =
8πG

c4
ρvac, (1)

where G is the gravitational constant. The small value of Λ consistent with the
experimental observations is the well-known cosmological constant problem. Sup-
pression of the cosmological constant using techniques from superconductivity was
recently suggested in a paper by Alexander, Mbonye, and Moffat.10 To construct a
simple, physically realistic model of dark energy based on electromagnetic vacuum
fluctuations creating a small amount of vacuum energy density, ρvac = ρdark, we
assume that virtual photons (or any other bosons) can exist in two different phases:
a gravitationally active phase where they contribute to the cosmological constant
Λ, and a gravitationally inactive phase where they do not contribute to Λ.

Let |Ψ|2 be the number density of gravitationally active photons in the frequency
interval [ν, ν + dν]. If the dark energy density ρdark of the Universe is produced by
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electromagnetic vacuum fluctuations, i.e. by the zero-point energy term 1
2hν of

virtual photons (or other suitable bosons), then the total dark energy density is
obtained by integrating over all frequencies weighted with the number density of
gravitationally active photons:

ρdark =
∫ ∞

0

1
2
hν|Ψ|2dν. (2)

The standard choice of

|Ψ|2 =
2
c3

· 4πν2, (3)

in which the factor 2 arises from the two polarization states of photons, makes
sense in the low-frequency region but leads to a divergent vacuum energy density
for ν → ∞. Hence we conclude that |Ψ|2 must exhibit a different type of behavior
in the high-frequency region.

In the following we construct a Ginzburg–Landau type theory for |Ψ|2. Our
model describes a possible phase transition behavior for the gravitational activity of
virtual photons in vacuum, which has certain analogies with the Ginzburg–Landau
theory of superconductors (where |Ψ|2 describes the number density of supercon-
ducting electrons). It is a model describing dark energy in a fixed reference frame
(the laboratory) and is thus ideally suited for experiments that test for possible
interactions between dark energy fields and Cooper pairs.9

We start from a Ginzburg–Landau free energy density given by

F = a|Ψ|2 +
1
2
b|Ψ|4, (4)

where a and b are temperature-dependent coefficients. In the following we use the
same temperature dependence of the parameters a and b as in the Ginzburg–Landau
theory of superconductivity11,12:

a(T ) = a0
1 − t2

1 + t2
, (5)

b(T ) = b0
1

(1 + t2)2
. (6)

Here t is defined as t := T/Tc, Tc denotes a critical temperature, and a0 < 0, b0 > 0
are temperature-independent parameters. Clearly a > 0, b > 0 for T > Tc and
a < 0, b > 0 for T < Tc. The case T > Tc describes a single-well potential, and the
case T < Tc a double-well potential.

The equilibrium state Ψeq is described by a minimum of the free energy density.
Evaluating the conditions F ′(Ψeq) = 0 and F ′′(Ψeq) > 0, for T > Tc we obtain

Ψeq = 0, Feq = 0, (7)

whereas for T < Tc

|Ψeq|2 = −a

b
, Feq = −1

2
a2

b
. (8)

In the following, we suppress the index eq.
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With Eqs. (5) and (6) we may write Eqs. (8) as

|Ψ|2 = −a0

b0
(1 − t4), (9)

F = − a2
0

2b0
(1 − t2)2. (10)

For very small temperatures (T � Tc) one has |Ψ|2 = −a0/b0, which we identify
with the low-frequency behavior of photons as given by Eq. (3). Thus

−a0

b0
=

8π

c3
ν2, (11)

which leads to

|Ψ|2(T ) =
8π

c3
ν2(1 − t4), (12)

F (T ) =
1
2
a0

8π

c3
ν2(1 − t2)2. (13)

We also need to formally attribute a temperature T to the virtual photons
underlying dark energy. This can be done as follows. Virtual photons have the same
energy as ordinary photons in a bath of temperature T if the zero-point energy 1

2hν

satisfies
1
2
hν =

hν

e
hν
kT − 1

. (14)

This condition is equivalent to

hν = ΓkT, (15)

with Γ = ln 3. For most of our considerations in the following, the value of the
dimensionless constant Γ is irrelevant as the predictions are independent of it.

Using Eq. (15), the critical temperature Tc in the Ginzburg–Landau model now
corresponds to a critical frequency νc = ΓkTc/h where the gravitational activity of
photons ceases to exist. By putting Eq. (15) into Eqs. (12) and (13) we obtain our
final result,

|Ψ|2(ν) =
8π

c3
ν2

(
1 − ν4

ν4
c

)
, (16)

F (ν) =
1
2
a0

8π

c3
ν2

(
1 − ν2

ν2
c

)2

, (17)

valid for ν < νc. For ν ≥ νc one has |Ψ|2(ν) = 0 and F (ν) = 0.
Thus the number density |Ψ|2 of gravitationally active photons in the interval

[ν, ν + dν] is nonzero for ν < νc only. In this way we obtain a finite dark energy
density when integrating over all frequencies:

ρdark =
∫ ∞

0

1
2
hν|Ψ|2dν (18)

=
4πh

c3

∫ νc

0

ν3

(
1 − ν4

ν4
c

)
dν =

1
2

πh

c3
ν4

c (19)
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(note the factor 1/2 as compared to previous work13,14). The currently observed
dark energy density in the Universe of about 3.9GeV/m3 1–3 implies that the crit-
ical frequency νc is given by νc ≈ 2.01THz.

Note that in our model virtual photons exist (in the usual quantum-field-
theoretical sense) for both ν < νc and ν ≥ νc, and hence there is no change
either to quantum electrodynamics (QED) or to measurable QED effects such as
the Casimir effect at high frequencies. The only thing that changes at νc is the gravi-
tational behavior of virtual photons. This is a new physics effect at the interface
between gravity and electromagnetism,15,16 which solely describes the gravitational
properties of virtual photons.

We may calculate further interesting quantities for this electromagnetic-dark-
energy model. The total number density N of gravitationally active photons is

N =
∫ ∞

0

|Ψ|2(ν)dν (20)

=
8π

c3

∫ νc

0

ν2

(
1 − ν4

ν4
c

)
dν (21)

=
32
21

π

c3
ν3

c . (22)

Similarly, the total free energy density is given by

Ftotal =
∫ ∞

0

F (ν)dν =
32π

105
1
c3

a0ν
3
c . (23)

Thus on average the free energy per gravitationally active photon is given by

Ftotal

N
=

1
5
a0. (24)

This result is independent of νc and gives a simple physical interpretation to
the constant a0, which has the dimension of an energy, just as for ordinary
superconductors.

Our electromagnetic-dark-energy model depends on two a priori unknown
parameters — the critical frequency hνc and the constant a0. It shares many simi-
larities with the Ginzburg–Landau theory of superconductors, formally replacing
the number density of superconducting electrons in the superconductor by the num-
ber density of gravitationally active photons in the vacuum. It is instructive to see
which values the constants a0 and hνc take for typical superconductors in solid
state physics.

The Bardeen–Cooper–Schrieffer (BCS) theory yields the prediction12

a0 = −αkTc, (25)

where

α :=
6π2

7ζ(3)
kTc

µ
. (26)
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Here µ denotes the Fermi energy of the material under consideration. For example,
in copper µ = 7.0 eV, and the critical temperature of a YBCO (yttrium–barium–
copper oxide) high-Tc superconductor is around 90K. This yields typical values of
hνc ∼ 8 · 10−3 eV and α ∼ 8 · 10−3.

Remarkably, our dark energy model works well if the free parameters a0 and hνc

have the same order of magnitude as in solid state physics. Many dark energy models
suffer from the fact that one needs to input extremely fine-tuned or unnatural
parameters. This is not the case for the Ginzburg–Landau-like model described here.
Our model is based on analogies with superconductors, and in view of naturalness
it would seem most plausible that the relevant dark energy parameters have a
similar order of magnitude as in solid state physics. Moreover, the parameters of
our model should be universal parameters related to electroweak interactions, since
we consider an electromagnetic model of dark energy.

A possible choice is

a0 = −αel · hνc, (27)

where hνc ∼ mνc2 is proportional to a typical neutrino mass scale, and αel ≈ 1/137
is the fine structure constant. The motivation for (27) is as follows. Since we are
considering a model of dark energy based on electromagnetic vacuum energy, the
relevant interaction strength should be the electric one described by αel. Moreover,
in solid state physics the critical temperature is essentially determined by the energy
gap of the superconductor under consideration11 (i.e. the energy obtained when a
Cooper pair forms out of two electrons). Something similar could be relevant for
the vacuum. We could think that at low temperatures (frequencies) Cooper-pair-
like states can form in the vacuum. If this new physics has to do with neutrinos, one
would expect that the relevant energy gap would be of the order of typical neutrino
mass differences. Solar neutrino measurements provide evidence for a neutrino mass
of about mνc2 ∼ 9 · 10−3 eV,17,18 assuming a mass hierarchy of neutrino flavors.
This agrees with the energy scale hνc which we need here to reproduce the correct
amount of dark energy density in the Universe.

Another constraint condition in our model of dark energy is that the parameter
α should not be too large. Otherwise, one would have in equilibrium a surplus of
negative free energy density, which would counterbalance the positive dark energy
density. We obtain from Eqs. (23), (19) and (27) the ratio

Ftotal

ρdark
= − 64

105
αel, (28)

hence |Ftotal| � ρdark, as required.

3. Possible Measurable Effects in Superconductors

We now turn to possible measurable effects of our theory. The similarity to the
Ginzburg–Landau theory of superconductivity, and in particular the fact that the
potential parameters have the same order of magnitude, suggest the possibility
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that gravitationally active photons could produce measurable effects in supercon-
ducting devices via a possible synchronization of the phases of the corresponding
macroscopic wave functions.

Denote the macroscopic wave function of gravitationally active photons by ΨG

(previously this was denoted as Ψ), and that of superconducting electrons (Cooper
pairs) in a superconductor by Ψs. So far we only dealt with absolute values of these
wave functions, but we now introduce the phases ΦG and Φs by writing

Ψs = |Ψs|eiΦs , (29)

ΨG = |ΨG|eiΦG . (30)

In superconductors one has |Ψs|2 = 1
2ns, where ns denotes the number density

of superconducting electrons. Similarly, in our model |ΨG|2 is proportional to the
number density of gravitationally active photons. Spatial gradients in the phase Φs

give rise to electric currents

js =
e�

m
|Ψs|2∇Φs = − ie�

2m
(Ψ∗

s∇Ψs − Ψs∇Ψ∗
s), (31)

where e is the electron charge and m the electron mass. Similarly, spatial gradients
in the phase ΦG of gravitationally active photons would generate a current given by

jG =
ẽ�

m̃
|ΨG|2∇ΦG = − iẽ�

2m̃
(Ψ∗

G∇ΨG − ΨG∇Ψ∗
G). (32)

Whereas the strength of the electromagnetic current is proportional to the Bohr
magneton µB = e�

2m , the strength of the current given by Eq. (32) is proportional to
a kind of “gravitational magneton,” µG := ẽ�

2m̃ , whose strength is a priori unknown.
Presumably, µG is very small so that this current is normally unobservable in the
vacuum.

In superconducting devices, however, the situation may be very different. Here
both of the phases Φs and ΦG exist and the corresponding wave functions might
interact. The strength of this interaction is a priori unknown since ΨG represents
new physics. If the interaction strength is sufficiently strong, then in equilibrium
the phases may synchronize:

Φs = ΦG. (33)

This is plausible because of the similarity of the size of parameters of the correspond-
ing Ginzburg–Landau potentials. If phase synchronization sets in, then fluctuations
in ΦG would produce measurable stochastic electric currents of superconducting
electrons given by

js =
e�

m
|Ψs|2∇ΦG. (34)

However, these currents could only exist up to the critical frequency νc. For ν >

νc one has ΨG = 0 and hence ∇ΦG = 0. Noise currents that are produced by
gravitationally active photons would thus cease to exist at a critical frequency
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νc given by about 2 THz. Generally, our Ginzburg–Landau model predicts that
gravitationally active photons produce a quantum noise power spectrum,

S(ν) =
1
2
hν

(
1 − ν4

ν4
c

)
, (35)

for ν < νc and S(ν) = 0 for ν ≥ νc.
In resistively shunted Josephson junctions, quantum noise power spectra induced

by stochastically fluctuating phases can be quite precisely measured.19 For frequen-
cies smaller than 0.5THz the form of the power spectrum of current fluctuations
has been experimentally confirmed19 to be

Ŝ(ν) =
4
R

(
1
2
hν +

hν

e
hν
kT − 1

)
, (36)

a direct consequence of the fluctuation dissipation theorem.20,21 Here R denotes
the shunt resistor. The first term in Eq. (36) is due to zero-point fluctuations and
the second term is due to ordinary thermal noise. If there is full synchronization
between the phases Φs and ΦG, then our Ginzburg–Landau model predicts a high-
frequency modification of (36) given by

S̃(ν) =
4
R

[
1
2
hν

(
1 − ν4

ν4
c

)
+

hν

e
hν
kT − 1

]
. (37)

This spectrum agrees with the spectrum (36) up to frequencies of about 1 THz,
but it then reaches a maximum at νmax = 5−1/4νc ≈ 1.34THz and approaches
a cutoff at νc ≈ 2.01THz (see Fig. 1). New Josephson experiments are currently

 0.1

1

 0.01  0.1 1

S
(ν

) 
[m

eV
]

ν [THz]

T=1.6K

T=4.2K

νc

Fig. 1. Power spectrum S(ν) := R
4

S̃(ν) as given by Eq. (37) at two different temperatures (solid
and dashed lines) and comparison with the data of the experiment of Koch et al.19 Filled squares
correspond to measurements at 4.2K, open squares to measurements at 1.6K.
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being carried out22 that will reach the THz frequency range, thus being able to
compare the prediction (37) with the experimental data for frequencies larger than
0.5THz.

4. Conclusion and Outlook

To conclude, in this paper we have introduced a new model of dark energy where the
dark energy of the Universe is identified as ordinary electromagnetic vacuum energy.
The new physics of the model consists of a phase transition of virtual photons from
a gravitationally active to a gravitationally inactive state. This phase transition is
described by a Ginzburg–Landau-like model. The advantage of our model is that
it yields the correct amount of dark energy in the Universe for natural choices
of the parameters (quite similar to those used in the Ginzburg–Landau theory of
superconductors), and that the predictions of our model can be tested by laboratory
experiments.

We end with a brief discussion on possible future developments of the model
studied here. First, it should be noted that our Ginzburg–Landau approach can be
applied to any type of boson and need not be confined to photons. Most gener-
ally, we may assume that any particle in the standard model may exist in either
a gravitationally active or inactive phase. To describe the phase transition behav-
ior of a given boson, one may consider fundamental fermionic degrees of freedom
that can condense into the boson being considered. A more advanced theory would
construct the analog of Cooper pairs in solid state physics, with a suitable weak
attractive force between the fundamental fermionic degrees of freedom. This would
be equivalent to the development of a BCS type of theory that effectively repro-
duces the Ginzburg–Landau model studied here. In Ref. 10 a similar idea has been
developed, with the weak attracting force leading to the condensate being grav-
ity. In other models, for example for neutrino superfluidity, the weak mediating
force between massive neutrinos that can lead to superfluid neutrino states is given
by Higgs boson exchange.23 Our model is phenomenological; just as in solid state
physics, the Ginzburg–Landau theory arises as a phenomenological model out of the
BCS theory. Our model does not rely on a particular microscopic model, but makes
universal predictions for measurable spectra as shown in Fig. 1, assuming that the
dark energy condensate interacts with ordinary Cooper pairs via a synchronization
of phases. If other particle condensates also contribute to the measured spectra,
then this would change the degrees of freedom entering into Eq. (3), thus leading
to a slightly different critical frequency, νc. Future experimental measurements of
the critical frequency will thus be a very helpful tool for constraining the class of
theoretical models considered.
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