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Coupled map lattices of weakly coupled Chebychev maps, so-called chaotic strings, may
have a profound physical meaning in terms of dynamical models of vacuum fluctuations
in stochastically quantized field theories. Here we present analytic results for the invariant
density of chaotic strings, as well as for the coupling parameter dependence of given

observables of the chaotic string such as the vacuum expectation value. A highly nontrivial
and selfsimilar parameter dependence is found, produced by perturbative and nonpertur-
bative effects, for which we develop a mathematical description in terms of suitable scaling
functions. Our analytic results are in good agreement with numerical simulations of the

chaotic dynamics.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Coupled map lattices (CMLs), as introduced in seminal
papers by Kaneko and Kapral some 29 years ago [1,2], are
known to exhibit a rich structure of complex dynamical
phenomena [3-7]. Of particular interest are CMLs that con-
sist of locally chaotic maps. For hyperbolic local maps and
very small coupling it can be proved [8-11] that a smooth
invariant density of the entire CML exists and that there is
ergodic behaviour. However, the case of nonhyperbolic lo-
cal maps, e.g., of local 1-dimensional maps for which the
slope is equal to zero at some point, is much more compli-
cated from a mathematical point of view, and much less
analytic results are known [12-18]. This is the realm of
chaotic strings.

Chaotic strings are 1-dimensional coupled map lattices
of diffusively coupled Chebychev maps [18]. They are
intrinsically non-hyperbolic, since the local maps have an
extremum with vanishing slope. They play a very impor-
tant role in generalized statistical mechanics models of
vacuum fluctuations [4,19-21], replacing the noise in sto-
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chastically quantized field theories by a deterministic cha-
otic dynamics [22-24]. These type of chaotic theories are
of utmost interest in extensions of the standard model
where one constructs additional sectors of rapidly fluctuat-
ing chaotic fields. One possible physical embedding is to
associate the vacum energy generated by the chaotic
strings with dark energy [25]. For more details on physical
applications of chaotic strings in high energy physics, see
Ref. [4].

In this paper, however, we will not deal with the above
mentioned physical applications of chaotic strings, but
merely concentrate onto the mathematics of these nonhy-
perbolic coupled map lattices. There is a highly interesting
selfsimilar dependence of the invariant density on the cou-
pling constant a of the CML, which can be understood by
analytic means and which will be the main subject of this
paper.

Let us first recall what has been done so far. In Refs.
[19,20] weakly coupled N-th order Chebyshev maps
[18,24-27] were studied and it was shown that certain
scaling properties with respect to the coupling a can be cal-
culated perturbatively. However, the fine structure of the
parameter dependence of important observables of the
chaotic string, such as the self energy or vacuum expecta-
tion value, could not be explained by these perturbative
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methods. In Ref. [28] is was numerically illustrated that the
fine structure does occur only for CMLs of dimension 1, and
not on lattices of higher dimension. In Ref. [29] short cha-
otic strings, consisting only of a small number of lattice
points, were analyzed and it was shown that some of these
short strings (with lengths between 3 and 5 lattice sites)
show the same fine structure as long strings of the order
of 10 000 sites, while for other short strings the fine struc-
ture had a totally different shape.

In this paper we report on significant progress to better
understand the scaling structure of chaotic strings. We will
show that the invariant density can not only be understood
near the edges of the interval on which the local maps are
defined, but in the entire interval region. We will study the
coupling constant dependence of the expectation value of
the chaotic field variable. This expectation is expressed as
a particular integral, which is trivial for the uncoupled case
(coupling a = 0) but exhibits a highly nontrivial parameter
dependence for a # 0. There are certain invariance proper-
ties of observables of the chaotic string under suitable
rescaling of the coupling that we will describe in terms
of a kind of renormalization group theory. For this purpose
we introduce two basic scaling functions, which we call
‘draft function’ and ‘blunt function’, which describe how
parameter changes of the coupling are generating a self-
similar pattern and how certain ‘excitations’ (travelling
maxima) in the invariant density are induced. We also fur-
ther develop the perturbation theory, and illustrate that
there are perturbative and nonperturbative effects for the
chaotic string, with certain analogy to what is known in
quantum field theories.

This paper is organized as follows. In Section 2 we
globalize the perturbative methods developed in Refs.
[19,20] and apply them to the vacuum expectation value
(¢) of the chaotic field variable. In Section 3 we analyse
the integrand leading to (¢) and introduce draft and blunt
functions which can help to analytically describe the self-
similar parameter dependence and invariance properties
of the chatic string. In Section 4 we discuss simplified
models of the scaling structure which are connected to
the perturbation theory. In Section 5 we look at limiting
cases for the partition integrals that occur when the vac-
uum expectation is calculated. In Section 6 we provide
analytical expressions for the (exponential-type) draft
function. Finally, in Section 7 we draw our conclusions.
More details on explicit calculations can be found in the
Appendices.

2. The perturbative method

As shown in Ref. [20] in detail, the scaling behaviour of
the self energy (and interaction energy) of the chaotic
string based on Chebyshev maps Ty(¢) of order N is directly
related to the scaling behaviour of the distribution function
(the 1-point invariant density) p(¢) of the string. For the
chaotic string of type 2B (cf. Ref. [4]) with iterative
prescription

d)?“ =(1-a)T, (d)f) +% (d)?ﬂ + ¢F,1)
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Fig. 1. Numerical result obtained by (a) long-term iteration of the CML
and (b) the analytic approximation (5) at maximal order pmax = 7. The
figure shows the rescaled distribution function (p,(¢) — po(#))/p3(¢) at
coupling a =0.00007625 close to the lower boundary ¢ = —1 in depen-
dence on log4(1 + ¢).

the distribution function close to the upper boundary ¢ = 1
turned out to be a sum p, (1 — ax) ~ gg?pff’)(l —ax) of
functions p® (in the following sometimes called p-iter-
ates) with!
_
m\/2a(1 —a)
% / Po(d.)dd. po(d_)ded_ 2)
L@\ [x/a —r(6,) - ()
while close to the lower boundary ¢=-1 we obtain
palay — 1) ~ p” (ay — 1) with
1
Oy —1)= —————
pa (ay —1) Tl —a)
' p0(¢+)d¢+p0(¢,)d¢f ) (3
VY=(¢. +¢)/2-1
Po(#) = 1/m4/1 — ¢? is the invariant density for the uncou-

pled string (a=0). We use the notation ¢, :=¢j,,,
¢_ = (/)1'-17], ¢ = d)?, and

pP(1-ax) =

)

P — Ipa
() =5 > L) @

q=0 N

Both approximations can be formally combined to the
formula

Pmax

Pz ()

p=0

pa(¢) =

This approximation is valid only close to the boundaries ¢
= +1. This is shown in Fig. 1 (close to the lower boundary)
and Fig. 2 (close to the upper boundary). For the main part
of the interval ¢ € [-1,1], however, there are large devia-
tions between numerical results obtained by iteration of
the CML and the above formula, regardless of the order
Pmax Of the approximation. Nevertheless, a main result of

! Compared to Ref. [20] we use a different definition (4) for the function
R.(¢) in order to keep it positive. Note that by convention the integration
range is given by the positivity condition for the radicand [20].



20
‘39\ 0.1 - | a=0.00007625 i
X
E0.0S
<
| /
s of
g i
=005 | e YT

0 1 2 3 4 5 6 7
—|0g4( 1 —4))

Fig. 2. Same as Fig. 1 but close to the upper boundary ¢=+1 in
dependence on —log4(1 — ¢).

this paper is an extension to a formula that is valid for gen-
eral values of ¢.

2.1. Extension to the whole range

The key observation for this extension is given by the
insight that the integrand of

Po(d)do, po(p_)de_
V2 +1)—ald, +¢_+2)

is given by the derivative of the inverse map of the map (1),

P (9) (6)

1
2V1—a\2(6+T1)—a(p, +¢_+2)
_%Tiéw;qum =Ty (ds . + ¢_). 7)

Of course, the inverse T,. (¢; ¢, + ¢_) of the function Tp(¢
;0++¢_) given by the quadratic Eq. (1) with Ty(¢
)=2¢2 — 1 is not unique. We have used the positive square
root T;,(¢; ¢, + ¢_) according to the notation

To (s, +¢_) = i\/z(d’ +1) ;(a(du +¢_ +2)

1-a)
=Ty (i, + ) ®)

in order to write

2 d
pé‘”(fﬁ):%/po(¢+)d¢+Po(¢f)d¢f%Ti(qﬁ;du+dx)~ 9)
Proceeding to the first iterate, we extend to

P (p)=—2 / Pol6.)d Pyl )b

dd)TL( 2($:T2(d,) +Ta(d))ib +¢-).  (10)

For details of this and the following see Appendix A. For an
arbitrary order p we finally arrive at

p20) =~ 2 [ po(6.)d0,po(6 o

d
d¢ T2a (T;a( Tga (¢ TZP (¢+)

+Tp(¢)) -5 Ta(dy) + Ta(¢ )i ¢y +0). (11)
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2.2. The “path of roots”

The path “+...+-" for selecting the nested square
roots turns out to lead to an excellent approximation close
to the upper limit ¢ =+ 1. Of course we have to ask why
this path needs to be taken and not a different one. The an-
swer to this question is related to the trajectory that a
starting value close to zero takes under nearly unperturbed
iterations. Starting from ¢ =0 we obtain T»(0)= -1,
T»(T»(0)) = +1, Ty(Tx(T2(0))) =+ 1 and so forth. This is just
the time-reverse of the relevant “path of roots”. However,
if we want to extend the approximation of the invariant
density in the way mentioned above, we need to take into
account all paths. It turns out that a great amount of other
paths returns contributions of lower order. Moreover,
these contributions add up in a way that a general factor
2/m is factored out. The final result (understood as sum
over all paths of roots)

- / po(, )4, po($)do

d¢T2a(T2a(T2a( (@) Ta(Ta(6.)
FTo(Ta(§ ) Tald) + Ta(9 )i b+ 62)  (12)

for a single p-iterate (without adding lower iterates)
approximates the distribution function to an increasing de-
gree with increasing order p. More details on the derivation
of the above equation can be found in Appendix B.

In Fig. 3 the coincidence of higher p-iterates with the
distribution function is shown. For the coupling we have
chosen a rather high value a = 0.00122 as we are no longer
interested in the perturbative region close to the boundary
but in nonperturbative effects in the middle of the interval.
As compared to Figs. 1 and 2, the position and magnitude
of the local maxima (often called ‘excitations’ in the fol-
lowing) are mirrored in a precise way. Even the excitation
close to ¢ = —0.15, i.e., in a highly nonperturbative region,
is exactly modeled.

The excitation at ¢ ~ —0.15 is special. Indeed, if we look
at a sequence of diagrams similar to Fig. 3 where the cou-
pling a gradually decreases, then this excitation moves to
the left while all others move to the right. These and other
counter movements account for the so-called ’fine
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Fig. 3. Comparison of the rescaled p{ () (p = 5,6,7) with the numerically
obtained histogram result. In this plot the histogram is shifted by the
amount +0.2 for better visibility.
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Fig. 4. Expectation value of the self energy V(¢) in the range
a € [0.00015,0.00060] for a 2B-string of 10,000 lattice points and 10,000
iterations.

structure’ of observables of the chaotic string. By this we
mean a nontrivial local a-dependence of observables as
illustrated, e.g., in Figs. 4 and 5. The reason for the different
behaviour of the above excitation is that this excitation be-
longs to a different “path of roots” than the ordinary one
(*“+-..+=").1It can be associated with a process that is mir-
rored at the lower boundary. This becomes apparent when
we look at a sequence of diagrams as in Fig. 3 again. At the
moment when the extraordinary excitation disappears at
¢ =—1, a new ordinary excitation appears at this point
and moves to the right.

2.3. Expectations of observables

The fine structure we are trying to understand in this
paper is the a-dependence of observables (functions of ¢)
such as, e.g., the self energy V(¢)=¢ — 2¢°/2 calculated
with respect to the distribution function p4(¢) (cf. Fig. 4).
These types of expectations of observables as a function
of a turn out to be of utmost interest for the physical appli-
cations described in Ref. [4]. It turns out that the vacuum
expectation value (¢) of the string leads to the same (but
less pronounced) fine structure, as it is shown in Fig. 5.
Therefore, in the following we will concentrate onto the
calculation of (¢) = [¢p,(¢). Approximating pq (¢) by
the p-iterate p%’(¢), one can perform a (p + 1)-fold integra-
tion by parts to obtain

(6) = / PP (9)do

- / po(.)dd. po(p_)de_

 Toa(Toa(Taa(- .. Toa(dP; ¢, + ) ...
Ty2(dy) + Typ2 ()i Topr () + Topr ()5
Tow($.) + T (e ))dp®. (13)

This equation reminds us of results obtained in Ref. [29] for
an open string of length 3.2 In order to better understand
how the excitation can switch to a different “path of roots”

2 Note that due to a numerical error, in Ref. [29] is was erroneously
stated that the open string of length 3 does not reproduce the fine
structure. This will be corrected in an erratum to Ref. [29].
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Fig. 5. Expectation value of ¢ in the range a € [0.00015,0.00060] for a 2B-
string of 10,000 lattice points and 10 000 iterations.
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Fig. 6. Integrand of Eq. (13) for p=5 at a=0.00122 and ¢ = ¢.=1.

if a is changed we take a detailed look at the integrand in Eq.
(13) as a function of ¢P) (renamed as ¢) for different values
of (¢p+, ¢_). For (¢p+,¢_) = (+1, +1) the integrand at a = 0.00122
is shown in Fig. 6. We see that while the minima of this
strongly oscillating function take the value —1, some of the
maxima take values less than 1. The most extreme situation
is found at ¢ = 0 where the maximum is on the way to decay
completely if a changes in a significant way. When this hap-
pens, the two neighbouring minima unite into one new min-
imum. From the calculations in Refs. [19,20] it can be seen
that the height of maxima is related to excitations of the dis-
tribution function. The decay of a maximum at ¢ =0 for
increasing values of a thus means that an excitation ceases
to exist at the lower boundary. The vanishing of the extraor-
dinary excitation mentioned before is related to such a for-
mation of a united minimum.

3. Structural changes of the generating partition

The change described before is a change of the topolog-
ical structure because one of the local oscillations which
partitions the interval [-1,1] into 2P intervals vanishes. In-
deed, the different partitions stand in direct correspon-
dence to the different roots of the integrand. For
vanishing coupling a = 0 the maxima and minima are lo-
cated exactly at sin (mt/2) for the values t=+2n/2P and
t=+(2n+1)/2P, respectively, where n=0,1,...,2°~! counts
the extrema. The minima divide the interval [-1,1] into
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2P intervals which we call the elements of the generating
partition (see Fig. 6). If one of these elements vanishes,
the topological structure of the partition changes.

One can use the generating partition to split up the inte-
gral in Eq. (13) into a sum of 2P partition integrals. From
this point of view, the decay of a maximum means the van-
ishing of the corresponding partition integral. In the fol-
lowing we take a closer look on how an increasing
coupling a influences the contribution of the integrand
through the different elements of the generating partition.
In order to distribute the elements of the generating parti-
tion uniformly onto the interval [-1,1], we use a new var-
iable t, with ¢ = sin (nt/2).

3.1. Decay of the maxima

A general feature of the integrand is that maxima which
for a = 0 are located at equally spaced positions (*“starting
positions”) ty decay in a similar way when a is increased.
This property forms the basis for our renormalization
group approach in the following. Let us assign a class k to
certain subsets of maxima as follows: The maxima with
starting positions to =0 and %1 are of class k = 0, the max-
ima with starting positions to = +1/2 are of class k=1, the
maxima with starting positions to=+1/4, +3/4 are of class
k=2, and so on. In general, the starting positions of class
k are given by to=+(2n+1)/2K n=01,...,21 - 1. We
note the similarity with the definition of k-cylinders in
the thermodynamic formalism of dynamical systems
[34]. For (¢+,¢_)=(+1,+1) the height of a maximum of
class k is given by

b = cos <\/52"’k“). (14)

From Eq. (14) we read off that for a specified scaling inter-
val where a increases by a factor 4 (e.g,
a € [0.00015,0.00060]), precisely one single specified class
of maxima (and, therefore, partition integrals) disappears,
and this disappearence takes place synchronously. Appar-
ently the successive decay of maxima produces global scal-
ing features, such as the invariance under the
transformation a — 4a, but it is not responsible for the fine
structure within a given scaling region, which is more re-
lated to infinitesimal changes of a. To better understand
the fine structure, in the following we will introduce two
important auxiliary functions: Draft functions and blunt
functions.

3.2. The draft function

If elements of the generating partition vanish, the
neighbouring partition elements fill the gap, being drawn
close to the position where the topological change hap-
pens. The difference between the starting position of a gi-
ven maximum and the position for a # 0 turns out to be a
linear function in a. The slope, therefore, is a well-defined
function called draft function, d(¢o) = dp(a;¢pe)/da where
¢a(a;po) is the position of the maximum with
¢a(0;¢p0) = ¢po. For large p and k this is a fractal function,
and the basic features visible in a plot are independent of
p and k. The function is shown in Figs. 7-9 for

(pnp_)=(+1,+1), (+1,—1) (which is the same as for
(-1,+1))and (-1, — 1). We found an analytical expression
for the draft function. With ¢ = sin (7ty/2) the analytical
formula for the draft function of class k reads

At 6) = 5 (@05 6,) + A% 13 6.) (15)

(the tilde indicates the linearization of the first argument
by replacing ¢ = sin (7ty/2) by to) where

k-1 -
®)(to; ) = d¥(to) + Y Tyu(—p.)d} (t0) (16)
=0
and
k-1
d® (o) = 274d™ (t) — (21 k4 cos( 2m0))d (to),
1=0
Aty = (17)

2'msin(2'nto)

The draft function d®(te;¢,,¢ ) is smooth for
to=2(2n+1)/2%, n=0,1,...,2% ! — 1 but singular for values
to corresponding to a class smaller than k.

3.3. The blunt function
Eq. (14) is valid only for the specific value

(¢+, ¢_)=(+1,+1) of the neighbours. For general neighbour-
ing values ¢., ¢_ the height of maxima of class k is given by

bps(d.. ) = cos (271, fary (-Tp(9,). ~Tp(9))

(18)

where 1%, is defined in Eq. (4). We call by, the ‘blunt func-
tion’. Both draft and blunt functions are important for our
renormalization group description in the following. Basi-
cally the draft function describes how positions of maxima
change under parameter changes, and the blunt function
describes how the values of the maxima themselves
change.

If the integrand for different values of (¢.,¢_) is affected
by a relative draft, the blunting is accelerated because after
integration over po(¢+)po(¢_) the integrand (in ¢) is
smeared out, giving rise to a premature breakdown of the
integral.

N
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T
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Fig. 7. Draft function for ¢, = ¢_=+1.
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4. Renormalisation group approach

The simultaneous parameter-dependent deformations
described by draft and blunt functions are the basis for
our treatment in the following. To understand the complex
a-dependence of observables such as the vacuum expecta-
tion value, we need to evaluate the integral (13). This inte-
gral, as mentioned before, is split into many partition
integrals. These partition integrals are defined as the part
of the integral (13) where the integration range is re-
stricted to the interval given by the positions t, and t, of
two adjacent minima surrounding a decaying maximum
with starting position t,

A it
@atto) = [ Forcos (5 )ar (19)
Jtq
where the integrand is given by

fl:= / Pol,)db, po(_)d_
X Taa(... Taa(SIN(TE/2); 0, + )i Top ($.) + T (). (20)

In Figs. 10 and 11, we show a sequence of partition inte-
grals and their sum for values of p and k with constant dif-
ference p — k = 6. At first sight one might conjecture that all
these partition integrals vanish at the same maximal value
of a, called the maximal reach for a given (p,k). However,
our careful analysis shows that due to different values of
the draft function, many partition integrals vanish at val-
ues below the maximal value for a given (p, k).

. Groote et al./Chaos, Solitons & Fractals 53 (2013) 18-33 23
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Fig. 10. Contributions and sum of all the partition integrals for p = 10 and
k =4 that vanish in the displayed interval for a. For better visibility, the
sum is multiplied by —2'~*.
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Fig. 11. Contributions and sum of all the partition integrals for p=11 and
k=5 that vanish in the displayed interval for a. For better visibility, the
sum is multiplied by —2'¥.

Even though the draft function does not depend on p
and k, the effect of partition integrals to vanish below the
maximal reach increases with the order because the max-
ima are closer together and are smeared out faster. For this
reason, also the maximal reach of the partition integrals
(i.e., the value a at which all partition integrals of the same
class vanish) is decreasing in the sequence of the two dia-
grams shown in Figs. 10 and 11.

In the spirit of a suitable renormalization group theory,
we are now looking for a transition p — oo that preserves
the shape and sum of the partition integrals. Comparing
the case p=14, k=6 as displayed in Fig. 12 with Fig. 10
(p=10, k=4), and the case p=13, k=6 in Fig. 13 with
Fig. 11 (p=11, k=5), we find that the quantity to be kept
constant is given by the reduced order p = p — 2k which in
the two examples is given by p=2 and p =1, respec-
tively. However, in Figs. 12 and 13 we have stretched
the axis for a by a factor of 4 and 16, respectively. Be-
cause we are looking at the behaviour in the scaling re-
gion only, this means that instead of the coupling a one
should use the reduced coupling @ = 4°*a which for the
intervals shown in Figs. 10-12 is found in the interval
a € [0,4]. With the above rescaling prescriptions, the over-
all problem is formulated in a scale invariant way in the
limit p — co.
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4.1. The model function

The Feigenbaum fixed point function in Feigenbaum’s
renormalization group approach for 1-dimensional critical
systems can be well approximated close to the vicinity of
the maximum of the map [32-34]. Similarly, we can also
find a good approximation of the integrand in our problem
if we are close to a decaying maximum. We call this
approximating function of the integrand the ‘model func-
tion’. Using the analytical expressions for draft and blunt
functions, the integrand in Eq. (20) in the region close to
a decaying maximum is approximated by the model func-
tion
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O (AL to) :=f (2P AL to)

~ [ pot)dp. pold )do

N - 2
x cos <\/nz(m_zpaa<kl<ro;¢.¢ )"+ 2ar5 (~Tp(9,),~Tye(¢ >))-
(22)

The function r5°(¢., ¢_) uses the k-fold Chebyshev map for
the arguments ¢. while the arguments of the draft func-
tion are just ¢.. Keeping the reduced order p = p — 2k con-
stant, the class k increases together with the order p.
Because of this, the high-frequency blunt can be separated
from the low-frequency draft, leading to an effective blunt
of 8/3 (see Appendix C). The final result for the model func-
tion in the limit p — oo reads

17 @tit) = [ pol6)do ol 1o

X COS <\/n2 (AE —2Pad®(ty; ¢, , ¢,))2 + %) . (23)

4.2. Fourier transformation

We note that the integrand in the above Eq. (23) is
essentially of the form g(a, t) := cos(v/t* + a). Inspired by
quantum field theory, we proceed to a Fourier transform
denoted as

g(a,w) = /jc cos(V t2 + a) cos(wt)dt. (24)

oo

It can be shown that g(a,w) =0 for @? > 1, but otherwise
g(a,w) =271(1 — w?)
Ta
- a(l —w?) ), 25
) (Vai-on) (25)

where J,(z) is the Bessel function of the first kind. One
obtains

+1
g(a,t) ZCOSI7,/7] 2\/% ]<,/a(1 —wz)) cos(wt).  (26)

If this is inserted into Eq. (23), the model function can be
expressed as

1 ~ 2
J(att0) = [ pol6 o pof 1o x cos (N 72 (At — ad® (t0; .., 6)) +4" ary (~Tu(9.), TM))) (21)

which is derived from Eq. (18). This turns out to be a quite
precise approximation for f(ty + At) in Eq. (20) where At is
the deviation from the starting position to of the specified
maximum. If in addition to the reduced order and coupling
one uses the reduced deviation At = 2°At € [-1, 1], the limit
p —» oo can be performed for the model function (21),
rewritten as

§P(@8t:t0) = [ po(6.)dd pol e
x [cos(in(Af —27%ad (to; ., ¢_)))
+ 4a dw -
] < 8a(1 — wZ)/3>
x cos(imm(At — 27Pad™ (ty: ¢. , qb,)))] : (27)
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5. Limiting cases

Clearly the exact renormalization group treatment re-
quires the limit p — co. On the other hand, of relevance
for a scale invariant formulation is the reduced order
p =p - 2k. In the following we look at different limiting
behavior depending on the relative size of p and k. It turns
out that one can distinguish two different limit ranges
which we call the perturbative and the nonperturbative
range.

5.1. The perturbative range

Increasing the reduced order p, the maximal reach does
not increase in the same way. Instead, more and more par-
tition integrals vanish close to the maximal reach (see
Fig. 14). This means that compared to the blunt effect,
the draft effect can be neglected. Note the similarity of
the three displayed pictures in Fig. 14, which is due to
the fact that the reduced coupling G = 4°a is used. This
range of parameters p and k does not contribute to the fine
structure but is responsible for the global selfsimilar
behaviour of expectations of observables.

5.2. The nonperturbative range

More interesting for the fine structure is the case where
the reduced order p becomes negative. Fig. 15 unveils a
rich structure. While Fig. 15 is calculated by using the
model function (27), the calculation for the open string of
length 3 leads to the same result. Finally, the result for
class k=9 (with the same reduced order p= -3, or
p=15) is again very similar. This means that the model
function correctly describes the effects seen in this nonper-
turbative range. Very characteristic is the kink close to
a = 0.5 which is relevant for the fine structure. This kink
has its origin in a majority of partition integrals swinging
twice before they vanish.

5.3. Development of bounded states

Characteristic for the nonperturbative range is that for a
given decaying maximum, the neighbouring maxima are
influenced strongly by the decay of the central maximum.
They decay nearly as fast as the central maximum. If we
use as an analogy the language of particle physics, then
maxima seem to interact and to formate something like a
bounded state. An interesting open question is whether
these “bounded states” can be described properly within
our current formalism based on partitions, or whether a
different approach is necessary for this.

6. The exponential draft function

In the following we will perform further calculations on
the draft function, which will ultimately lead to the imple-
mentation of graph theoretical methods previously intro-
duced in Refs. [30,31].

Our motivation is as follows. Higher-order correla-
tions of uncoupled Chebychev maps have been previ-
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Fig. 14. Contributions and sum of partition integrals of class k=7 for
increasing order p = 17, 18, 19 (from top to bottom, corresponding to the
reduced order p = 3, 4, 5) as functions of a. For better visibility, the sum is
multiplied by —2'k.

ously calculated using a graph-theoretical method. The
graphs relevant for N-th order Chebychev maps consist
of forests of N-ary trees [30,31]. It is now intriguing
that the same type of graphs can be used for the
coupled map system when calculating the relevant
scaling functions. This reminds us of the use of Feyn-
man graphs in quantum field theory, where one also
uses graphs up to a certain order to understand the
coupled system.
Let us define an exponential draft function by

~ +1 -
h(wsto) = / - exp(iod® (g )po(d )b, (28)

With the help of this the model function can be written
as



N
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integral

Fig. 15. Contributions and sum of partition integrals for p=13 and k=8
as a function of a € [0,4]. For better visibility, the sum is multiplied by
-2k

fP(At; to) =Re(e™h?(2 P ' md; ty))

+ 4a dw ( a1 a)z)/3>
1 3yBal —w?)/3 ' \V
X Re(e’“‘““hz(z p- 177:aa); to)). (29)

The relative minima (and maxima) of the model function
which define the boundaries of the partition integrals are
found by calculating the first derivative with respect to At
and determining the zeros of this derivative. One obtains
; .
s a0, ((sat1—o7)3)
o 3v8a(1—w?)/3
x lm(ei"’“Afﬂz(Tﬁ’lndw; to)), (30)

Im(e™h2(27P " ; ty)) =

using the fact that the integrand is an even function of w.

The exponential draft function can be visualised by a
parametric curve in the complex plane, as it is shown for
k=8, p=13 and a particular partition integral specified
by n =42 in Fig. 16. The long range of the curve is due to
the fact that 277 'ma = 47a is not a small number. Note
that the curve for w € [-1,0] is obtained by mirroring at
the real axis. The parametric curve shows quite an irregu-
lar behaviour which is hard to predict.

6.1. Analytical expression for the exponential draft function
One can perform a concrete calculation to obtain the

exponential draft function using graph theory. Inserting

Eq. (16) into Eq. (28), one obtains®

h(w; to) =e " (@

1 k—
></ p( Z 2l ¢+
1 =0
—icod® (tg) >~ (—iw)
)y

/ 1 (an $.)d

) (¢.)do,

> Po(¢.)d¢,.  (31)

3 Without loss of generality, T,i(—¢.) can be replaced by T, (¢, ) under
the integration.
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In the following we use the short hand notations
d:=d®(ty) and d; := d\" () and the convention that sums
run over values where all indices under the sum take non-
negative values less than k. By performing the integration
over ¢. one obtains

h(o; to) =e (l + (_iw)z Sodi+ (_iw)3 > didis

+ ( ]6 ZdzdlﬂdHZ +ta5 32 (Z dz)

_ 7é(;(1) Zd4 Z d2d1+1d1+2dl+3
32 Z didy. Z di + 384 Z Aidia
1w Zdz @, - "” Z did.y

E d[2 dl+1 dl+2 d1+3 d1+4

+(7

+ 384 Zdzd‘a‘ld”3+ 768 Zd4dl+2dl+3
e Zdzd?+1d1+2_ oy Zd?ledHZ
(128 S didsd, -1 e Sy dd,
ldmduzzd?
—iw)® ) ]
128 (Zd dl\l) + 576 Zd
4 2
- 256 Zd 2+ 384 (Zd) +) (32)

Expressing the higher-order correlation of (uncoupled)
Chebyshev maps in terms of a graph theoretical approach
[30,31], the various contributions above represent possible
integer partitions of powers of 2 and can be represented as
binary forests. It can be shown that the series can be

= la=24 k=8 -
£ r p=131
: n=427

0.5 B
-0.5 B
-1 L P S S S P S R S S |
-1 -0.5 0 0.5 1
Re(h)

Fig. 16. Parametric curve of the exponential draft function
h2?'maw;t,) for k=8, p=13 and n=42 with reduced coupling
a=2.4 and w € [0,1]. The twelve points represent 12 equidistant values
of w for a fixed value of a = 2.4.
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resummed as an exponential function h(w; to) =
exp(ih,(w;ty)) where the exponent h,(w;ty) contains only
trees,

h,(w; to) = — icod 4+ 11

O S
1(1) Zdzdlnd{\z* 71(/) Zd4

dl+1 dl+2 dl+3
Y141

l(l] 4
384 Zd i -
6
,dm + (;C:) Zdlzdl+ldl+2dl+3dl+4

. \6
1w
+ ( 384 Zd d,+1dl+3 + 768) Zd?dlﬂdlﬁ

. \6
71(1)
dl3+1 di2 - ) E d?dm diyo
( Z Z
128 diduad,; - 1536 did.

576 Zdﬁ (33)

6.2. Single trees and multiple trees

The idea of using binary forest graphs for our calculation
can be summarized as follows: Let d; be the coefficient of
the Chebyshev polynomial T, (¢, ). Under the replacement
¢+=sin  (mt,/2) one has  T,(¢,)=sin(mt,/2),
Ty (¢.) = —cos(mt.), and T,(¢,)=cos(2"'nt,) for I>1.
Therefore, under this replacement, the Chebyshev poyno-
mials can be represented using complex exponential func-
tions exp (+2'~'int,). In calculating the integral in Eq. (31),a
product of exponential functions corresponding to the coef-
ficients d;.; in the sums in Eq. (32) is integrated over ¢..
However, the integration of this product gives a non-van-

n=2: Zd,z means1-1=0 g
n=3: Y did,; means1+1-2=0 A\
n=4: Zd,zdmdm means 1+1+2-4=0 /<\

ishing contribution only if the exponent of the complex
exponential vanishes (for details, cf. Refs. [30,31]).

To give an example, the [-th contribution to > d,zdm in
Eq. (32) is given by integrals of the exponential function

exp((£2'+2' +2"Nint, ) = exp(2(£2° £2° £ 21int,).(34)

This integral gives a non-vanishing contribution only in the
case where +2°+2°+ 21 =0 (all the signs being indepen-
dent). The only possibilities in this case are 2°+2°—
2'=1+1-2=0and —2°-2°+2'=—-1-1+2=0which
are different only by a global sign. One can write
29+2°=1+1=2=2" which is a unique partition of the
highest power. In general, the binary sum condition is given
by

Zanzm = (35)

m=0n=

where s, = +1 are the possible signs in the binary sum con-
dition. The same powers of 2 in this condition are repre-
sented by points (leaves) in the same layer of a binary
forest of graphs. In order to understand these graphs and
their construction methods, one starts with the highest
power. The highest power 2 can be decomposed into lower
powers by using 2/ = 2i-1 + 21-1, This is represented by two
lines going down from this (highest) point of the graph. If
both lower powers are found in the binary sum condition
(like in 2'=2°+2° in the example above), the lines are
closed by points (leaves are drawn) and a tree is created.
If one (or both) of the lower powers are not found in the
vanishing sum, this lower power again is decomposed in
smaller powers, until the powers are met by contributions
in the binary sum condition.

The main part of the exponent ﬁz(w; to) contains single
trees, corresponding to unique decompositions of the
highest power of 2. They are given by

n=>5: Zd,zdmd,ﬂdm means 1+1+2+4-8=0 /<<\
> did,, means1+1+1+1-4=0 A

n=6: > didyidyodysdis means1+1+2+4+8-16=0

> didiodys means 1+1+1+1+4-8=0

> did}dys means 1+1+2+2+2-8=0

7

(36)
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The coefficients for these contributions are given by

1
T (37)
2" ng!Ing! - - - ny_p!

where n, counts the occurence of 2¥ in the decomposition.
However, there are also multiple trees, like for instance
> did},,, corresponding to +1+1—2|+2—2=0 where
the vertical bar separates the two different independent
relations +1+1—-2=0 and +2 —2=0. In order to deal
with these contributions and their coefficients, it is appro-
priate to work with so-called summation ordering (for
more details see Appendix D).

6.3. Summation ordering
If for multiple sums one excludes repeating indices, one

ends up with a summation ordered expression, similar to time
ordered expressions in quantum field theory. One obtains

fz(w;to) —xud<1+ —im)? Zdz —im)? Zdldm
4 iw)* .
+%Zd?dmdl+z+( 31(;) Zd‘zzd‘z
. 4
4 S
. 5
-1
: 32) Zdrzdmzdﬁ 384 " Yt
. 5
-1 —
Clo)’ S, + L

1 dl+1 dl+2 dl+3 dl—4

1 dl+1

I(D
384 Zdzdl+1dl+3+ 768 Zd4dl+2dl+3

i+ 192 " S dtd i
128 Zdzd’“dfﬂ* e Zd4 f

Zdiadi de

128 Zdzd,+12d,/d,,+l+ e Z ;

256 Z‘#Zd 384 Zdzzdvzd,f > (38)

) —im)? —iw
—=Sexp (—uud-&-%Zd,z ) iy

U))4Zd4
;d1+1d1+2dl+3+ 384 Zd4drvz
1 d13+1 +% Zd?dhl

P dydyodiss du

384 Zdz Lo+ g 768 Zd4d’+2d"3
13+1d1+2+ 192 Zd4dl+1dlz
128 Zdzd”‘d‘+2+ 1;(;)6 dodidy

—iw)® 6.
2304 Zd ) (39)

Here a prime at the summation symbol means disjunct
indices, the symbol S indicates the summation ordering.
Summation ordering defined here, therefore, means that
in a product of sums the indices are disjunct. As the time
ordering cannot be used directly for the exponent of a time
ordered product in quantum field theory, the same holds
for the summation ordering: it is defined only if the expo-
nential series in Eq. (39) is expanded as in Eq. (38). How-
ever, the coefficients are all positive, and by
combinatorical means (worked out in Appendix D), the
coefficients of the non-ordered series can be retained.

7. Conclusion

In this paper we have presented novel analytic results
for an important class of coupled map lattices (CMLs), so-
called chaotic strings, which play an important role in
extensions of stochastically quantized field theories. We
were able to derive an analytic expression for the invariant
1-point density of the coupled map lattice as a function of
the coupling, extending previous results obtained in Refs.
[19,20]. The invariant density was approximated to pth or-
der in an iterative recurrence scheme, giving exact result
for p —» oco.

This scheme allowed us to better understand the non-
trivial dependence of expectations of observables (such
as the vacuum expectation value) on the coupling con-
stant. A complex selfsimilar structure was found, for which
we developed a mathematical description in terms of scal-
ing functions. Two types of scaling functions were intro-
duced (draft functions and blunt functions) which
allowed us to comprehensively describe topological
changes, as well as gradual changes, of the generating par-
tition as a function of the coupling a, thus understanding
the corresponding changes of the integrals that occur when
expectation values are calculated.

Analytical expressions were found for both draft and
the blunt functions. Based on these, in the vicinity of local
maxima the scale and parameter invariance could be de-
scribed in an analytic way by introducing a renormaliza-
tion group ’'model’ function (the analogue of
Feigenbaum’s fixed point function for 1-dimensional criti-
cal maps). By implementing a graph theoretical method,
explicit calculations could be performed for this model
function, with surprising connections to Feynman graphs
in quantum field theory and other graphs (binary forests)
developed to understand the higher-order correlations of
uncoupled Chebychev maps. The exponential draft func-
tion as the main element of the model function was ex-
pressed as a (summation ordered) exponential series.

Our results significantly advance the analytic under-
standing of chaotic non-hyperbolic CMLs, of relevance in
many different areas of physics, and are in good agreement
with direct numerical simulations of the CML.
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Appendix A. Explicit calculation for the first and second
iterate

In order to explain our method to obtain the first iterate
in Eq. (10), we calculate

T TalT(B Ta(6) + o9 )i, +.) =

= Toa($: T2(,) + To())Toq(Toa(¢5 T2()
+T2(d))id. + ). (A1)

Close to ¢ =1 we obtain

T3(1 - axTa(d.) + Ta(g ) =+ + O(a).

4
T50(1 = ax; Ta(.) + Ta(¢_)) = 1 — ax’ + 0(a?), (A2)
where

, ox 1

X =7 +5T(0) +To(6) - 2) (A3)

Inserting the positive square root Tj,(1—ax;T»(¢,)+
To(¢p_))~1—ax for ¢ into the expression
Tsi(¢'s ¢, + ¢_) does not lead to the approximation (2).
However, if we insert the negative square root
T5,(1 —ax;To(p,) + T2(¢_)) = —1 + ax’, we obtain

(-1 4aX56. + 9 )~ ! (A4)

2/2a(1-a)\/x/4—13(d.) = 13(-)

and together with T, (1 — ax; T2(¢,) + Ta2(¢p_)) =~ —1/4 the
integrand of the first iterate, which is now given by

d

d¢T§a( 2a($3T2(d)) +Ta(d))id, + ). (A5)

For the second iterate, we use

1

Tl - a5 To(T2(9,) + Ta(Ta(9.))) = 3 + 0(@)
Tl - 05 To(T2(9,) + Ta(Ta(9.))) = 1 - a¥ +0(a?),
Toill — @ To(8.) + Ta(6)) = — 4 + 0(@),

To(1 = aX;Ta(d,) + Ta(¢p ) = ~1+ax" +0(a’) (AB)

with

X _% %(TZ(T2(¢+)) +Ty(Ta(¢p)) = 2),
X//ZXZ, %(T2(¢+)+T2(¢7)72) (A7)

and, finally,

1

Tl (-1+ax;¢, +d_) ~ . (A8
w T ) 2\/20(1*a)\/X/15*r§(¢+)*T§(¢f) o)
The integrand, therefore, is given by
d..
~ds T30(T2a(T2a(#: T2(T2(9,)) + T2(T2(¢.)));
X T2(¢+)+T2(¢—))§¢+ +¢—)' (Ag)

Appendix B. Details on the “path of the roots”

In Appendix A we have considered only one “path of the
roots” which directly leads to the iterates p{ (¢). However,
it can be shown that by adding over all possible paths, we
end up with Eq. (12) which is equal to p{”(¢) close to the
boundary ¢ = —1 and equal to the sum of the p{ (¢) (for
q < p) at the boundary ¢ = +1. Looking at the region close
to the boundary ¢ = —1, we expand the integrand of (12)
with ¢ =ay — 1 for small values of a. Looking at different
orders p, we obtain

d
dg T (@046
d(bTZa((b ¢++¢ ) d¢T2a(¢ ¢++d) )
N 1
V/16a(1 —a)(y —13(¢.) — 13(6.)
: i ().

\/8al — )y~ 13(,) ~ 13(6.)

T T BTa0) + Ta(6 )it +):

d

dd’ T;a(T;a(d) T2(¢+) +Ta(9-)); ¢+ (,b,)

L d
Tdg

d(; ZG(T;(I((}S T2(¢+) + Ta(e_ ))§¢+ +¢—)

T;a( 2a(¢ T2(¢+)+T2(¢ )) ¢++¢7)

Y35 Tza(T2a<¢ Ta(6,) + 29 )i b, +9.)

¢8a(1 a)(y —13(¢.) —13(6))
1

—

1
<\/N2+f V2V2 - f)

¢8a(1 —a)(y - r2<¢+> —19(¢_))

% (sm (g) + sin (%))
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1T (T (Tl B Ta(Ta9.,) + TaTa (6. )

T2(¢+) + T2(¢—))§ ¢+ + ‘/L)

= 2 T Ta (B Ta(Ta(9.) + TaT2 (6. )
Ta(6) + T2l )i, +9)

d

Kz
260N+ )+ 4T (T T Ta(Ta(6)

+T2(T2(¢))); Ta(¢.) + Ta(¢)); ¢, + )

T;a (T;a( ;a(d’; TZ(T2(¢+)) + T, (T2(¢_))), T2(¢+)

dd)T;u( Ea( 2a(¢ TZ(T2(¢+))+T2(T2(¢—)))5T2(¢+)
260Nt + 6 )+ 4T (T T Ta(Ta(6.)
+T2(T2($))); Ta(d,) +Ta(¢)) i by + )

T T (Tl TTa(6.)) + ToTa(d ))Ta(6.)

+T2($_)); . +¢-) ¢T2a (Tza(Tza(¢ T2 (T2(o.))

+T2(T2(¢))): Ta(dy) + T2(¢ )b + ¢

T (T T8 Ta(Ta9) + Ta(Tald DTl

1

+T T
O ) A )

1 1
4(ﬁ\f2+\/§\/2+\f2+\/§
1
+
V2V2 V2242 -2
1
+
V2V24+V2\2-V2+V2
. 1
V2V2 V202 -2 -2
1

\fBat )y r3(6,) - 13(6))

1 .
L)

1 .
ﬁm:% fo/fzsm(g),
7 21_\/2:% 2+\/§:sm<3§n>,

V2V2 1+ V22 + V2 +2
7f\/2+f\/2 \/2+f—sm(16),

ﬁm\/2+ 2-V2
,\/'\/2 \/'\/2 \/2 f—smGﬁ)

V2V2 +V2\2 -2+ V2
\/_\/2+\/_\/2+\/2+\/——sm<zg>

1
V2V2 =242 -2 -2

,quz V224 /2 - ﬁ—sm(‘?g) (B2)

Because of

zlpzpz ( 22’1};”) H/Ol sin (’g)dt:%, (B3)
for higher and higher orders of p the integrand approaches
2 1
T \[8a(1 - a)y - r3(4,) — 13(6.))

- 1

myf2a(1 - a)y 136, 13(6.))

Similar considerations lead to the iterates close to the
boundary ¢ = +1.

(B4)

Appendix C. The model function for p — =

Because the second part of the radicand in Eq. (22) con-
tains a k-fold Chebychev map, one first has to unfold this
map. Using

. (T 1
1(. (= 37 7n 57 oo =sin(3t),  pold.)dg. —dt., (c1)
2 2
4<sm<16>+sm<16>+sm<16)+sm<16)>,(Bl) .
one obtains
L= 2
FOR (AL t) = / dt.dt_ x cos (\/nz( At — 27 Pad® (ty; t,, t,)) - 2(1r3°<— cos(2¥'mt,), — cos(2"]nt))). (C2)

For obtaining the final results we have used that

After the substitution t, = 2%t, the result reads
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PN N 2 N - 2
FO0 (AR tg) = ﬁ B dt’ dt’ x cos <\/ 2 (At —27Padw (to; 2% 27kt )) —2ary (7 cos(2 t'),— cos (g t ))) . (C3)

The huge integration range [—2¥ 2] for each of ¢, can be
divided up into the standard intervals [—1, +1] by using

t=t, +2"—2n, —1e[-1,41], (C4)

where n,=0,1,...,2¥ — 1 counts the intervals. Because of
t. =27t +2n, +1) — 1, the (twofold linearized) draft
function d®(to;t,,t ) is nearly constant in each of the
intervals [—-1, +1]. In defining

do.n_(to) ::;Lr?c Zi(">(t0;2”‘(2n+ +1)-1,2%2n_+1)-1) (C5)

one has to deal only with the blunt. Using

—cos (g t’i)

— _cos (gti 7§(2’< ~1-2n,))
= —cos (gt’i Ly g + nni>
—sin (g ¢+ ) = (1) sin (gti) (C6)

and removing the sign by replacing t}, — —t’,, for the limit

k — oo one obtains

gP(a,¢) = cos < e+ 8;) (C11)
This function can be inserted into Eq. (C7) to give

; 8a
(12} 2 _ b
fO (AL t) = 11m E cos (\/n (At 2 adn,n,(to)) +3 )

(C12)

In the limit k — oo, the remaining summations over n. can
be reunited to an integration over ¢., leading to the final
result in Eq. (23). For practical reasons, however, k is kept
finite in the main text.

Appendix D. Combinatorics for the exponential draft
function

The (positive) coefficients of the exponent of the sum-
mation ordered exponential draft function can be calcu-
lated by using combinatorial considerations. In this
appendix we demonstrate the procedure for single and

P8 t0) = lir m4m :k;/ dt’ dt" x cos <\/n2(Af—2i’d&n}n (t0)>2 -~ 2ary (sin (gtg),sin (gt»)
—hm / Po(.)dd. po(¢_)d_ x cos (\/nZ(Atz ad, , (to)) -~ 2ary (qw))- (C7)

In the final step, ¢. = sin (nt’ /2) is used. The integrand
does depend on ¢. only via r5°(¢_, ¢_) while for the first
part one can use the abbreviation

¢ = m(At—27ad, , (to))- (C8)

In Fig. 17 the function

87(@.0) = [ po(6,)d6.po(6 )i cos( e fzar‘;(mm) (c9)

is shown as a function of ¢ for different values of a. For the
order p of the blunt function r5(¢,,$_) a value of p=3 is
enough to provide sufficient precision. In analysing the po-
sition of the drafted minima in dependence on d, one
obtains*

¢(@? - ¢(0)* = & ¢(0) = \/e(@)® + +5 (€C10)

leading to

4 The value — 8/3 is not rigorously derived but follows from numerical
inspection.

multiple trees in the summation ordered expression and
show how to derive the coefficients of the non-ordered
expression.

D.1. Coefficients for single trees

According to our graph theory, single binary trees rep-
resent unique relations between powers of 2. The sum

&
S
“> 0.5
0
a=0
——————— a=1
-0.5 -a=2
a=3
a=4
—1 -

Fig. 17. g (a,¢) as a function of ¢ for different values of a. The order p of
the blunt function 1% (¢, ¢_) is chosen to be p = 3.
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> d,zdf’ﬂd,g for instance, represented by the single tree

A

results from the unique relation1+1+2+2+2 —-8=0.In
general, from combinatorics one can see that for the
expression

k—n+1n-2 n-2
n;
> Idi > m=n (o)
1=0 i=0 i—0
there are n!/(ng!ny! --- n,_5!) discriminable permutations

without taking into account the global sign (which gives
a factor 21). Together with a factor 1/n! for the exponential
series in Eq. (31 and a factor 1/2" from the trigonometric
functions T, (sin(7t, /2)) after their expansion in exponen-
tial functions, one obtains

1 2in! B 1 (D2)
n2" \nolny!- - na2!) 2" pging !y !

D.2. Coefficients for multiple trees

While the coefficients of the single tree contributions
are the same for the summation ordered as for the non-
ordered exponential draft function, the coefficients of the
multiple tree contributions are different in both cases.
However, the coefficients of the summation ordered con-
tributions can be calculated by combinatorial means. This
is shown for the contributions of orders n=4 to 6 in the
following. Multiple binary trees correspond to relations be-
tween powers of 2 which can be split into two or more sin-
gle relations separated by a vertical bar.

. de: +1—-1|+1-1=0 gives 4!/2!/2! permutation if
+1 and —1 are taken to be two different elements. A glo-
bal sign for the first or the second part +1 — 1 =0 need
not be taken into account because the permutations
already lead to the sign-changed contributions (sign
non-sensitive). Together with the global factor 1/4!/2*
one obtains

Ay _ 1 1

44 \2121)  2%2121 64
dedmz +1+1-2|+1-1=0gives 5!/3!1!1! permu-
tations where now the global sign for the first part has

to be taken into account. One obtains two (formally
equal) contributions

1 (sLsty_ 2 1
5125 \311111 " 113111/ ~ 2531 96°
o S d’d’ 1 +1+1—2|+2 —2=0gives 5!/21112! permu-

I4+1
tations where the same holds as in the previous case.

One obtains

15 sy 2 1
5125 \2!1121 * 212111) 7 252121 128°

o S did) \dip: +1+1-2[+2+2-4=0 gives 6!/
2111211! permutations. In this case one has to take into
account the global signs of both parts. In addition the
numer of elements changes if the global signs change.
One obtains

1/ 6 N 6! N 6! N 6\ _ 1
6126 \21112111 " 213111 " 21112011 T 213111) T 96°
o Ydidydia: +1 — 1|+ 1+1+2 —4=0 gives

(6 6 ) 1
6126 \311111! 1311111~ 192°
o S didid} ,: #1+1+2 — 4] +4 —4=0 gives

S O D
612° \2T1121 2112111 ~ 128

e S d/d},: Besides the sign sensitive possibility
+1+1-2|+1+1-2=0, in principle there is also a
non-sensitive possibility ~ with  three  parts,
+1—-1]+1-1|+2 —1=0. However, this possibility is
the same as the sign-changed possibility
+1+1-2|-1-1+2=0. Therefore, only the first has
to be taken into account, resulting in

RV AT
6126 \412! " 21211111 7 21211111~ 4121)  1536°

e>d +1—-1|+1—-1|+1—-1=0 contains three parts
not sensitive to the global signs. Therefore, one obtains

1 (8 _ 1
6126 \3!131/ ~ 2304°
D.3. Summation ordered and non-ordered coefficients

The relation between the coefficients of the summation
ordered and non-ordered exponential draft function can be
found by using

SdSdi = deidﬁ +3d},
Sdidy ST di =S "di > dy + > didg + > didy
Zdzzdmdm Zdlz = Z didy,y d,+2Zd,2/ + Z didiidys,

+ 3 A dys + > didad,,
Sdidy, S didy

=Y "didi, idﬁd,/ﬂ +Y dd diy + Y A, + > dEd L dy,
= Zd,zdmi:df,d,/ﬂ +Y A, +2> did] do,

Sdi>dp :Zdﬁidﬁ +3d7,

SENES d = (dejjdf) S+ > di > dh

=SS E G S B+ S dN d S dy dh > d) =
:dej:d,%f:d,% +32d;‘2dﬁ+2dﬁ (D3)
Using, for instance, for the contribution of order n=6 in

Eq. (32) a general ansatz and applying Eqs. (D3), one
obtains
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A Z didi1dyadysdig + A Z did} \dis + As
x S didiody, + A did} dyys + As
) S didpady, +As Y didiadi, + A did]
+As Y didiadiy Y di+ Ay didig > dydy
+ARY A+ A Y A A AR Y &> df
X Zdﬁ
=A Z didy1di2disdi g + A Z d12d13+1dl+3 +As
x " didiody, + (As+As +2A0) > didy, dyi
+(As +As) > didyrdy, + (As + As)
x S didyd}, + A > didr +As
X Z dididys z/:dlz +Ag Z didy. i:d%dl’ﬂ

+ (Ajo +A11 + A1) Zd? + (A1 + 3A12)

> dfid,% +ARY d,zidﬁidfn. (D4)

Comparing with Eq. (38) one obtains

1 1 1
A]:@7 Azim, A3:ﬁ7
1 1 1
As=@7 A9:128’ Alzzﬁv (D5)
furthermore
1 1 1 1
An =356 3 =356 " 128~ 256"

and finally the coefficients for ...

2 3 1 1 1 1 1
Zd1d1+1dl+21 A4:%—As—2Ag=%—a—2m:—@’
4 1 1 1 1
Zd1d1+1dl+2? A5:@—A3:@—@:—%,
1 1 1 1

2 3. _ - -
D didiady;: A= M =T33 6~ "1
ap .1 11 1
> didi.y : A1 =9536 M = 1536 128~ 1536
1 1 1 1

1
6 . _ _ _ — -
D40 Ao =3aa—An — A = 535+ 55—~ 355 = 5757 (06)
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