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Abstract

A transition system T of an Eulerian graph G is a family of par-
titions of the edges incident to each vertex of G into transitions i.e.
subsets of size two. A circuit decomposition C of G is compatible with
T if no pair of adjacent edges of G is both a transition of T and consec-
utive in a circuit of C. We give a conjectured characterization of when
a 4-regular graph has a transition system which admits no compatible
circuit decomposition. We show that our conjecture is equivalent to
the statement that the complete graph on five vertices and the graph
with one vertex and two loops are the only essentially 6-edge-connected
4-regular graphs which have a transition system which admits no com-
patible circuit decomposition. In addition, we show that our conjecture
would imply the Circuit Double Cover Conjecture.

1 Introduction

The circuit double cover conjecture asserts that the edges of every bridgeless
graph G can be covered with circuits in such a way each edge of G appears
in exactly two circuits. An obvious, but fallacious, proof would be to double
each edge of G and then choose a circuit decomposition of the resulting
Eulerian graph 2G. We can try to repair the hole in this proof by putting
restrictions on which edges can be consecutive in the circuit decomposition
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of 2G by means of a transition system. This gives rise to the notion of
a compatible circuit decomposition of a transitioned graph. We present
a conjectured characterisation of when a 4-regular transitioned graph has a
compatible circuit decomposition and show that our conjecture is equivalent
to the statement that K5 and the graph with one vertex and two loops are the
only essentially 6-edge-connected 4-regular graphs which admit transition
systems with no compatible circuit decomposition. In addition, we use a
construction due to F. Jaeger to show that our conjecture would imply the
Circuit Double Cover Conjecture.

Let G = (V,E) be an Eulerian graph. A tour, respectively circuit, of G

is a closed walk in G which does not repeat edges, respectively edges and
vertices. A tour decomposition of G is a set of tours whose edge-sets partition
E. Circuit decompositions are defined analogously. For e = uv ∈ E(G)
we consider e to be made up of two half-edges eu incident to u and ev

incident to v. (We distinguish between the two half-edges of a loop.) For
v ∈ V (G) let Ev denote the set of half-edges of G incident with v. A partial
transition system for G is a function T defined on V (G) such that T (v) is
either the empty set or else is a partition of Ev into subsets of size two for
each v ∈ V (G). We refer to the vertices of G for which T (v) 6= ∅ as the
transition vertices of (G,T ) and to the elements of T (v) as transitions at v.
We also refer to the pair (G,T ) as a transitioned graph. We say that two
partial transition systems for G, T1 and T2, are compatible if for each vertex
v of G, T1(v) ∩ T2(v) = ∅.

A partial transition system for G in which each vertex of G is a transition
vertex is said to be a transition system for G. There is a natural bijection f

between transition systems for G and tour decompositions for G: two half-
edges are consecutive at v in some tour of f(T ) if and only if they form a
transition in T (v). We use this bijection to extend the concept of compati-
bility to tour decompositions: a tour decomposition X for an Eulerian graph
G is said to be compatible with a partial transition system T (or another
tour decomposition Y ) if and only if f−1(X) and T (or f−1(X) and f−1(Y ))
are compatible partial transition systems. Given a tour decomposition X

for G, we refer to the transitions of f−1(X) as transitions of X.
The main concern of this paper is the following open problem.

Problem 1.1 Characterise when a transitioned graph (G,T ) has a circuit
decomposition which is compatible with T .

Note that the analogous problem for compatible Euler tours was solved by
Kotzig [7], who showed that a transitioned graph (G,T ) has an Euler tour
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which is compatible with T if and only if each transition vertex of G has
degree at least four.

There is a natural link between Problem 1.1 and the Circuit Double
Cover Conjecture. Let G be a graph, 2G be the graph obtained by replacing
each edge e of G by two parallel edges e′ and e′′, and T be the transition
system for 2G corresponding to the circuit decomposition of 2G into the pairs
of parallel edges {e′, e′′}. Then G has a circuit double cover if and only if
(2G,T ) has a compatible circuit decomposition. Thus one may expect that
a solution to Problem 1.1 would lead to a solution of the Circuit Double
Cover Conjecture.

An obvious necessary condition for the existence of a compatible circuit
decomposition is that (G,T ) contains no separating transitions, that is to say
pairs {ev , fv} ∈ T (v), v ∈ V , such that G−{e, f} has more components than
G. The first named author [2] showed that this condition is also sufficient
when G is planar. This result was extended to graphs with no K5-minor by
Fan and Zhang [1]. We shall discuss examples in Section 2 which show that
it is not sufficient in general. The following attractive conjecture made by G.
Sabidussi in 1975, see [2], would give a sufficient condition for the existence
of a compatible circuit decomposition in a transitioned graph (G,T ), namely
that the transition system T should correspond to an Euler tour of G.

Conjecture 1.2 Let G be an Eulerian graph of minimum degree at least
four and T be an Euler tour of G. Then G has a circuit decomposition
which is compatible with T .

The purpose of this paper is to formulate a conjectured solution to Prob-
lem 1.1 for the case when G is 4-regular, and to show that our conjecture is
equivalent to the statement that, if (G,T ) is an essentially 6-edge-connected
4-regular transitioned graph, then (G,T ) has a compatible circuit decom-
position unless G = K5 and T is a transition system for K5 corresponding
to a circuit decomposition into two circuits of length five, or G is the graph
with one vertex and two loops T is a transition system corresponding to
the circuit decomposition into two loops. Our motivation for restricting to
4-regular transitioned graphs is a result of Jaeger [6] that the Circuit Double
Cover Conjecture can be restated in terms of compatible circuit decompo-
sitions of a special family of 4-regular transitioned graphs (line graphs of
cubic graphs). Jaeger’s construction will be used later in this paper to show
that our conjecture would imply the Circuit Double Cover Conjecture. We
refer the reader to [5] for a survey on compatible Euler tours and circuit
decompositions, and to [6] for a survey on the Circuit Double Cover Con-
jecture.
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2 A recursive construction

Two examples of 4-regular transitioned graphs with no compatible circuit
decompositions are:

• the bad double loop: this is the graph G with one vertex incident
with two loops together with the transition system induced by the
decomposition of G into two loops.

• the bad K5: this is the complete graph on five vertices K5 together
with the transition system induced by the decomposition of E(K5)
into two circuits of length five.

Other examples can be obtained by using the following two operations
for combining two transitioned graphs (G1, T1) and (G2, T2).

• 1-sum: (G,T ) = (G1, T1) + (G2, T2). The graph G is obtained from
the disjoint union of G1 and G2 by deleting an edge ei = uivi from Gi,
i ∈ {1, 2} and then adding two new edges f = u1u2 and h = v1v2. The
partial transition system T is obtained from T1 ∪ T2 by replacing the
half-edges (ei)ui

and (ei)vi
by the half-edges fui

and hvi
, respectively,

in any transition of Ti which contains them, i ∈ {1, 2}.

• star-product: (G,T ) = (G1, T1) ∗ (G2, T2). Choose a transition vertex
v1 of degree 4 of (G1, T1) and two edges e2 = w2x2 and f2 = y2z2 of G2.
Let e1 = v1w1, f1 = v1x1, g1 = v1y1, h1 = v1z1 be the edges incident
with v1 where T1(v1) = {{(e1)v1

, (f1)v1
}, {(g1)v1

, (h1)v1
}}. The graph

G is obtained from the disjoint union of G1 and G2 by deleting v1, e2, f2

and then adding four new edges e = w1w2, f = x1x2, g = y1y2, h =
z1z2. The partial transition system T is obtained from (T1 −T1(v1))∪
T2 by replacing the deleted half-edges by the new half-edges in any
transition which contains them, in an obvious way.

Let R be the family of 4-regular transitioned graphs (G,T ) which can
be obtained recursively from the bad double loop and the bad K5 as follows.

• If (G1, T1) ∈ R and (G2, T2) is any connected 4-regular transitioned
graph then (G,T ) = (G1, T1) + (G2, T2) ∈ R.

• If (G1, T1), (G2, T2) ∈ R then (G,T ) = (G1, T2) ∗ (G2, T2) ∈ R.

The following lemmas will imply that no transitioned graph in R can
have a compatible circuit decomposition.
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Lemma 2.1 Suppose (G,T ), (G1, T1), (G2, T2) are 4-regular transitioned graphs
and (G,T ) = (G1, T1) + (G2, T2). Then (G,T ) has a compatible circuit de-
composition if and only if (G1, T1) and (G2, T2) both have compatible circuit
decompositions.

Proof: Straightforward. •

Given a bipartition (X,Y ) of the vertex set of a graph G, let E(X,Y )
denote the set of all edges of G from X to Y . We refer to E(X,Y ) as a
k-edge-cut of G if |E(X,Y )| = k.

Lemma 2.2 Suppose (G,T ), (G1, T1), (G2, T2) are 4-regular transitioned graphs
and (G,T ) = (G1, T1)∗ (G2, T2). If (G,T ) has a compatible circuit decompo-
sition then either (G1, T1) or (G2, T2) has a compatible circuit decomposition.

Proof: Let C be a compatible circuit decomposition of (G,T ) and let A =
{e, f, g, h} be the 4-edge-cut of G separating V (G1) − v1 from V (G2). We
adopt the labelling of edges given in the definition of the star product. Sup-
pose that the edges in A belong to the same circuit C1 of C. In that case the
edges in E(C1)∩E(G2) correspond to two vertex disjoint paths, which deter-
mine one or two circuits of G2 when completed with e2 and f2. Adding the
circuits of C wholly contained in G2, we obtain a compatible circuit decom-
position of (G2, T2). Hence, we can suppose that A intersects two circuits of
C, say C1 and C2. If the circuit of C containing e also contains f , then the
paths determined by E(C1) ∩ E(G2) and E(C2) ∩ E(G2) can be extended
as before to circuits of G2 and then to a compatible circuit decomposition
of (G2, T2). If not, say E(C1) ∩ A = {e, g} and E(C2) ∩ A = {f, h}, then
(E(C1)∩E(G1))∪{e1, g1} and (E(C2)∩E(G1))∪{f1, h1} together with the
circuits of C wholly contained in G1 form a compatible circuit decomposition
of (G1, T1). •

Corollary 2.3 If (G,T ) ∈ R then (G,T ) has no compatible circuit decom-
position.

•

We conjecture that the family R characterizes the 4-regular transitioned
graphs which have no compatible circuit decomposition.
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Conjecture 2.4 Let (G,T ) be a connected 4-regular transitioned graph.
Then (G,T ) has no compatible circuit decomposition if and only if (G,T ) ∈
R.

Note that Conjecture 2.4 would follow if we could show that every 4-regular
transitioned graph (G,T ) 6∈ R has a compatible circuit C such that (G −
E(C), T |V (G)−V (C)) 6∈ R. A conjecture equivalent to Conjecture 2.4 was
formulated by the second author in [3]. He showed that his conjecture
would imply Conjecture 1.2 in [4].

We say that an edge-cut of a graph G is trivial if it consists of all the
edges incident with v for some vertex v ∈ V (G). A graph is essentially
6-edge-connected if it is connected and all edge-cuts of size less than six are
trivial. It is conjectured in [5, Conjecture 4.3] that every 6-edge-connected
transitioned graph has a compatible circuit decomposition and stated in the
ensuing discussion that this may even be true under the weaker hypothesis
that the graph has minimum degree four and is essentially 6-edge connected
(and is not the bad double loop or the bad K5). The following conjecture is
the special case of this statement when G is 4-regular.

Conjecture 2.5 Let G be an essentially 6-edge-connected 4-regular graph
and T be a transition system for G. Then (G,T ) has no compatible circuit
decomposition if and only if (G,T ) is the bad double loop or the bad K5.

Conjecture 2.5 would follow from Conjecture 2.4, since the bad double
loop and the bad K5 are the only essentially 6-edge-connected transitioned
graphs in R. We shall show in Section 4 that the two conjectures are, in
fact, equivalent. We first need to establish some preliminary results on the
family R, on compatible circuit decompositions and on the family of 4-edge-
connected 4-regular graphs.

Lemma 2.6 Suppose (G,T ) ∈ R and v ∈ V (G) with T (v) = ∅. Let T ′(v)
be a partition of Ev into subsets of size two, and put T ′ = T ∪ T ′(v). Then
(G,T ′) ∈ R.

Proof: We use induction on the number of vertices of G. Since T (v) = ∅,
(G,T ) is not the bad double loop or the bad K5. Hence we have one of the
following two cases.

Case 1 (G,T ) = (G1, T1) + (G2, T2) where (G1, T1) ∈ R and (G2, T2) is
arbitrary. For i ∈ {1, 2} let T ′

i = Ti ∪ T ′(v) if v ∈ V (Gi) and T ′
i = Ti

otherwise. Then (G,T ′) = (G1, T
′
1) + (G2, T

′
2). Futhermore, (G1, T

′
1) ∈ R,
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by induction if v ∈ V (G1), and trivially otherwise. Hence (G,T ′) ∈ R.

Case 2 (G,T ) = (G1, T1) ∗ (G2, T2) where (Gi, Ti) ∈ R for i ∈ {1, 2}. We
proceed as in Case 1. •

Lemma 2.7 Let (G,T ) be a 4-regular transitioned graph and v ∈ V (G) with
T (v) = ∅. Suppose (G,T ) has a compatible circuit decomposition C. Then
(G,T ) has a compatible circuit decomposition C ′ such that either:
(a) The circuits of C ′ which contain v intersect only at v, or
(b) The transition systems for G induced by C and C ′ are compatible at v.

Proof: Let X and Y be the circuits of C which contain v. Let G′ be the
graph obtained from X ∪ Y by suppressing all vertices of degree two, and
X ′ and Y ′ be the circuits of G′ induced by X and Y , respectively. Let T ′ be
a transition system for G′ which agrees with T at each vertex of G′ which is
a transition vertex of (G,T ) and uses different transitions to those induced
by X ′ and Y ′ at each vertex of G′ which is not a transition vertex of (G,T ).
Let H be the cubic graph obtained by separating each vertex u of G′ into
two vertices u1, u2 of degree two along the transitions in T ′, and then adding
a 1-factor F1 = {u1u2 : u ∈ V (G′)}. Let F2 and F3 be the sets of edges of
H corresponding to the edges in X ′ and Y ′, respectively. Then {F1, F2, F3}
is a proper 3-edge-colouring of H.

Let C be the circuit of F2 ∪ F3 which contains v1. Let Z be the path or
circuit of H defined by putting Z = C if v2 6∈ V (C) and otherwise letting Z

be the v1v2-path in C which starts with an edge of F2. Let {F1, F
′
2, F

′
3} be

the new 3-edge-colouring of H obtained by interchanging the colours F2, F3

along Z. Note that all vertices of H other than perhaps v1, v2 are incident
with one edge of each colour. Furthermore, if Z is a circuit then v1, v2 are
also incident with an edge of each colour; if Z is a v1v2-path which enters
v2 along an edge of F2 then v1, v2 are each incident with two edges in F ′

3

and one edge in F1; if Z is a v1v2-path which enters v2 along an edge of
F3 then v1 is incident with one edge of F1 and two edges in F ′

3, and v2 is
incident with one edge of F1 and two edges in F ′

2. In all cases we may obtain
a 2-edge-colouring {F ′

2, F
′
3} of G′ by contracting F1.

Let D be a tour decomposition of G′ in which the edge set of each tour in
D is a monochromatic component in this 2-edge-colouring. By construction,
D is compatible with T ′ at all vertices of G′ other than perhaps v. Further-
more, all tours in D are circuits with the possible exception that there may be
a tour W which contains v as a vertex of degree four and has all other vertices
of degree two. In the former case the circuits of D containing v use different
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transitions at v than X ′ and Y ′. In the latter case we may decompose W

into two circuits W1,W2 with V (W1) ∩ V (W2) = {v}. Let C1 = D if D is a
circuit decomposition of G′, and otherwise put C1 = (D−{W})∪{W1,W2}.
Finally let C ′ be the compatible circuit decomposition of (G,T ) obtained
from C by replacing X and Y by the circuits of G induced by C1. If D is a
circuit decomposition of G′ then C and C ′ are compatible at v. Otherwise
the circuits in C ′ which contain v are induced by W1 and W2 and hence
intersect only at v. •

Let G be a 4-edge-connected 4-regular graph. Suppose that E(U1, U2) =
{w1w2, x1x2, y1y2, z1z2} is a non-trivial 4-edge-cut of G with {w1, x1, y1, z1} ⊆
U1. The cleavage graphs of G along E(U1, U2) are the graphs Gi, 1 ≤ i ≤ 2
obtained by adding a new vertex v and new edges vwi, vxi, vyi, vzi to G[Ui].
It can easily be seen that both cleavage graphs are 4-edge-connected. We
call the new vertex v the marker vertex of Gi. A partial transition system T

for G induces a partial transition system Ti for Gi in an obvious way, taking
Ti(v) = ∅. We say that (G1, T1) and (G2, T2) are obtained by cleaving (G,T )
along E(U1, U2).

Lemma 2.8 Suppose that (G,T ) is a 4-edge-connected 4-regular transi-
tioned graph, and that (G1, T1) and (G2, T2) are obtained by cleaving (G,T )
along a 4-edge-cut E(U1, U2).
(a) For j ∈ {1, 2, 3}, let T

j
i be the three distinct transition systems for Gi

which agree with T on Ui and for which the marker vertex v is a transi-
tion vertex. If (Gi, T

j
i ) has a compatible circuit decomposition Cj

i for all
j ∈ {1, 2, 3} and i ∈ {1, 2}, then (G,T ) has a compatible circuit decomposi-
tion.
(b) If (G1, T1) has a compatible circuit decomposition C1 and U2 contains no
transition vertices of T then (G,T ) has a compatible circuit decomposition.

Proof: We adopt the labelling of edges and vertices used in the definition of
cleavage graphs.

(a) We can relabel the Cj
i such that C1

1 and C1
2 ‘agree’ at v. More precisely,

we can relabel so that vwi, vxi ∈ E(Ci) and vyi, vzi ∈ E(Di) for circuits
Ci, Di ∈ C1

i for each i ∈ {1, 2}. Putting C = (C1 − v1) ∪ (C2 − v2) and
D = (D1 − v1) ∪ (D2 − v2), we have that C = (C1

1 − {C1, D1}) ∪ (C1
2 −

{C2, D2}) ∪ {C,D}) is a compatible circuit decomposition of G.

(b) This follows in a similar way to (a) since the 4-edge connectedness of G2

implies that we may choose a circuit decomposition C2 of G2 such that C1
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and C2 ‘agree’ at v. •

3 Essentially 6-edge-connected 4-regular graphs

Let G = (V,E) be a graph. For A,B disjoint subsets of V let dG(A,B)
denote the number of edges in G between A and B, and put dG(A) =
dG(A, V −A). We will suppress the subscript G when it is obvious to which
graph we are referring. We need the following well known identities.

Lemma 3.1 Let G = (V,E) be a graph and X,Y ⊆ V . Then:
(a) d(X) + d(Y ) = d(X ∩ Y ) + d(X ∪ Y ) + 2d(X − Y, Y − X);
(b) d(X) + d(Y ) = d(X − Y ) + d(Y − X) + 2d(X ∩ Y, V − (X ∪ Y )).

It is easy to see that an essentially 6-edge-connected 4-regular graph G

of order at least four is simple. Let v be a vertex of G and e = vw, f =
vx, g = vy, h = vz be the edges incident to v. The graph G

e,f
v obtained by

splitting v along e, f is obtained from G − v by adding two new edges wx

and yz.

Lemma 3.2 Let G = (V,E) be an essentially 6-edge-connected 4-regular
graph with at least six vertices and v ∈ V . Let the edges incident to v be
ei = vxi, for 1 ≤ i ≤ 4. Suppose that G

e1,ei

v is not essentially 6-edge-
connected for all i ∈ {2, 3, 4}. Then, relabelling x1, x2, x3, x4 if necessary,
we have {x1x2, x1x3, x1x4} ∈ E and G − {v, x1} ∪ {x2x3, x3x4, x4x2} is
essentially 6-edge-connected.

Proof: Since Gi := G
e1,ei

v is not essentially 6-edge-connected, there exist sets
Xi ⊂ V −v such that dGi

(Xi) = 4, 2 ≤ |Xi| ≤ |V |−3, and x1, xi ∈ Xi for all
i ∈ {2, 3, 4}. Let Yi = (V − v) −Xi. Since G is essentially 6-edge-connected
we must have {x2, x3, x4} − {xi} ⊆ Yi.

Consider the sets X2, X3. We have x1 ∈ X2 ∩ X3, x2 ∈ X2 − X3,
x3 ∈ X3−X2, and x4 ∈ (V −v)−(X2∪X3) = Y2∩Y3. Applying Lemma 3.1(a)
to G − v we have

4 + 4 = dG−v(X2) + dG−v(X3)

= dG−v(X2 ∩ X3) + dG−v(X2 ∪ X3) +

2dG−v(X2 − X3, X3 − X2). (1)

If |X2∩X3| ≥ 2 and |Y2∩Y3| ≥ 2 then the essential 6-edge-connectivity of G

will imply that dG−v(X2∩X3) ≥ 5 and dG−v(X2∪X3) = dG−v(Y2∩Y3) ≥ 5.
This would contradict (1) and hence either |X2 ∩ X3| = 1 or |Y2 ∩ Y3| = 1.
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We may use Lemma 3.1(b) to deduce similarly that either |X2−X3| = 1
or |X3 − X2| = 1. Thus, at least one of the sets X2, Y2, X3, Y3 has size
two. Similarly, at least one of the sets X2, Y2, X4, Y4 has size two, and at
least one of the sets X3, Y3, X4, Y4 has size two. Since |V | ≥ 6, we cannot
have |Xi| = 2 = |Yi| for all i ∈ {2, 3, 4}. It follows that we may relabel
e1, e2, e3, e4 if necessary, such that X2 = {x1, x2} and X3 = {x1, x3}. Since
dG−v(X2) = 4 = dG−v(X3), we have x1x2, x1x3 ∈ E.

By considering the sets X3, X4, we may use Lemma 3.1(b) and the fact
that x1x2 ∈ E(G − v) to deduce that dG−v(X4 − X3) = 3. The essential 6-
edge-connectivity of G now implies that |X4 −X3| = 1. Thus X4 = {x1, x4}
and x1x4 ∈ E. Hence {x1x2, x1x3, x1x4} ∈ E.

To complete the proof of the lemma, we now suppose that H = G −
{v, x1} ∪ {x2x3, x3x4, x4x2} has an edge-cut E(X,Y ) of size at most four,
with |X| ≥ 2 and |Y | ≥ 2. If {x2, x3, x4} ⊆ X then E(X ∪{v, x1}, Y ) would
be a non-trivial edge-cut of G of size at most four. This would contradict
the essential 6-edge-connectedness of G. Thus, we may assume by symme-
try that x2 ∈ X and x3, x4 ∈ Y . Then E(X,Y ∪ {v, x1}) is a non-trivial
edge-cut of G of size at most four. This again contradicts the essential 6-
edge-connectedness of G. •

4 Equivalence of the two conjectures

Theorem 4.1 Let (G,T ) be a counterexample to Conjecture 2.4, chosen
such that the number of transition vertices of G is as small as possible and,
subject to this condition, such that the number of vertices of G is as small
as possible. Then G is essentially 6-edge-connected and T is a transition
system for G.

Proof: Since (G,T ) is a counterexample to Conjecture 2.4, (G,T ) is a con-
nected 4-regular transition graph which has no compatible circuit decompo-
sition and (G,T ) 6∈ R.

Claim 1 G is 4-edge connected.

Proof: Suppose G is not 4-edge-connected. Since G is Eulerian all edge-
cuts of G contain an even number of edges and hence G has a 2-edge-cut.
Hence we can express (G,T ) as a 1-sum (G,T ) = (G1, T1) + (G2, T2). If
both (G1, T1) and (G2, T2) have compatible circuit decompositions then so
would (G,T ). Thus we may assume that (G1, T1) has no compatible cir-
cuit decomposition. Since (G1, T1) has at most as many transition vertices

10



as (G,T ) and G1 has fewer vertices than G, it follows that (G1, T1) ∈ R.
Hence (G,T ) ∈ R. This contradicts the fact that G is a counterexample to
Conjecture 2.4. Thus G is 4-edge-connected. •

Claim 2 G does not have a non-trivial 4-edge-cut which separates two tran-
sition vertices of (G,T ).

Proof: We proceed by contradiction. Let E(U1, U2) = {e, f, g, h} be a
non-trivial 4-edge-cut of G such that both U1 and U2 contain transition
vertices of G. Suppose e = w1w2, f = x1x2, g = y1y2, h = z1z2 where
w1, x1, y1, z1 ∈ U1. For i ∈ {1, 2}, let (Gi, Ti) be obtained by cleaving G

along E(U1, U2) and let v be the corresponding marker vertex of Gi. Using
Lemma 2.8(a), we may assume without loss of generality that (G1, T

1
1 ) has

no compatible circuit decomposition, where T 1
1 agrees with T on U1 and

T 1
1 (v) = {{vw1, vx1}, {vy1, vz1}}. Since (G1, T

1
1 ) has at most as many tran-

sition vertices as (G,T ) and G1 has fewer vertices than G, it follows that
(G1, T

1
1 ) ∈ R.

Let T ′ be the partial transition system for G obtained by putting T ′(u) =
T (u) for all u ∈ U1, and T ′(u) = ∅ for all u ∈ U2. Then (G,T ′) has fewer
transition vertices than G. If (G,T ′) has no compatible circuit decomposi-
tion, then the choice of G will imply that (G,T ′) ∈ R. This would imply
that (G,T ) ∈ R by Lemma 2.6.

Thus (G,T ′) has a compatible circuit decomposition, C ′. Let X ′
1 be

the tour decomposition of G1 obtained from C ′ by contracting all edges
which join vertices of U2. Then X ′

1 has at most one element which is not
a circuit and, in any such element, v is the unique vertex of degree other
than two. Let C1 be the circuit decomposition of G1 which is either equal
to X ′

1 or is obtained from X ′
1 by decomposing the unique tour of X ′

1 which
is not a circuit, into two edge-disjoint circuits. Then C1 is a compatible
circuit decomposition of (G1, T1). Since (G1, T

1
1 ) has no compatible circuit

decomposition, there are circuits X1, Y1 ∈ C1 such that vw1, vx1 ∈ E(X1)
and vy1, vz1 ∈ E(Y1). Using Lemma 2.7 and the fact that every compatible
circuit decomposition of (G1, T1) must induce the transitions {vw1, vx1}
and {vy1, vz1} at v, we may modify C1 if necessary to ensure that V (X1) ∩
V (Y1) = {v}.

Let G′
2 be the graph obtained from G2 by splitting v along vw2, vx2.

Let T ′
2 be the partial transition system for G′

2 defined by T ′
2(u) = T2(u)

for all u ∈ U2. If (G′
2, T

′
2) has a compatible circuit decomposition C2,

then we can combine C1 and C2 to obtain a compatible circuit decompo-
sition of (G,T ). Thus (G′

2, T
′
2) has no compatible circuit decomposition.

11



Since (G′
2, T

′
2) has fewer transition vertices than G, (G′

2, T
′
2) ∈ R. Since

(G,T ) = (G1, T
1
1 ) ∗ (G′

2, T
′
2) we have (G,T ) ∈ R. This contradicts the

choice of G. •

Claim 3 G is essentially 6-edge-connected.

Proof: Suppose G is not essentially 6-edge-connected. Let W be the set
of transition vertices of (G,T ). We may define an equivalence relation on
V (G) by saying that two vertices u, v of G are related if every 4-edge-cut
which separates u and v in G is trivial. Claim 2 implies that W is con-
tained in an equivalence class U0 of this relation. Choose a non-trivial
4-edge cut E(U1, U

′
1) of G. Relabelling if necessary, we have U0 ⊆ U1. Let

(G1, T1) and (G′
1, T

′
1) be obtained by cleaving (G,T ) along E(U1, U

′
1), where

U ′
1 = V −U1. Then W is the set of transition vertices of (G1, T1), and G1 does

not have a non-trivial 4-edge cut which separates two vertices of W . We may
continue this process to obtain a sequence (G0, T0), (G1, T1), . . . , (Gm, Tm)
where (G0, T0) = (G,T ), W is the set of transition vertices of (Gi, Ti) for all
1 ≤ i ≤ m, and Gm is essentially 6-edge-connected. Since (Gm, Tm) contains
at least one marker vertex v for which Tm(v) = ∅, (Gm, Tm) is not the bad
double loop or the bad K5. Thus (Gm, Tm) 6∈ R. The choice of (G,T ) now
implies that (Gm, Tm) has a compatible circuit decomposition Cm. We can
now apply Lemma 2.8(b) recursively to deduce that (G,T ) has a compatible
circuit decomposition and hence contradict the choice of G. •

Claim 4 T is a transition system for G.

Proof: Suppose some vertex v is not a transition vertex of (G,T ). Let the
edges incident to v be ei = vxi, for 1 ≤ i ≤ 4.

We first consider the case when |V | ≤ 5. Let K
(m)
n be the graph with n

vertices in which each pair of vertices is joined by m parallel edges. Since
G is 4-regular and essentially 6-edge-connected, G is either the double loop,

K
(4)
2 , K

(2)
3 , or K5. It can easily be seen that none of these graphs has a

partial transition system T with T (v) = ∅ for some vertex v and for which
there is no compatible circuit decomposition. Thus |V | ≥ 6.

Let G′ = G
e1,ei

v , for some i ∈ {2, 3, 4}, and T ′ be the partial transition
system for G′ induced by T . If (G′, T ′) had a compatible circuit decompo-
sition C′, then C′ would readily give rise to a compatible circuit decomposi-
tion for (G,T ). Thus (G′, T ′) has no compatible circuit decomposition. The
choice of (G,T ) now implies that (G′, T ′) ∈ R.

12



Suppose that G′ is essentially 6-edge-connected. Since (G′, T ′) ∈ R, and
|V (G)| ≥ 6, (G′, T ′) is the bad K5. We now show directly that (G,T ) has
a compatible circuit decomposition. Let f(T ′) be the circuit decomposition
of K5 corresponding to T ′. The edges of G′ created by the splitting of v

must be independent because G is essentially 6-edge-connected. Depending
on whether these edges are part of the same circuit of length 5 in f(T ′) or
not, there are two possible configurations for (G,T ) and they both admit
compatible circuit decompositions as seen in Figures 1 and 2.

PSfrag replacements

v v

x1

xi

Figure 1: A compatible circuit decomposition for (G,T ) in the case when
splitting v along e1, ei creates two edges which belong to the same 5-circuit
in f(T ′).

Thus we may suppose that G
e1,ei

v is not essentially 6-edge-connected for
all 2 ≤ i ≤ 4. By Lemma 3.2, there is a relabelling of x1, x2, x3, x4 such
that {x1x2, x1x3, x1x4} ∈ E and G′′ = G − {v, x1} ∪ {x2x3, x3x4, x4x2}
is essentially 6-edge-connected. Let (G1, T1) and (G2, T2) be obtained by
cleaving (G′, T ′) along the 4-edge-cut E({x1, xi}, V (G′) − {x1, xi}), where

x1, xi ∈ V (G1). Then G1 = K
(2)
3 . Since (G′, T ′) has no compatible circuit

decomposition, and every transition system for K
(2)
3 admits a compatible

circuit decomposition, Lemma 2.8(a) implies that (G2, T
j
2 ) does not have a

compatible circuit decomposition for some transition system T
j
2 which agrees

with T2 on V (G2) − z, where z is the marker vertex of G2. The choice of
(G,T ) now implies that (G2, T

j
2 ) ∈ R. Since G2 is isomorphic to G′′, G2

is essentially 6-edge-connected, and hence (G2, T
j
2 ) must be the bad K5.

Thus G′ is the graph shown on the left of Figure 3 (where we disregard for
the moment the indicated transitions of T ′). Hence G′ is 4-edge-connected

13



PSfrag replacements

vv

x1 xi

Figure 2: A compatible circuit decomposition for (G,T ) in the case when
splitting v along e1, ei creates two edges which do not belong to the same
5-circuit in f(T ′).

and has exactly one non-trivial 4-edge-cut. Since (G′, T ′) ∈ R, we have
(G′, T ′) = (G3, T3) ∗ (G4, T4) where: (G3, T3) is the bad K5; G4 is the 4-
regular graph with two vertices, two loops, and two parallel edges i.e. the
1-sum of two double loops, at least one of which is the bad double loop; the
star product deletes a vertex from G3 and the two loops from G4. Thus
the transitions T ′(x) for x ∈ V (G′) − {x1, xi} are as shown on the left of
Figure 3. Hence (G,T ) is as shown in the centre of Figure 3. Now let
G∗ = G

e1,ek

v for some k ∈ {2, 3, 4} − {i}, and T ∗ be the partial transition
system for G∗ induced by T (see the third graph of Figure 3). By the same
reasoning as before, cleaving (G∗, T ∗) along its unique non-trivial 4-edge-cut
should produce a cleavage graph with a partial transition system that can be
extended at the marker vertex to give a bad K5. Since this is not possible,
we get a contradiction. •

The equivalence of Conjectures 2.4 and 2.5 follows immediately from
Theorem 4.1.

We close by using a construction due to Jaeger [6, Section 2.3] to show
that the Circuit Double Cover Conjecture would follow from Conjecture 2.5.
It is well known that the Circuit Double Cover Conjecture can be reduced to
the special case of 3-connected cubic graphs. Let G be such a graph and H

be the line graph of G. Then H is 4-regular and essentially 6-edge-connected.
There is a natural decomposition of E(H) into triangles ∆v, v ∈ V (G), the
vertex set of ∆v being the set of edges of G incident to v. Let T be the

14
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xi
xi
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xkxk

(G′, T ′) (G,T ) (G∗, T ∗)

Figure 3: The graphs (G′, T ′), (G,T ), (G∗ , T ∗). The transitions at x1, xi, if
any, are not shown.

transition system of H corresponding to this triangle decomposition. Then
(H,T ) is not the bad double loop or the bad K5 so, by Conjecture 2.5,
(H,T ) has a compatible circuit decomposition C. It is straightforward to
check that the vertex sets of the circuits in C are the edge sets of circuits in
a circuit double cover of G.
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