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Recent developments in superstatistics
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We provide an overview on superstatistical techniques applied to complex systems with time scale separation.
Three examples of recent applications are dealt with in somewhat more detail: the statistics of small-scale
velocity differences in Lagrangian turbulence experiments, train delay statistics on the British rail network, and
survival statistics of cancer patients once diagnosed with cancer. These examples correspond to three different
universality classes: Lognormal superstatistics, χ2-superstatistics and inverse χ2 superstatistics.
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1. INTRODUCTION

Many complex systems in various areas of science exhibit
a spatio-temporal dynamics that is inhomogeneous and can
be effectively described by a superposition of several statis-
tics on different scales, in short a ’superstatistics’ [1–11]. The
superstatistics notion was introduced in [1], in the mean time
many applications for a variety of complex systems have been
pointed out [12–23]. Essential for this approach is the exis-
tence of sufficient time scale separation between two relevant
dynamics within the complex system. There is an intensive
parameter β that fluctuates on a much larger time scale than
the typical relaxation time of the local dynamics. In a ther-
modynamic setting, β can be interpreted as a local inverse
temperature of the system, but much broader interpretations
are possible.

The stationary distributions of superstatistical systems, ob-
tained by averaging over all β, typically exhibit non-Gaussian
behavior with fat tails, which can be a power law, or a
stretched exponential, or other functional forms as well [4].
In general, the superstatistical parameter β need not to be
an inverse temperature but can be an effective parameter in a
stochastic differential equation, a volatility in finance, or just
a local variance parameter extracted from some experimental
time series. Many applications have been recently reported,
for example in hydrodynamic turbulence [2, 20, 24, 25], for
defect turbulence [12], for cosmic rays [13] and other scat-
tering processes in high energy physics [26, 27], solar flares
[14], share price fluctuations [15, 22, 28, 29], random matrix
theory [16, 23, 30], random networks [31], multiplicative-
noise stochastic processes [32], wind velocity fluctuations
[17, 18], hydro-climatic fluctuations [19], the statistics of
train departure delays [33] and models of the metastatic cas-
cade in cancerous systems [34]. On the theoretical side, there
have been recent efforts to formulate maximum entropy prin-
ciples for superstatistical systems [5, 35–38].

In this paper we provide an overview over some recent de-
velopments in the area of superstatistics. Three examples of
recent applications are discussed in somewhat more detail:
the statistics of Lagrangian turbulence, the statistics of train
departure delays, and the survival statistics of cancer patients.
In all cases the superstatistical model predictions are in very
good agreement with real data. We also comment on recent
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theoretical approaches to develop generalized maximum en-
tropy principles for superstatistical systems.

2. MOTIVATION FOR SUPERSTATISTICS

In generalized versions of statistical mechanics one starts
from more general entropic measures than the Boltzmann-
Gibbs Shannon entropy. A well-known example is the q-
entropy [39, 40]

Sq =
1

q−1
(∑

i
pq

i −1)

but other forms are possible as well (see, e.g., [41] for a recent
review). The pi are the probabilities of the microstates i, and
q is a real number, the entropic index. The ordinary Shannon
entropy is contained as the special case q = 1:

lim
q→1

Sq = S1 =−∑
i

pi log pi

Extremizing Sq subject to suitable constraints yields more
general canonical ensembles, where the probability to ob-
serve a microstate with energy Ei is given by

pi ∼ e−βEi
q :=

1

(1+(q−1)βEi)
1

q−1

One obtains a kind of power-law Boltzmann factor, of the
so-called q-exponential form. The important question is what
could be a physical (non-equilibrium) mechanism to obtain
such distributions.

The reason could indeed be a driven nonequilibrium situ-
ation with local fluctuations of the environment. This is the
situation where the superstatistics concept enters. Our start-
ing point is the following well-known formulaZ

∞

0
dβ f (β)e−βE =

1
(1+(q−1)β0E)1/(q−1)

where

f (β)=
1

Γ

(
1

q−1

) {
1

(q−1)β0

} 1
q−1

β
1

q−1−1 exp
{
− β

(q−1)β0

}

is the χ2 (or Γ) probability distribution.
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We see that averaged ordinary Boltzmann factors with
χ2 distributed β yield a generalized Boltzmann factor of q-
exponential form. The physical interpretation is that Tsal-
lis’ type of statistical mechanics is relevant for nonequilib-
rium systems with temperature fluctuations. This approach
was made popular by two PRLs in 2000/2001 [10, 11], which
used the χ2-distribution for f (β). General f (β) were then
discussed in [1].

In [11] it was suggested to construct a dynamical realiza-
tion of q-statistics in terms of e.g. a linear Langevin equation

v̇ =−γv+σL(t)

with fluctuating parameters γ,σ. Here L(t) denotes Gaussian
white noise. The parameters γ,σ are supposed to fluctuate
on a much larger time scale than the ’velocity’ v. One can
think of a Brownian particle that moves through spatial ’cells’
with different local β := γ/(2σ2) in each cell (a nonequilib-
rium situation). Assume the probability distribution of β in
the various cells is a χ2-distribution of degree n:

f (β)∼ β
n/2−1e

− nβ

2β0

Then the conditional probability given some fixed β in a
given cell is Gaussian, p(v|β)) ∼ e−

1
2 βv2

, the joint probabil-
ity is p(v,β) = f (β)p(v|β) and the marginal probability is
p(v) =

R
∞

0 f (β)p(v|β)dβ. Integration yields

p(v)∼ 1
(1+ 1

2 β̃(q−1)v2)1/(q−1)
,

i.e. we obtain power-law Boltzmann factors with q = 1+ 2
n+1 ,

β̃ = 2β0/(3− q), and E = 1
2 v2. Here β0 =

R
f (β)βdβ is the

average of β.
The idea of superstatistics is to generalize this example to

much broader systems. For example, β need not be an in-
verse temperature but can in principle be any intensive param-
eter. Most importantly, one can generalize to general proba-
bility densities f (β) and general Hamiltonians. In all cases
one obtains a superposition of two different statistics: that
of β and that of ordinary statistical mechanics. Superstatis-
tics hence describes complex nonequilibrium systems with
spatio-temporal fluctuations of an intensive parameter on a
large scale. The effective Boltzmann factors B(E) for such
systems are given by

B(E) =
Z

∞

0
f (β)e−βEdβ.

Some recent theoretical developments of the superstatistics
concept include the following:

• Can prove a superstatistical generalization of fluctua-
tion theorems [3]

• Can develop a variational principle for the large-energy
asymptotics of general superstatistics [4] (depending
on f (β), one can get not only power laws for large E
but e.g. also stretched exponentials)

• Can formally define generalized entropies for general
superstatistics [5, 35, 38]

• Can study microcanonical superstatistics (related to a
mixture of q-values) [7]

• Can prove a superstatistical version of a Central Limit
Theorem leading to q-statistics [8]

• Can relate it to fractional reaction equations [42]

• Can consider superstatistical random matrix theory [16,
23, 30]

• Can apply superstatistical techniques to networks [31]

• Can define superstatistical path integrals [6]

• Can do superstatistical time series analysis [2, 18, 22]

...and some more practical applications:

• Can apply superstatistical methods to analyze the
statistics of 3d hydrodynamic turbulence [2, 20, 24, 25]

• Can apply it to atmospheric turbulence (wind velocity
fluctuations [17, 18])

• Can apply superstatistical methods to finance and eco-
nomics [21, 28, 29, 43]

• Can apply it to blinking quantum dots [44]

• Can apply it to cosmic ray statistics [13]

• Can apply it to various scattering processes in particle
physics [26, 27]

• Can apply it to hydroclimatic fluctuations [19]

• Can apply it to train delay statistics [33]

• Can consider medical applications [34]

3. OBSERVED UNIVERSALITY CLASSES

While in principle any f (β) is possible in the superstatistics
approach, in practice one usually observes only a few relevant
distributions. These are the χ2, inverse χ2 and lognormal dis-
tribution. In other words, in typical complex systems with
time scale separation one usually observes 3 physically rele-
vant universality classes [2]

• (a) χ2-superstatistics (= Tsallis statistics)

• (b) inverse χ2-superstatistics

• (c) lognormal superstatistics

What could be a plausible reason for this? Consider, e.g.,
case (a). Assume there are many microscopic random vari-
ables ξ j, j = 1, . . . ,J, contributing to β in an additive way.
For large J, the sum 1√

J ∑
J
j=1 ξ j will approach a Gaussian

random variable X1 due to the (ordinary) Central Limit The-
orem. There can be n Gaussian random variables X1, . . . ,Xn
of the same variance due to various relevant degrees of free-
dom in the system. β should be positive, hence the simplest
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way to get such a positive β is to square the Gaussian ran-
dom variables and sum them up. As a result, β = ∑

n
i=1 X2

i is
χ2-distributed with degree n,

f (β) =
1

Γ( n
2 )

(
n

2β0

)n/2

β
n/2−1e

− nβ

2β0 , (1)

where β0 is the average of β.
(b) The same considerations can be applied if the ’temper-

ature’ β−1 rather than β itself is the sum of several squared
Gaussian random variables arising out of many microscopic
degrees of freedom ξ j. The resulting f (β) is the inverse χ2-
distribution:

f (β) =
β0

Γ( n
2 )

(
nβ0

2

)n/2

β
−n/2−2e−

nβ0
2β . (2)

It generates superstatistical distributions p(E) ∼
R

f (β)e−βE

that decay as e−β̃
√

E for large E.
(c) β may be generated by multiplicative random processes.

Consider a local cascade random variable X1 = ∏
J
j=1 ξ j,

where J is the number of cascade steps and the ξ j are inde-
pendent positive microscopic random variables. By the (or-
dinary) Central Limit Theorem, for large J the random vari-
able 1√

J
logX1 = 1√

J ∑
J
j=1 logξ j becomes Gaussian for large

J. Hence X1 is log-normally distributed. In general there
may be n such product contributions to β, i.e., β = ∏

n
i=1 Xi.

Then logβ = ∑
n
i=1 logXi is a sum of Gaussian random vari-

ables, hence it is Gaussian as well. Thus β is log-normally
distributed, i.e.,

f (β) =
1√

2πsβ
exp

−(ln β

µ )2

2s2

 , (3)

where µ and s are suitable parameters.

4. APPLICATION TO TRAFFIC DELAYS

We will now discuss examples of the three different super-
statistical universality classes. Our first example is the depar-
ture delay statistics on the British rail network. Clearly, at the
various stations there are sometimes train departure delays of
length t. The 0th-order model for the waiting time would be
a Poisson process which predicts that the waiting time distri-
bution until the train finally departs is P(t|β) = βe−βt , where
β is some parameter. But this does not agree with the ac-
tually observed data [33]. A much better fit is given by a
q-exponential, see Fig. 1.

What may cause this power law that fits the data? The idea
is that there are fluctuations in the parameter β as well. These
fluctuations describe large-scale temporal or spatial variations
of the British rail network environment. Examples of causes
of these β-fluctuations:

• begin of the holiday season with lots of passengers

• problem with the track

• bad weather conditions

FIG. 1: Observed departure delay statistics on the British railway
network (data from [33]). The solid line is a q-exponential fit as
given by eq. (5).

• extreme events such as derailments, industrial action,
terror alerts, etc.

As a result, the long-term distribution of train delays is then
a mixture of exponential distributions where the parameter β

fluctuates:

p(t) =
Z

∞

0
f (β)p(t|β)dβ =

Z
∞

0
f (β)βe−βt . (4)

For a χ2-distributed β with n degrees of freedom one obtains

p(t)∼ (1+b(q−1)t)
1

1−q (5)

where q = 1+2/(n+2) and b = 2β0/(2−q). The model dis-
cussed in [33] generates q-exponential distributions of train
delays by a simple mechanism, namely a χ2-distributed pa-
rameter β of the local Poisson process. This is an example for
χ2 superstatistics.

5. APPLICATION TO TURBULENCE

Our next example is an application in turbulence. Consider
a single tracer particle advected by a fully developed turbu-
lent flow. For a while it will see regions of strong turbulent
activity, then move on to calmer regions, just to continue in
yet another region of strong activity, and so on. This is a su-
perstatistical dynamics, and in fact superstatistical models of
turbulence have been very successful in recent years [20, 25].
The typical shape of a trajectory of such a tracer particle is
plotted in Fig. 2.

This is ’Lagrangian turbulence’ in contrast to ’Eulerian tur-
bulence’, meaning that one is following a single particle in
the flow. In particular, one is interested in velocity differ-
ences ~u(t) :=~v(t + τ)−~v(t) of the particle on a small time
scale τ. For τ → 0 this velocity difference becomes the lo-
cal acceleration ~a(t) =~u(t)/τ. A superstatistical Lagrangian
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FIG. 2: Typical example of a trajectory of a test particle in a turbulent
flow.

model for 3-dim velocity differences of the tracer particle has
been developed in [25]. One simply looks at a superstatistical
Langevin equation of the form

~̇u =−γ~u+B~n×~u+σ~L(t). (6)

Here γ and B are constants. Note that the term proportional to
B introduces some rotational movement of the particle, mim-
icking the vortices in the flow. The noise strength σ and the
unit vector ~n evolve stochastically on a large time scale Tσ

and T~n, respectively, thus obtaining a superstatistical dynam-
ics. Tσ is of the same order of magnitude as the integral
time scale TL, whereas γ−1 is of the same order of magni-
tude as the Kolmogorov time scale τη. One can show that the
Reynolds number Rλ is basically given by the time scale ratio
Tσγ ∼ TL/τη ∼ Rλ >> 1. The time scale T~n >> τη describes
the average life time of a region of given vorticity surrounding
the test particle.

In this superstatistical turbulence model one defines the pa-
rameter β to be β := 2γ/σ2, but it does not have the meaning
of a physical inverse temperature in the flow. Rather, one
has β−1 ∼ ν1/2〈ε〉−1/2ε, where ν is the kinematic viscosity
and 〈ε〉 is the average energy dissipation, which is known to
fluctuate in turbulent flows. In fact, Kolmogorov’s theory of
1961 suggests a lognormal distribution for ε, which automat-
ically leads us to lognormal superstatistics: It is reasonable to
assume that the probability density of the stochastic process
β(t) is approximately a lognormal distribution

f (β) =
1

βs
√

2π
exp

{
−(log β

m )2

2s2

}
. (7)

For very small τ the 1d acceleration component of the particle
is given by ax = ux/τ and one gets out of the model the 1-point
distribution

p(ax) =
τ

2πs

Z
∞

0
dβ β

−1/2 exp

{
−(log β

m )2

2s2

}
e−

1
2 βτ2a2

x . (8)

This prediction agrees very well with experimentally mea-
sured data of the acceleration statistics, which exhibits very
pronounced (non-Gaussian) tails, see Fig. 3 for an example.
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FIG. 3: Measured probability density of small-scale velocity differ-
ences in Lagrangian turbulence (data from [45]). The solid line is a
fit of the form (8) (see [25] for more details).

FIG. 4: Predicted shape of correlations as given by eq. (9), f (β)
being the lognormal distribution.

It is interesting to see that our 3-dimensional superstatis-
tical model predicts the existence of correlations between
the acceleration components. For example, the acceleration
ax in x direction is not statistically independent of the ac-
celeration ay in y-direction. We may study the ratio R :=
p(ax,ay)/(p(ax)p(ay)) of the joint probability p(ax,ay) to the
1-point probabilities p(ax) and p(ay). For independent ac-
celeration components this ratio would always be given by
R = 1. However, our 3-dimensional superstatistical model
yields the prediction

R =
R

∞

0 β f (β)e−
1
2 βτ2(a2

x+a2
y)dβR

∞

0 β1/2 f (β)e−
1
2 βτ2a2

x dβ
R

∞

0 β1/2 f (β)e−
1
2 βτ2a2

y dβ

(9)

This is a very general formula, valid for any superstatistics,
for example also Tsallis statistics, obtained when f (β) is the
χ2-distribution. The trivial result R = 1 is obtained only for
f (β) = δ(β− β0), i.e. no fluctuations in the parameter β at
all. Fig. 4 shows R := p(ax,ay)/(p(ax)p(ay)) as predicted by
lognormal superstatistics: The shape of this is very similar to
experimental measurements [25, 46].
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FIG. 5: Various pathways for the spread of cancer cells

6. APPLICATION IN MEDICINE

Our final example of application of superstatistics is for
a completely different area: medicine. We will look at cell
migration processes describing the metastatic cascade of can-
cerous cells in the body [34]. There are various pathways
in which cancerous cells can migrate: Via the blood system,
the lymphatic system, and so on. The diffusion constants for
these various pathways are different. In this way superstatis-
tics enters, describing different diffusion speeds for different
pathways (see Fig. 5). But there is another important issue
here: When looking at a large ensemble of patients then the
spread of cancerous cells can be very different from patient
to patient. For some patients the cancer spreads in a very ag-
gressive way, whereas for others it is much slower and less
aggressive. So superstatistics also arises from the fact that all
patients are different.

A superstatistical model of metastasis and cancer survival
has been developed in [34]. Details are described in that pa-
per. Here we just mention the final result that comes out of
the model: One obtains the following prediction for the prob-
ability density function of survival time t of a patient that is
diagnosed with cancer at t = 0:

p(t) =
Z

∞

0

tn−1λne−λ t

Γ(n)
λ0(nλ0/2)n/2

Γ(n/2)
λ
−n/2−2e

−nλ0
2λ dλ, (10)

or

p(t) =
(nλ0)3n/4

Γ(n)Γ(n/2)

( t
2

)3n/4−1
[√

2nλ0t
n

Kn/2+1

(√
2nλ0t

)
− Kn/2

(√
2nλ0t

)]
, (11)

where Kν(z) is the modified Bessel function. Note that this is
inverse χ2 superstatistics. The role of the parameter β is now
played by the parameter λ, which in a sense describes how
aggressively the cancer propagates.

FIG. 6: Survival time statistics of breast cancer patients once diag-
nosed with cancer (t = 0), both in a linear and double logarithmic
plot. Only patients that die from cancer are included in the statistics.
The solid line is the superstatistical model prediction [34].

The above formula based on inverse χ2 superstatistics is
in good agreement with real data of the survival statistics of
breast cancer patients in the US. The superstatistical formula
fits the observed distribution very well, both in a linear and
logarithmic plot (see Fig.6).

One remark is at order. When looking at the relevant time
scales one should keep in mind that the data shown are sur-
vival distributions conditioned on the fact that death occurs
due to cancer. Many patients, in particular if they are diag-
nosed at an early stage, will live a long happy life and die from
something else than cancer. These cases are not included in
the data.

7. MAXIMUM ENTROPY PRINCIPLES,
SUPERSTATISTICAL PATH INTEGRALS, AND MORE

We finish this article by briefly mentioning some other re-
cent interesting theoretical developments.

One major theoretical concern is that a priori the supersta-
tistical distribution f (β) can be anything. But perhaps one
should single out the really relevant distributions f (β) by a
least biased guess, given some constraints on the complex
system under consideration. This program has been devel-
oped in some recent papers [35, 38]. There are some ambigu-
ities which constraints should be implemented, and how. A
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very general formalism is presented in [38], which contains
previous work [35–37] as special cases. The three important
universality classes discussed above, namely χ2 superstatis-
tics, inverse χ2 superstatistics and lognormal superstatistics
are contained as special cases in the formalism of [38]. In
principle, once a suitable generalized maximum entropy prin-
ciple has been formulated for superstatistical systems, one
can proceed to a generalized thermodynamic description, get
a generalized equation of state, and so on. There is still a lot of
scope of future research to develop the most suitable formal-
ism. But the general tendency seems to be to apply maximum
entropy principles and least biased guesses to nonequilibrium
situations as well. In fact, Jaynes [47] always thought this is
possible.

Another interesting development is what one could call a
superstatistical path integral. These are just ordinary path in-
tegrals but with an additional integration over a parameter β

that make the Wiener process become something more com-
plicated, due to large-scale fluctuations of its diffusion con-
stant. Jizba et al. investigate under which conditions one
obtains a Markov process again [6]. It seems some distri-
butions f (β) are distinguished as making the superstatistical
process simpler than others, preserving Markovian-like prop-
erties. These types of superstatistical path integral processes
have applications in finance, and possibly also in quantum
field theory and elementary particle physics.

In high energy physics, many of the power laws observed
for differential cross sections and energy spectra in high en-
ergy scattering processes can also be explained using super-
statistical models [26, 27]. The key point here is to extend the
Hagedorn theory [48] to a superstatistical one which properly
takes into account temperature fluctuations [27, 49]. Super-
statistical techniques have also been recently used to describe
the space-time foam in string theory [50].

8. SUMMARY

Superstatistics (a ’statistics of a statistics’) provides a phys-
ical reason why more general types of Boltzmann factors (
e.g. q-exponentials or other functional forms) are relevant for
nonequilibrium systems with suitable fluctuations of an inten-
sive parameter. Let us summarize:

• There is evidence for three major physically relevant
universality classes: χ2-superstatistics = Tsallis statis-
tics, inverse χ2-superstatistics, and lognormal super-
statistics. These arise as universal limit statistics for
many different systems.

• Superstatistical techniques can be successfully applied
to a variety of complex systems with time scale sepa-
ration.

• The train delays on the British railway network are an
example of χ2 superstatistics = Tsallis statistics [33].

• A superstatistical model of Lagrangian turbulence [25]
is in excellent agreement with the experimental data
for probability densities, correlations between compo-
nents, decay of correlations, Lagrangian scaling expo-
nents, etc. This is an example of lognormal superstatis-
tics [25].

• Cancer survival statistics is described by inverse χ2 su-
perstatistics [34].

• The long-term aim is to find a good thermodynamic de-
scription for general superstatistical systems. A gener-
alized maximum entropy principle may help to achieve
this goal.
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