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Abstract
The rigidity of squares of graphs in three-space has important ap-

plications to the study of flexibility in molecules. The Molecular Con-
jecture, posed in 1984 by T-S. Tay and W. Whiteley, states that the
square G2 of a graph G of minimum degree at least two is rigid if and
only if G has six spanning trees which cover each edge of G at most
five times. We give a lower bound on the degrees of freedom of G2 in
terms of forest covers of G. This provides a self-contained proof that
the existence of the above six spanning trees is a necessary condition
for the rigidity of G2. In addition, we prove that the truth of the
Molecular Conjecture would imply that our lower bound is tight, and
would also imply that a conjecture of Jacobs on ‘independent’ squares
is valid.

1 Introduction

One of the main unsolved problems in combinatorial rigidity is the charac-
terization of rigid graphs in three-space. There exist some partial results,
see for example [4, 5, 6], but the general problem appears to be difficult, see
[3, 18]. In this paper we consider an important special case, which has been
a focus of recent research: characterize when the square of a graph is rigid,
where the square G2 of a graph G is obtained from G by adding a new edge
uv for each pair u, v ∈ V (G) of distance two in G, see Figure 1.
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Figure 1: A graph G and its square G2.

Squares of graphs are sometimes called molecular graphs, because they
are used to study the flexibility of molecules, particularly biomolecules such
as proteins [19, 22]. Franzblau [1, 2] has developed combinatorial algorithms
for computing lower and upper bounds on the degrees of freedom of molec-
ular graphs using ear-decompositions of graphs.

The Molecular Conjecture, due to Tay and Whiteley [15, Conjecture 1],
states that the square G2 of a graph G of minimum degree at least two is
rigid if and only if G has six spanning trees which cover each edge of G at
most five times. The conjecture indicates that the problem of determining
when molecular graphs are rigid may be significantly easier than the problem
for arbitrary graphs. Our main result (Theorem 4.1) gives a lower bound
on the degrees of freedom of G2 using forest covers of G. This provides
a self-contained proof that the existence of six spanning trees which cover
each edge of G at most five times is a necessary condition for the rigidity of
G2. We show that the truth of the conjecture would imply that our lower
bound on the degrees of freedom of G2 is tight. We also show that it would
imply a conjecture of Jacobs [12] that a molecular graph has no ‘redundant
edges’ if and only if it satisfies the ‘Laman condition’. Related results are
discussed in the concluding section.

2 Rigid graphs and frameworks

In this paper we consider finite graphs without loops. We will reserve the
term graph for graphs without multiple edges and refer to graphs which
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may contain multiple edges as multigraphs. The multigraph obtained from
a graph G = (V,E) by replacing each edge e ∈ E by k copies of e is denoted
by kG.

A (three-dimensional bar-and-joint) framework (G, p) is a graph G =
(V, E) and a map p : V → R3. We consider the framework to be a straight
line realization of G in R3. The rigidity matrix of the framework is a matrix
R(G, p) of size |E| × 3|V |. For each edge vivj ∈ E, the entries in the row
corresponding to the edge vivj are defined as follows: the three columns cor-
responding to the vertex vi contain the three coordinates of p(vi)−p(vj); the
three columns corresponding to the vertex vj contain the three coordinates
of p(vj)−p(vi); the remaining entries are all zeros. See [18] for more details.

We refer to the vectors in the null space of R(G, p) as infinitesimal mo-
tions of (G, p). This definition is motivated by the fact that each continuous
motion of (G, p) which preserves all ‘edge lengths’ gives rise to an infinites-
imal motion, see [18]. The null space of R(G, p) will have dimension at
least six since the translations and rotations of R3 give rise to six linearly
independent infinitesimal motions (when |V | ≥ 3). Thus,

rank R(G, p) ≤ 3|V | − 6 when |V | ≥ 3. (1)

We say (G, p) is infinitesimally rigid if the rank of R(G, p) is equal to 3|V |−6.
A framework (G, p) is generic if the ranks of its rigidity matrix, and

all its submatrices, are maximum among all realizations of G. It is known
that almost all realizations of G are generic, and that each infinitesimal
motion of a generic framework is ‘induced’ by a continuous motion of the
framework. We denote the rank of the rigidity matrix of a generic realization
of G by r(G) and refer to it as the rank of G. By the preceding paragraph
r(G) ≤ 3|V |−6, whenever |V | ≥ 3. The graph G is said to be rigid if either G
is a complete graph on at most two vertices, or |V | ≥ 3 and r(G) = 3|V |−6.
More generally 3|V | − r(G), i.e. the dimension of the null space of R(G, p)
for a generic realization (G, p) of G, is referred to as the degrees of freedom
of G, and measures the flexibility of generic realizations of the graph.

Conjecture 2.1 below is the bar-and-joint version of the Molecular Con-
jecture. This conjecture was given by Tay and Whiteley in [15], and sub-
sequently appeared in several different forms, see [18, 19, 20, 21, 22]. It is
usually formulated in terms of ‘body-and-hinge’ frameworks, which will be
described in Subsection 2.1. We heard of the bar-and-joint version of the
conjecture in a private communication from Whiteley. We have not been
able to find it explicitly in the literature.
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Conjecture 2.1 (Molecular Conjecture) Let G be a graph with mini-
mum degree at least two. Then G2 is rigid if and only if 5G contains six
edge-disjoint spanning trees.

We may extend Conjecture 2.1 to a conjecture which characterizes the
degrees of freedom of a molecular graph. Let G = (V, E) be a graph. For
a family F of pairwise disjoint subsets of V let EG(F) denote the set, and
eG(F) the number, of edges of G connecting distinct members of F . For a
partition P of V let

defG(P) = 6(|P| − 1)− 5eG(P)

denote the deficiency of P in G and let

def(G) = max{defG(P) : P is a partition of V }.

We say that a partition P of V is a tight partition of G if defG(P) = def(G).
Note that def(G) ≥ 0 since defG({V }) = 0. Theorem 2.3 below implies
that def(G) is equal to the minimum number of edges which have to be
added to 5G in order to create six edge-disjoint spanning trees. The follow-
ing conjecture asserts that there is a close relationship between def(G) and
r(G2).

Conjecture 2.2 Let G = (V, E) be a graph with minimum degree at least
two. Then

r(G2) = 3|V | − 6− def(G). (2)

We may deduce that Conjecture 2.2 implies Conjecture 2.1 by using a
result, proved independently by Nash-Williams and Tutte.

Theorem 2.3 [13, 16] Let H = (V, E) be a multigraph and let k be a pos-
itive integer. Then H contains k edge-disjoint spanning trees if and only
if

eH(P) ≥ k(|P| − 1)

for all partitions P of V .
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2.1 Body-and-hinge frameworks

We give a brief informal description of the molecular conjecture for body-
and-hinge frameworks in this subsection. It is independent from the rest of
the paper, where we will only be concerned with bar-and-joint frameworks.
In a (three-dimensional) body-and-hinge framework, vertices are represented
by rigid bodies and each edge by a hinge which connects the corresponding
pair of bodies. The bodies are free to move continuously in R3 subject to
the constraint that the relative motion of any two bodies joined by a hinge
is a rotation about the hinge. The framework is rigid if every such motion
preserves the distances between all pairs of points belonging to different rigid
bodies, i.e. the motion extends to an isometry of R3. As in bar-and-joint
frameworks, the infinitesimal motions of a body-and-hinge framework can
be defined as the vectors in the null space of an associated rigidity matrix,
and the framework is infinitesimally rigid if the null space of this matrix has
dimension six, see [11]. Tay [14] and Whiteley [17] independently showed
that a graph G has an infinitesimally rigid body-and-hinge realization if and
only if 5G has six edge-disjoint spanning trees.

A molecular framework is a body-and-hinge framework in which the lines
containing the hinges incident to each body are constrained to meet at a
common point. The study of these frameworks is motivated by their ap-
plication in molecular biology. In this application we model a molecule by
a body-and-hinge framework which represents each atom as a body. The
relative motion of two atoms which are linked by a bond is constrained to be
a rotation about the line through the centre of the atoms. This gives rise to
a molecular framework whose rigidity properties provide information about
the flexibility of the molecule. Tay and Whiteley conjectured in [15, Con-
jecture 1] that if G has an infinitesimally rigid body-and-hinge realization
then G has an infinitesimally rigid realization as a molecular framework.
The truth of this conjecture would imply that the results on generic body-
and-hinge frameworks (e.g. the characterization of rigidity, algorithms for
computing the degrees of freedom, etc.) extend to molecular frameworks.

Intuitively, the connection between the rigidity of a bar-and-joint real-
ization (G2, p) of G2 and the rigidity of a molecular realization of G can
be seen by observing that each vertex v and its neighbours in G induce a
complete subgraph in G2 which acts as a rigid body in (G2, p). The relative
motion of two such bodies corresponding to adjacent vertices u, v of G is
constrained to be a rotation about the line containing the points p(u) and
p(v). Whiteley [21] has formalized this connection by showing that a graph
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G of minimum degree at least two has an infinitesimally rigid molecular
realization if and only if G2 has an infinitesimally rigid realization as a bar-
and-joint framework. It follows that the above mentioned conjecture of Tay
and Whiteley is equivalent to Conjecture 2.1 in this paper. See [11, 18, 22]
for formal definitions and more details on body-and-hinge frameworks.

3 Covers and partitions

Let G = (V, E) be a multigraph. For X ⊆ V , let EG(X) denote the set,
and iG(X) the number, of edges in G[X], that is, in the subgraph induced
by X in G. For X ⊂ V let dG(X) = eG(X,V −X) denote the degree of X.
If X = {v} for some v ∈ V then we simply write dG(v) for the degree of
v. The set of neighbours of X (i.e. the set of those vertices v ∈ V −X for
which there exists an edge uv ∈ E with u ∈ X) is denoted by NG(X). We
use E(X), i(X), d(X), or N(X) when the multigraph G is clear from the
context. A graph G = (V, E) is M -independent if the rows of R(G, p) are
linearly independent in some (and hence in all) generic realizations (G, p) of
G.

A cover of G = (V, E) is a collection X of subsets of V , each of size at
least two, such that

⋃
X∈X E(X) = E. A cover X = {X1, X2, . . . , Xm} of G

is 2-thin if |Xi ∩Xj | ≤ 2 for all 1 ≤ i < j ≤ m. For Xi ∈ X let f(Xi) = 1 if
|Xi| = 2 and f(Xi) = 3|Xi| − 6 if |Xi| ≥ 3. Let H(X ) be the set of all pairs
of vertices uv such that Xi ∩Xj = {u, v} for some 1 ≤ i < j ≤ m. For each
uv ∈ H(X ) let h(uv) be the number of sets Xi in X such that {u, v} ⊆ Xi

and put
val(X ) =

∑

X∈X
f(X)−

∑

uv∈H(X )

(h(uv)− 1).

We say that a 2-thin cover X of a graph G = (V, E) is independent if
the graph (V, H(X )) is M -independent. The following lemma shows that
independent covers of G can be used to give an upper bound on r(G).

Lemma 3.1 [5, Lemma 3.2] Let G = (V, E) be a graph, and let X be an
independent 2-thin cover of G. Then r(G) ≤ val(X ).

We say that the graph G is strong if 5G has six edge-disjoint spanning
trees, or equivalently, if def(G) = 0. A subgraph H is a brick of G if H is
a maximal strong subgraph of G. Thus bricks are induced subgraphs of G.
We showed in [10] that the vertex sets of the bricks of G partition V . We
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X1

X2

Figure 2: A graph G = (V,E) and its brick partition {X1, X2}, together with
the corresponding independent 2-thin cover X of G2. We have def(G) = 1
and val(X ) = 35 = 3|V | − 6− def(G).

shall refer to this partition of V as the brick partition of G, see Figure 2. We
will see in Theorem 3.4 below that every tight partition of G gives rise to an
independent 2-thin cover X of G2 with val(X ) = 3|V | − 6− def(G). This is
illustrated for the brick partition in Figure 2. We show in [8] that the brick
partition of G can be constructed efficiently, and also that the Molecular
Conjecture implies that the bricks of G give rise, in a natural way, to the
maximal rigid subgraphs of G2.

We will need the following result from [10].

Lemma 3.2 [10] Let G = (V, E) be a graph and P be a tight partition of
V .
(a) If Q ⊆ P with |Q| ≥ 2 and H is the subgraph of G induced by the union
of the members of Q, then defH(Q) ≥ 0.
(b) If P ∈ P and K = G[P ], then K is strong.
(c) If P is a tight partition of G with as few members as possible, then P is
the brick partition of G.

The following lemma is a well-known result in graph rigidity theory. The
operation described in the lemma will be referred to as a 0-extension. (It is
also called vertex-addition in the literature.)
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Lemma 3.3 [18, Lemma 9.1.3] Let H = (V,E) be a graph and v1, v2, . . . vs

be distinct vertices of G for some s ∈ {1, 2, 3}. Let G be obtained from
H by adding a new vertex v and all edges vvi for 1 ≤ i ≤ s. Then G is
M -independent if and only if H is M -independent.

We can now deduce the above mentioned correspondence between tight
partitions and 2-thin covers.

Theorem 3.4 Let G = (V,E) be a graph of minimum degree at least two
and let P = {P1, P2, ..., Pt} be a tight partition of V . Let Xi = Pi ∪NG(Pi)
for 1 ≤ i ≤ t and let X = {X1, ..., Xt}. Then X is an independent 2-thin
cover of G2 with val(X ) = 3|V | − 6− def(G).

Proof: We say that P induces a cycle of length k in G if there exist distinct
classes P1, P2, . . . , Pk ∈ P and distinct edges e1, e2, ..., ek ∈ E such that
ei ∈ EG(Pi, Pi+1) for 1 ≤ i ≤ k − 1 and ek ∈ EG(Pk, P1). It follows from
Lemma 3.2(a) that P does not induce a cycle of length less than six in G.
In particular, eG({Pi, Pj}) ≤ 1 for all 1 ≤ i < j ≤ t.

It is easy to see that X is a cover of G2. Furthermore, since eG({Pi, Pj}) ≤
1 for 1 ≤ i < j ≤ t, and G has minimum degree at least two, we have
|Xi| = |Pi| + dG(Pi) and |Xi| ≥ 3 for 1 ≤ i ≤ t. By using the fact that
P does not induce cycles of length two, three or four in G, it is also easy
to verify that X is a 2-thin cover with H(X ) = {uv : uv ∈ EG(P)} and
h(uv) = 2 for all uv ∈ H(X ).

We claim that K = (V, H(X )) = (V,EG(P)) is M -independent, and
hence X is an independent cover of G2. To see this consider a nonempty
subset Z ⊆ V . If Z ⊆ Pi holds for some 1 ≤ i ≤ t then iK(Z) = 0. Now
suppose that Z intersects at least two members of P and let Q = {Pi ∈ P :
Z ∩ Pi 6= ∅}. By Lemma 3.2(a) we have

5iK(Z) ≤ 5eG(Q) ≤ 6(|Q| − 1) ≤ 6(|Z| − 1).

Hence iK(Z) ≤ 6
5(|Z|−1) for all nonempty Z ⊆ V . Thus K is sparse: every

subgraph of K has average degree less than three, and hence has a vertex of
degree at most two. This implies that K can be obtained from a collection
of disjoint edges (which is M -independent) by a sequence of 0-extensions.
Thus K is M -independent by Lemma 3.3.

The connection between val(X ) and def(G) is obtained as follows.

val(X ) =
t∑

i=1

f(Xi)−
∑

uv∈H(X )

(h(uv)− 1)
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=
t∑

i=1

(3|Xi| − 6)− |EG(P)| =
t∑

i=1

3(|Pi|+ dG(Pi))− |EG(P)| − 6t

= 3|V |+ 6|EG(P)| − |EG(P)| − 6t = 3|V |+ 5eG(P)− 6t

= 3|V | − 6− def(P) = 3|V | − 6− def(G),

as required. •

4 Rank of molecular graphs

We first show that the right hand side of equation (2) in Conjecture 2.2 gives
an upper bound on r(G2).

Theorem 4.1 Let G = (V, E) be a graph of minimum degree at least two.
Then

r(G2) ≤ 3|V | − 6− def(G).

Proof: Consider a tight partition P = {P1, P2, ..., Pt} of V . Let Xi =
Pi ∪ NG(Pi) for 1 ≤ i ≤ t and let X = {X1, ..., Xt}. We can use Theo-
rem 3.4 and Lemma 3.1 to deduce that X is an independent 2-thin cover of
G2 and r(G2) ≤ val(X ) = 3|V |−6−def(P) = 3|V |−6−def(G), as required. •

We next show that Conjecture 2.2 could be used to determine r(G2), for
all graphs G, not just graphs of minimum degree at least two. Let G = (V, E)
be a connected graph on at least two vertices and let V1(H) denote the set
of vertices of degree one in G. Let Gcore be the maximal subgraph of G of
minimum degree at least two. Note that Gcore is empty if and only if G is
a tree, and G = Gcore if and only if V1(G) is empty. Part (a) of the next
lemma is due to Franzblau [2].

Lemma 4.2 Let G = (V,E) be a connected graph on at least two vertices.
(a) If G is a tree then r(G2) = 2|V | − 5 + |V1(G)|.
(b) If G is not a tree then

r(G2) = r((Gcore)2) + 2|V (G−Gcore)|+ |V1(G)|.

Proof: Induction on |V |. The theorem is trivially true if |V | = 2 or
V1(G) = ∅, so we may assume that V1(G) 6= ∅ and |V | ≥ 3. Let v ∈ V1(G),
let H = G − v, and let u be the neighbour of v in G. If dG(u) ≥ 3, then
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r(G2) = r(H2)+3 (by Lemma 3.3), Gcore = Hcore and |V1(G)| = |V1(H)|+1.
On the other hand, if dG(u) = 2 then r(G2) = r(H2) + 2 (by Lemma 3.3),
Gcore = Hcore and |V1(G)| = |V1(H)|. In both cases, the lemma follows by
applying induction to H. •

We close this section by showing that Conjecture 2.2 is equivalent to the
Molecular Conjecture.

Theorem 4.3 Conjectures 2.1 and 2.2 are equivalent.

Proof: The fact that Conjecture 2.2 implies Conjecture 2.1 follows imme-
diately from Theorem 2.3, as we noted earlier.

Suppose Conjecture 2.1 holds and let G = (V, E) be a graph of minimum
degree at least two. We show that Conjecture 2.2 holds for G by induction
on def(G). If def(G) = 0, then Theorem 2.3 implies that 5G has six edge-
disjoint spanning trees. Since Conjecture 2.1 holds, G2 is rigid and hence
r(G2) = 3|V | − 6. Thus Conjecture 2.2 holds for G. Hence we may assume
that def(G) ≥ 1. Let B be the brick partition of G. Since def(G) ≥ 1,
we have |B| ≥ 2. Choose two vertices u, u′ belonging to distinct bricks
B, B′ ∈ B, respectively.

Let G1 be the graph obtained from G by attaching an ear ux1x2x3x4u
′

of length five at u, u′, i.e. a path of length five with x1, x2, x3, x4 6∈ V (G).

Claim 4.4 def(G1) = def(G)− 1.

Proof: Consider the brick partition B1 of G1. Since each non-singleton
brick has at least three vertices and minimum degree at least two, the ver-
tices x1, x2, x3, x4 either each occur as singleton bricks of G1, or are all
contained in the same brick of G1. Since the bricks of G are maximal strong
subgraphs of G, it follows that B1 = P or B1 = P ′, where

P = B ∪ {{x1}, {x2}, {x3}, {x4}} ,

and

P ′ = (B −Q) ∪ {(
⋃

Bi∈Q
Bi) ∪ {x1, x2, x3, x4}},

for some Q ⊆ B with B,B′ ∈ Q. We have

defG1(P) = 6(|P| − 1)− 5eG1(P) = 6(|B|+ 4− 1)− 5(eGB + 5)
= defG(B)− 1 = def(G)− 1.
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On the other hand, if we let R = (B −Q) ∪ {⋃
Bi∈QBi

}
then R partitions

V , |R| < |B| since |Q| ≥ 2, and

defG1(P ′) = defG(R) < defG(B) = def(G),

by Lemma 3.2(c). Thus defG1(B1) = def(G) − 1. The claim now follows
since def(G1) = defG1(B1). •

It follows from Claim 4.4 that we may apply induction to G1 and deduce
that

r(G2
1) = 3|V (G1)| − 6− def(G1) = 3(|V |+ 4)− 6− (def(G)− 1)

= 3|V | − 6− def(G) + 13. (3)

Consider the graph H obtained from G by adding the vertices x1, x4 and
edges ux1, u

′x4. Since the neighbour sets of u and u′ in H2 each induce
complete (and hence rigid) subgraphs with at least three vertices, we may
use Lemma 3.3 to deduce that r(H2) = r(G2) + 6. This gives

r(G2
1) ≤ r(H2) + |E(G2

1)− E(H2)| = (r(G2) + 6) + 7 = r(G2) + 13. (4)

Combining (3) and (4), we obtain 3|V |−6−def(G)+13 = r(G2
1) ≤ r(G2)+13.

Hence r(G2) ≥ 3|V | − 6 − def(G). Theorem 4.1 now implies that r(G2) =
3|V | − 6− def(G). Hence Conjecture 2.2 holds for G. •

5 Independence of molecular graphs

Recall that a graph G = (V, E) is M -independent if r(G) = |E|. We say
that G is Laman if for all X ⊆ V with |X| ≥ 3, we have iG(X) ≤ 3|X| − 6.
If G is M -independent then, since r(G[X]) ≤ 3|X| − 6 for all X ⊆ V with
|X| ≥ 3 by (1), it follows that G is Laman. Jacobs [12] conjectures that the
reverse implication also holds for squares of graphs.1

Conjecture 5.1 Let G be a graph. Then G2 is M -independent if and only
if G2 is Laman.

We will show that Conjecture 5.1 would follow from Conjecture 2.2. We
use the following two results.

1He states this conjecture as a result, [12, Proposition 4.9], but his proof is incomplete
since it assumes the truth of [12, Observation 3.1] for which no proof is yet known.
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Lemma 5.2 Let G = (V, E) be a graph such that G2 is Laman. Then each
vertex of G has degree at most three.

Proof: Choose v ∈ V . Then G2[NG(v) ∪ {v}] is a complete graph on
dG(v)+1 vertices. Since the complete graph Kn is Laman only when n ≤ 4,
we have dG(v) ≤ 3. •

Theorem 5.3 Suppose that G has minimum degree at least two and G2 is
Laman. Then |E(G2)| ≤ 3|V (G)| − 6− def(G).

Proof: We may assume that def(G) ≥ 1, since the theorem trivially holds
for Laman graphs with deficiency zero. Let P = {P1, P2, ..., Pt} be a tight
partition of V . Since def(G) ≥ 1, we must have t ≥ 2.

An edge uw ∈ E(G2) is called a cross edge, if uw ∈ EG2(P) and uw /∈
E(G). Lemma 3.2(a) implies that for every cross edge uw there is a unique
pair uv, vw of adjacent edges of G which ‘implies’ uw. Since u, v belong
to distinct members of P, at least one of the edges uv, vw must belong to
EG(P). We say that the cross edge uw is normal (special) if precisely one
(respectively, both) of the edges uv, vw connect distinct members of P. Let
Cn and Cs denote the number of normal and special cross edges of G2,
respectively. A normal edge f is rooted at Pi if one of the two edges of G
that ‘imply’ f is induced by Pi.

It follows from Lemma 3.2(b) that G[Pi] is strong for all 1 ≤ i ≤ t, and
hence either |Pi| = 1, or |Pi| ≥ 3 and dG[Pi](v) ≥ 2 holds for all v ∈ Pi. Let
Ps = {Pi ∈ P : |Pi| = 1} and let Pb = {Pi ∈ P : |Pi| ≥ 3}.

Consider a set Pi ∈ Pb and a cross edge uv ∈ EG2(P) with v ∈ Pi. Since
G2 is Laman, dG(v) ≤ 3 by Lemma 5.2. Thus, since dG[Pi](v) ≥ 2, there are
exactly two normal cross edges which are ‘implied’ by pairs uv, vw, for some
w ∈ Pi. Hence the number of normal cross edges rooted at Pi is 2dG(Pi). It
also follows that if a pair of edges ‘implies’ a special cross edge then their
common vertex cannot belong to Pi.

Now consider a set Pj ∈ Ps. By Lemma 3.2(a), G2[NG(Pj)] is a complete
subgraph consisting of special cross edges, and all special cross edges can be
obtained in this way from a unique member of Ps. Since dG(v) ∈ {2, 3} for
all v ∈ V , we have

|E(G2[NG(Pj)])| = 2dG(Pj)− 3. (5)

By using these observations we can count the normal edges at their roots
and special edges in the neighbourhoods of the singleton members of P. This
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gives:
Cn =

∑

Pi∈Pb

2dG(Pi), (6)

Cs =
∑

Pj∈Ps

|E(G2[NG(Pj)])|. (7)

Using (5), (6), (7), and the fact that G2 is Laman we obtain:

|E(G2)| =
t∑

i=1

|E(G2[Pi])|+ eG(P) + Cn + Cs

≤
∑

Pi∈Pb

(3|Pi| − 6) + eG(P) +
∑

Pi∈Pb

2dG(Pi) +
∑

Pj∈Ps

|E(G2[NG(Pj)])|

=
t∑

i=1

(3|Pi| − 6) + eG(P) +
t∑

i=1

2dG(Pi)

= 3|V | − 6t + 5eG(P) = 3|V | − 6− def(P) = 3|V | − 6− def(G),

as claimed. •

We can now show that Conjecture 5.1 would follow from Conjecture 2.2.

Theorem 5.4 Conjecture 2.2 implies Conjecture 5.1.

Proof: Suppose, for a contradiction, that G2 is Laman but r(G2) < |E(G2)|.
Since for graphs G of maximum degree at most three G2 is M -independent
if and only if (Gcore)2 is M -independent, we may assume that G = Gcore, i.e.
G has minimum degree at least two. By using Theorem 5.3 and assuming
that Conjecture 2.2 holds for G, this gives |E(G2)| ≤ 3|V | − 6 − def(G) =
r(G2) < |E(G2)|, a contradiction. •

Since it is not true that the rigidity of G2 implies the existence of a
spanning subgraph H of G with the property that H2 is both rigid and
M -independent (consider for example the case when G is a cycle of length
five), it seems unlikely that Conjectures 2.1 and 2.2 could be deduced from
Conjecture 5.1.

6 Concluding remarks

In this paper we have established an upper bound on the rank of a molecular
graph and showed that the truth of the Molecular Conjecture would imply
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that this bound is tight. In the companion paper [8] we show that two other
conjectures in combinatorial rigidity (due to Dress and Jacobs, respectively)
imply the Molecular Conjecture.

Further results on Laman squares as well as sufficient conditions for the
M -independence of a molecular graph can be found in [7]. In two recent
papers [11, 9] we obtain results which independently imply a weaker form
of the Molecular Conjecture: if G is a graph and 2G has three edge-disjoint
spanning trees, then G2 is rigid.
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