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Abstract

Let P(G,t) andF(G,t) denote the chromatic and flow polynomials of
a graphG. G.D. Birkhoff and D.C. Lewis showed that, @ is a plane near
triangulation, then the only zeros B{G,t) in (—, 2] are 0, 1 and 2. We will
extend their theorem by showing that a stonger result to the dual statement
holds for both planar and non-planar graphsGiis a bridgeless graph with
at most one vertex of degree other than three, then the only zeFogof)
in (—co,a] are 1 and 2, whera = 2.225... is the real zero in2,3) of the
polynomialt* — 8t3 4+ 2212 — 28 + 17. In addition we construct a sequence
of ‘near-cubic’ graphs whose flow polynomials have zeros convergimg to
from above.

1 Introduction

All graphs considered are finite and may contain loops and multiple edges. We
shall refer to graphs without loops or multiple edges as simple graphs. We use
P(G,t) to denote the chromatic polynomial of a gra@handF (G,t) to denote
its flow polynomial. We shall use the termkromatic rootandflow rootof G to
refer to the zeros d?(G,t) andF (G,t), respectively. The study of the distribution
of chromatic roots was initiated by G.D. Birkhoff and D.C. Lewis in [1]. Inspired
by the 4-Colour Conjecture, they showed that for all plane near triangula@pns
P(G,t) has no zeros in the intervals-«,0), (0,1), (1,2) and5,). In addition,
D.R. Woodall [15] has shown that 2 is a simple zerd¢B,t) if G is 3-connected.

For an arbitrary loopless gragh it is known, see Tutte [12] or Woodall [15],
that P(G,t) has no zeros in the interva(s-«,0) and (0,1), that O is a zero of



P(G,t) of multiplicity equal to the number of components@fand that 1 is a zero
of P(G,t) of multiplicity equal to the number of non-trivial blocks &, where

a block isnon-trivial if it has at least one edge. In addition, in [3], it is shown
thatP(G,t) has no zeros in the intervél, g—;]. Wakelin [13] showed that the dual
statements also hold for an arbitrary bridgeless gi@pl (G,t) has no zeros in
the intervals(—e, 1) and (1, 32] and 1 is a zero of (G,t) of multiplicity equal to
the number of non-trivial blocks db. (A common extension of these results on
chromatic and flow polynomials to matroids is obtained in [2].)

In this paper we show that the dual statements to the above mentioned results
on plane near triangulations hold for both planar and non-planar graphs. We will
considemear-cubic graphsgraphs with minimum degree at least two and at most
one vertex of degree greater then three. We will show th@tig bridgeless and
near-cubic, thefr (G,t) has no zeros iff1,2); 2 is a simple zero ofF (G,t) when
G is 3-connected; anBl(G,t) has no zeros if2,a], wherea ~ 2.225. .. is the real
zero in(2,3) of the polynomiat® — 8t3 + 2% — 28 + 17. We give an example of a
sequence of near-cubic graphs whose flow polynomials have zeros converging to
from above. These results extend the above mentioned results on chromatic roots
of plane near triangulations ifw, 2] by planar duality. We refer the reader to [4]
for a more detailed survey of chromatic and flow roots of graphs.

2 Definitions and Preliminary Results

Let G be a graph. Aredge-cubf G is the set of edges, fromU toV(G) —U for
some proper subset C V(G). We say that the subgraphs@finduced byJ and
V(G) — U are thesidesof Sand thatSis ak-edge-cut iffS = k. A bridgeof G is
a 1-edge-cut. The graph is k-edge-connecteifl G has nor-edge-cuts for < k.
An edge-cutSof G is cyclic if both sides ofS contain circuits, and is cyclically
k-edge-connectefleach cyclic edge-cut ob has at least edges.

We say that is k-connectedor some integek > 2 if G is loopless|V(G)| >
k+1, andG—U is connected for all alU C V(G) with |U| < k. A vertexxis a
cut-vertexof a graphG if G —x has more components th& We say thaG is
non-separablé either|V(G)| =1 and|E(G)| < 1, orGis loopless, connected and
has no cut-vertices. Thus a graph on at least three vertices is non-separable if and
only ifitis 2-connected. Alockof G is a maximal non-separable subgraphzof
(Thus every loop o5 is the edge set of a block @.)

Given an edge of G, we shall us&/eandG — eto denote the graphs obtained
from G by contractinge and deletingg, respectively. Note that, &is a loop, then
G/e= G —eand that, ife belongs to a set of parallel edges, then every edge in
the set other thaebecomes a loop iG/e. Throughout this paper we useandm



to denote the numbers of vertices and edges, respectively, in a Grayple shall
extend this notation by using subscripts and superscripts. Thus, for example, the
number of edges in a grag@y will be denoted bym; .

Flow Polynomials

Let I' be an additive abelian group am@ be a graph. Suppose we construct a
d_igraphé by giving the edges oG an arbitrary orientation. Fdd C V(G) and
U =V(G)—U, letE*(U) be the set of arcs frotd toU in GandE~ (U) =E*(U).
Let f:E(G) — T and putf*(U) = Y g+ () f(€) andf~(U) = Sece- ) f(€). For
veV(G) let ft(v) = ft({v}) andf~(v) = f~({v}). Thenf is al-flow for G,
with respect t@G, if f+(v) = f~(v) forallve V(G). If, in addition, f (e) # 0 for all
e€ E(G), then we say that is anowhere-zerd -flowfor G. It can be seen that the
condition f*(v) = f~(v) for all ve V(G) is equivalent to the apparently stronger
condition thatf*(U) = f~(U) for all U CV(G). Thus, ifG has a nowhere-zero
[-flow, thenG is bridgeless. Since reversing the orientation on an edgeG
is equivalent to replacing(e) by —f (e), the number of distinct nowhere-zere
flows for G is independent of the chosen orientat®wf G.

A nowhere-zero t-flovior G is a nowhere-zeré@-flow, f, such thatf(e)| <t—
1 forallec E(G). Tutte [9] has shown th& has a nowhere-zeteflow if and only
if G has a nowhere-zeth -flow. Furthermore, the number of distinct nowhere-zero
I-flows for G is the same for all abelian groupof the same order. Note, however,
that the number of nowhere-zer-flows for G may differ from the number of
nowhere-zera-flows for G. Nowhere-zero flows were introduced by Tutte [9] as
a dual concept to proper colourings. He showed that a connected plane@raph
has a propet-colouring if and only if its planar duab* has a nowhere-zero
flow. The two concepts differ for non-planar graphs, however. Indeed, whereas
there exist loopless graphs which are tioblourable for arbitrarily large integers
t, Tutte [10] conjectured that every bridgeless graph has a nowhere-zero 5-flow.
Jaeger [6] obtained a partial solution by showing that every bridgeless graph has a
nowhere-zero 8-flow. His result was subsequently improved by Seymour:

Theorem 1 [8] Every bridgeless graph has a nowhere-zérflow.

Following Tutte [10] we define thifow polynomial KG,t) of G as the number
of distinct nowhere-zer;-flows for G for any positive integet. ThusF (G,t) =1
if E(G) =0andF(G,t) =0 if G has a bridge.

By the above remarks; (G,t) is independent of the chosen orientationGof
Note also that since the existence of a nowhere-zéiaw for G implies the exis-
tence of a nowhere-ze(b+ 1)-flow by definition, and is equivalent to the existence



of a nowhere-zer@,-flow as noted above, we may deduce that (6G,tp) # O for
some positive integdg, thenF (G,t) # O for all integerd > to.

We could also consider the polynomldi,t) defined to be the number of dis-
tinct nowhere-zera-flows for G. Kochal [7] gives relationships betweé(G,t)
andF (G;t), but these seem to be the only resultd @&,t) in the literature. Atten-
tion has concentrated df(G,t) because it is dual tB(G,t) for plane graphs: i
is a connected plane graph a@d its planar dual, then there is a surjection from
the t-vertex-colourings of* to the nowhere-zerd;-flows for G such that each
nowhere-zerd;-flow for G has exactly pre-images, see [10]. Thus

F(G,t) =t 1P(G" 1).

We may use this identity to restate results and conjectures on chromatic roots of
families of plane graphs in terms of flow roots of the dual families. For non-planar
graphs, however, the zero distributions of chromatic and flow polynomials are very
different. Indeed there is a tendency for the zero distribution of flow polynomials
to be similar in both the planar and non-planar case. The results of this paper
are an example of this. The following conjectured strengthening of Tutte’s 5-flow
conjecture due to Welsh [14] would be another example.

Conjecture 1 Let G be a bridgeless graph. Theri@,t) > Ofor allt € (4,).

Although Theorem 1 implies th&t(G,t) > 0O for all bridgeless graphG and
all integerst > 6, it is not even known whether there exists a firtigesuch that
F(G,t) > 0 for allt € (tp,). This contrasts with the result of Birkoff and Lewis
[1] that P(G,t) > O for all loopless planar graph@ and allt € [5,), and their
conjecture thaP(G,t) > 0 for allt € [4,).

Some recurrence relations for flow polynomials

Our inductive proof technique for working with flow polynomials is based on the
following elementary recurrence relations.

Lemma 2 Let G be a graph and e be an edge of G.
(a) If eis aloop then EG,t) = (t —1)F (G/et).
(b) If e is not a loop then FG,t) = F(G/et) —F(G—et).

Proof. We may deduce that the lemma holds for each intege2, and hence for
allt, as follows. Ifeis aloop then each nowhere-zéteflow for G— ecorresponds
tot — 1 nowhere-zerd;-flows for G. If eis not a loop then each nowhere-z&he
flow for G/e coresponds to either a nowhere-z&keflow for G or a nowhere-zero
Zi-flow for G—e. |



We may use Lemma 2 inductively to obtain the following reduction lemmas
for flow polynomials of graphs of low connectivity.

Lemma 3 The flow polynomials of two homeomorphic graphs are identical.

Lemma 4 Let G be a graph and Gand G be edge-disjoint subgraphs of G such
that G, UGz = G and|V(G1) NV(G2)| < 1. Then

F(G,t) = F(G1,t)F(Go,t).

Lemmab5 Let G be a graph, v be a vertex of G=eu;u, be an edge of G, andH
and H be edge-disjoint subgraphs of G such thatHH, = G—e, HiNHz = {v},
up € V(Hp) and w € V(H2). Let G be obtained from G by contracting(Hs_;),
fori e {1,2}. Then

F(G1) = F(Gl(,tt)_Fl()Gz,t)‘

As a special case of Lemma 5 we have

Lemma 6 Let G be a graph, S be a 2-edge-cut of G, andadd H be the sides
of S. Let Gbe obtained from G by contracting(Bs_;), fori € {1,2}. Then

Gl,t)F (Gz,t)
(t—1)

FGh ="

Lemma 7 Let G be a graph, S be &edge-cut of G, and Hand H be the sides
of S. Let Gbe obtained from G by contracting(Bs_;), fori € {1,2}. Then

 F(GLYF(Ga)
FeY =" D2

Lemma 8 Let G be a graph, x be a vertex of Geu;up, f = v1v» be edges of G,
and H and H be edge-disjoint subgraphs of G such thatdH, = G — {e, f},
HiNHy = {x}, u,vs € V(Hy) and w,v2 € V(Hy). Let G be the graph obtained
from G— x by adding two new vertices; x», an edge xx», and an edge from;xo
each of the neighbours of x iZHor 1 <i <2 Fori=1,2, let q+ be the graph
obtained from G [V (Hi) —x+x;| by adding a new vertex gnd edgesiyi, yiUi, YiVi.
LetG =G —xyi. Then

(t—1)(t—2)F(G,t) = F(G],t)F(G;,t) + (t —2)F (G ,t)F (G5 ,t).

Proof. By Lemma 2,F(G,t) = F(G",t) + F(G,t). The lemma now follows by
applying Lemmas 6 and 7 8 andG™, respectively. 1



3 Near-cubic graphs

The family of cubic graphs has special significance for nowhere-zero flows since
many problems on flows in general graphs can be reduced to the special case of
cubic graphs. In particular, the truth of Tutte’s 5-flow conjecture and Conjecture 1
would follow from their special cases for cubic graphs. Since the family of cubic
graphs is not closed under the operations of edge contraction or deletion, it is often
helpful to consider the larger family of near-cubic graphs. We shall use the ordered
pair (G, x) to represent a near-cubic gra@htogether with a distinguished vertex

x such that each vertex @ other thanx has degree two or three. Kkbondis a
loopless graph with two vertices akedges. We denote the isomorphism class of

all k-bonds byKs.

3.1 The interval (—,2)

We show in this subsection that a bridgeless near-cubic gi@pk) has no flow
roots in (—e,2) apart from the integer flow root at 1. We shall in fact prove a
stronger result concerning the derivatives of the quotient polynomi@,t) =
F(G,t)/(t—1). SinceG is near-cubic, it has at least one edge and hence 1 is a
zero of F(G,t). SinceF(G;t) is a polynomial int of degreem—n+ 1, it follows
thatg, (G,t) is a polynomial of degremn— n. Let q(l')(G,t) be thei’th derivative of
ql(th)'

Theorem 9 Let (G,X) be a non-separable near-cubic graph with n vertices and m
edges. Then(la(G,t) is non-zero with sigri—1)™ " for all 0 <i <m-n and
allt € (—,2).

Proof. We proceed by contradiction. Suppose the theorem is false aft@, letbe
a counterexample chosen such tireis as small as possible. if=1 thenm=1,
F(G,t) =t —1andq;(G,t) = 1. If n= 2 then eitheiG = K2, F(G,t) =t — 1 and
w(Gt) =1, 0rG=K3 F(Gt) = (t—1)(t—2) andgu(G,t) =t — 2. Since the
theorem holds in all three cases we have 3. ThusG is 2-connected. Using
Lemma 3 we may also deduce tl@ahas minimum degree three.

Claim 1 G—xis2-edge-connected.

Proof. SinceG is non-separablé; — x is connected. Suppo$g— x has a bridge
e. Adopting the notation of Lemma 5, we havéG,t) = F(Gy,t)F (Gp,t)/(t — 1),
and hence);(G,t) = q1(G1,t)01(Gz,t). Thus
. e . o
40 =3 () Cral e,
=\l

6



The graphgGi, x) and(Gy, x) are both non-separable near-cubic graphs with fewer
edges thaie. Sincem=m; +m, —1 andn = n; + n, — 1, we may deduce that the
theorem holds fo6 by applying induction tds; andGs,. 1

Let e be an edge o6 incident tox. The facts thatG,x) is near-cubicG — x
is 2-edge-connected and> 3 imply that(G/e,x) and(G — e, x) are non-separable
near-cubic graphs. Applying Lemma 2 ®@— e andG/e, and differentiating
times, we may deduce inductively that the theorem hold&for |

Note that if (G,x) is a separable bridgeless near-cubic graph, thénthe
unique cut-vertex of5 and we may apply Theorem 9 to each block®Using
Lemma 4 to deduce tha} (G,t) # 0 forall 0<i <m—nand allt € (—,2).

3.2 The mutiplicity of the zero at 2

It is easy to see that a graf@hhas a nowhere-zerd,-flow if and only if every
vertex ofG has even degree. Thus 2 is a zer&¢6,t) if and only if G has at least
one vertex of odd degree. We shall show in this section that 2 is a simple zero of
a cubic graphG if and only if G is 3-connected. As in the previous section, our
inductive proof requires us to work with near-cubic graphs.

We say that a graph iessentially 3-connecteid it is a subdivision of a 3-
connected graph orkabond for somé > 3. We shall use the following ‘reduction’
lemma due to Tutte [11, Theorem 12.65].

Lemma 10 Let G be a 3-connected graph andceE(G). Then either G-e is
essentially 3-connected or/@ is 3-connected.

Theorem 11 Let (G, x) be a non-separable near-cubic graph with m edges, n ver-
tices, and at least one vertex of degree three. Let

F(G,t)

R(G,t) = t—1)t-2)

Then @(G;t) is a polynomial in t. Furthermore:
(a) if G is not essentially 3-connected thefi@,2) = 0;
(b) if G is essentially 3-connected thes(G, 2) is non-zero with sigii—1)™ "1,

Proof. The fact thatp(G,t) is a polynomial irt follows from the fact thakF (G,t)
is a polynomial int with a zero at 1 and a zero at 2 (sinGénas at least one vertex
of degree three).

(a) Suppose thab is not essentially 3-connected. Sin@, x) is near cubic it
follows that we can find a vertexof G, an edge= of G, and edge-disjoint subgraphs

7



Hi andH; of G such thatH; UH, = G —e, HiNH, = {v}, and bothH; andH,
contain a vertex of degree three@ Without loss of generalitx € V(H;). Let
G, be obtained front by contractinge (H.) to v, and definés; analogously. By
Lemma5F(G,t) = F(Gy,t)F(Gy,t)/(t — 1), and hence

B(G,t) = G2(G1,1)G2(Ga2, ) (t — 2). 1)

It can be seen th&iGy,x) and (Gg,Vv) are both non-separable near-cubic graphs
with fewer edges tha and both contain a vertex of degree three. Toqu(&1,t)
andgy(Gg,t) are both polynomials ihanddgy (G, 2) = 0 by (1). This completes the
proof of (a).

(b) Suppose thas is essentially 3-connected. We prove (b) by inductiomoh.et
G be the graph of minimum degree three which is homeomorphi 16 G' # G
then sinceyy(G',t) = gz2(G,t) by Lemma 3, andn’ —n’ = m—n, we may deduce
inductively that the theorem holds f@. Thus we may suppose th@t = G. If
G =K3, thenF(G,t) = (t — 1)(t — 2), g2(G,t) = 1 and the theorem holds f@.
Hence we may assume thatis 3-connected.

Letebe an edge 0B incident tox. By Lemma 10, eitheG — eor G/eis essen-
tially 3-connected. IfG — eis essentially 3-connected, then we may use Lemma
2 to deduce that (b) holds fd by applying (b) inductively toG — e, applying
(a) toG/eif G/eis not essentially 3-connected, and applying (b) inductively to
G/eif G/eis essentially 3-connected. A similar proof hold$3fe is essentially
3-connected 1

3.3 Cleavage units

Tutte [11] developed a theory by which a 2-connected gi@ptan be uniquely
decomposed into pieces calleléavage unitsvhich are either 3-connected simple
graphs or bonds or circuits. We will use this decomposition extensively in the
next subsection to show that the intery@la] contains no flow roots of near-
cubic graphs. We give a brief description of Tutte’s theory below for the sake of
completeness.

We shall adopt the notation and terminology of Tutte [11] with the exception
that we will refer to ‘polygons’, ‘simple paths’, and ‘valency’ as circuits, paths and
degree respectively. Letandy be vertices of a 2-connected gra@hsuch that
G—{x,y} has componeniS;, Gy, ...,Gy, withr > 2 if xyis not a multiple edge of
G, andr > 1 otherwise. Each of the subgraphs®induced by (G;) U{x,y}, but
with edges joining andy deleted, is called afix,y}-componenof G. In addition,
if Xy € E(G), the subgraph induced b, y} is atrivial {x,y}-componenbf G.
LetH be an{x,y}-component ol and putH’ = G— (H — {x,y}). We say thaH
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is excisablef H is nontrivial and eitheH or H’ is a 2-connected graph okebond
for somek > 2. If an excisablgx, y}-componenH of G exists, we say thaftx,y}
is ahingeof G andH is called ahinge componerdf G. A hinge{x,y} of G is of
Type | if G has exactly twdx,y}-components and diype Il otherwise.

For each hinggx,y} of G we adjoin toG a virtual edgewith endsx andy
for each excisabléx,y}-component ofG to form theaugmented graph & Two
distinct hinge components @ give rise to the same virtual edge if and only if they
are the twofx,y}-components of some hinde, y} of Type I. The virtual edges are
required to be distinct from the true edge<®fbut may be parallel to them). H
is an excisabl€x,y}-component of G , the two graplily andD; derived fromH
andH’ by adjoining to each ofl andH’ the virtual edgee associated wit are
called thecleavage graphsf G ate.

The cleavage unitof G are the minimal cleavage graphs obtained by recur-
sively constructing cleavage graphs from cleavage graphs. Thus no cleavage unit
of G can have a hinge, and each virtual edg&dfelongs to exactly two cleavage
units. Thecleavage unit tree ©f G is the graph whose vertices and edges are the
cleavage units and virtual edges, respectively;,oh which a cleavage unid and
an edgee are incident inT if and only if e is an edge oD. We say thaG is a
cleavage unit patlf its cleavage unit tree is a path on at least two vertices.

These definitions are illustrated for the graphn Figure 1. We formG? by
adding the five virtual edges, ey, €3, €4 andes to G. The hinges oG are the pairs
of end vertices of the virtual edges. The cleavage units,0f;, Xz, X3, X4, Xs, Xs,
and its cleavage unit tre&, are shown in Figure 2.

Tutte shows in [11, Chapter 11] that the cleavage unit tree of a 2-connected
graphG is indeed a tree and that each cleavage uni @ either a 3-connected
simple graph or a circuit of length at least three, or a bond with at least three edges.
By an end-cleavage uniof G we shall mean a cleavage unit which has degree
one in the cleavage unit tree. By amernal vertexof G we shall mean a vertex
which does not belong to any hinge®f Thusv is an internal vertex o if either
d(v) = 2, orG—vis non-separable andis not incident with a parallel edge G.

We shall need the following observations on the cleavage unit decomposition
of a graph.

Lemma 12 Let G be a2-connected graph and T be the cleavage unit tree of G.

(a) The set of circuit cleavage units and the set of bond cleavage units of G are
independent sets of verticesin T;

(b) Suppose G has at least two end cleavage units. Lbe@btained from G by
adding a new vertex x and an edge from x to an internal vertex in each end
cleavage unit of G. Then’G essentially 3-connected.

9
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Figure 1: A graphG and its augmented grajif.
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X1 € e €3 & & & | X4

X1
X2 X3

Figure 2: The cleavage units Gfand its cleavage unit tree.
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We shall also need the following elementary result on 3-connectivity.

Lemma 13 Let G be a3-connected graph and-e uv be an edge of G of multi-
plicity one. Suppose G {u,V} is 2-connected. Then (& is3-connected.

Cleavage units of near-cubic graphs

It can be seen that the degree of a vertex in a cleavage unit of a 2-connected graph
G is bounded above by its degree@ Thus the cleavage units of a near-cubic
graph(G,x) are themselves near-cubic. Lemma 5 can be used to eXp(€ss)

in terms of the flow polynomials of its non-circuit cleavage units.

Lemma 14 Let (G, x) be a2-connected near-cubic graph and; &y, ...,G. be
the cleavage units of G which are not circuits. Then

F(Gt)=(t— 1)C+1_|31F(Gi,t).

Proof. We use induction on the total number of cleavage unit&.ofrhe lemma
holds trivially if G is a 3-connected simple graph, or a 3-bond, or a circuit (in the
case of a circuit we have = 0, the empty product is equal to 1, aRdG,t) =

t —1). Thus we may assume th@t has at least two cleavage units and hence
G has a hinge{u,v}. LetH be an excisabldu,v}-componente be the virtual
edge incident withu, v corresponding tdd, andG;, G, the cleavage graphs &
ate. Supposal # x. Thendg(u) = 3 andu is incident to a bridgeis of G —v.
Relabelling if necessary we havee V(G,) anddg,(u) = 2. By Lemmas 3 and

5, F(G,t) = (t —1)"1F(Gy,t)F(Gy,t). Furthermore, each cleavage unit®fis

a cleavage unit o6, or G, (but not both). The lemma now follows by applying
induction toG; andGs. ]

As an example, we may apply Lemma 14 to the gr&gh Figure 1 to deduce
that
F(G,t) = (t— 1) 2F(Ke,)F (K3,1)> = (t = 1)(t - 2)°(t - 3).

Lemma 14 and Theorem 11 imply:

Corollary 15 Let(G,x) be a2-connected near-cubic graph with at least one vertex
of degree three. Thedis a zero of KG,t) of multiplicity c, where c is the number
of cleavage units of G which are not circuits.

We shall use the following property of circuit cleavage units in graphs of max-
imum degree three.

12



Lemma 16 Let G be a2-connected graph of maximum degree three. If X is a cir-
cuit cleavage unit of G then the virtual edges of G contained in X are independent.

Proof. Let e = uv be a virtual edge o6 contained inX and letY be the other
cleavage unit of5 which containse. Let Hi,H, be the cleavage graphs Gfate.
Realbelling if necessary we havgX) C H; andV(Y) C H,. Lemma 12(a) and
the fact thaiX is a circuit cleavage unit imply th&t is not a circuit cleavage unit.
Thusdgp,(u) > 3 anddu,(v) > 3. SinceG has maximum degree three, we must
havedy, (u) = 2 = dy,(v). Thusu andv are both internal vertices ¢1;. Hence
neitheru nor v can be incident to a virtual edge bff,. Thuse is the only virtual
edge ofG incident tou andv in X. [

3.4 Theinterval (20]

We shall first construct a sequence of near-cubic graphs with flow roots converging
to o from above. We then show that bridgeless near-cubic graphs have no flow
roots in(2,a].

3.4.1 A special family of near-cubic graphs

Let (H,x) and(G,x) be near-cubic graphs, and, uv,uw € E(H). We say thaG
is asingle edge extensioof H if G can be obtained froril — u by adding four
new verticesu, Uy, Uz, Us and eight new edgesuy, Xup, UiUp, UpUs, UsUs, UgUs,
ugv, usw. We say thatG, x) is anextensiorof (H,x) if (G,x) can be obtained from
(H,x) by a sequence of single edge extensions. We shall show that near-cubic
graphs which are extensions @€4,x) have no flow roots if2,a], but can have
flow roots arbitrarily close t@. An example of an extension ¢K4,X) is given
in Figure 3. This can be seen by recursively performing the inverse operation to a
single edge extension: choosing a pair of edges, incident tox which belong to
both a 3-cycles;, e, fg and a 5-cycles;, ey, f1, T2, f3; contractingfy, f1, f2, f3 and
deleting eithee; or e;.

We need to consider one other family of near-cubic graphs(lLgk) be the
loopless near-cubic graph with(Lo) = {X,y,z} in which x has degree two and
all other vertices have degree three. L#k,y) be the isomorphism class of all
near-cubic graphs which are isomorphic to eittley,x) or a graph which can be
obtained recursively froniLg,X) by applying the single edge extension operation
to edges which are incident xdout not toy. Let(L1,X) be the near-cubic graph ob-
tained from(Lo, x) by applying the single edge extension operation to the &dge
ThusV (L1) ={X,21,22,23,21,y} andE(L1) = {Xz1, X2, 2122, 2073, Z324, 2421, Z3Y, ZY } .
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Figure 3: An extension ofKas, x)

Lemma 17 Let(G,X) € L(x,y). Lette (2,3) and g> 0 be real numbers satisfying
f(t,g):=(3—-t)g—2(t—2) > 0and

h(t,g) == (3—t)4(g?+t—2) — (3—t)(t—2)(3—t+2g) —g(t — 2)(g?+t—2) > 0.
Then:

(@) F(G—xy,t) > 0with strict inequality when G- Lo;

(b) F(G,t) > gF(G—xyt);

(c) F(G,t) >0.

Proof. We prove (a), (b) and (c) simultaneously by inductionnanf m= 4 then
G =Ly, F(Gt)=(t—1)(t—2), F(G—xy;t) = 0 and the lemma holds. Hence
we may suppose th& is either equal tdL,, x) or can be obtained frortL, x) by
recursively applying the single edge extension operation to edges incidehuto
noty. Thusdg(y) = 3, YX Y23,Y7,2324 € E(G), andG — {X,Y, Z3, 21} has a bridge
e = UiUp corresponding to the bridgaz, of L1 — {X,y,23,2}. Hence there exist
G1,G2 € L(X,y), suchthaG —{y,z3,21,e} = (G1—y)U(G2—Y), (G1—y)N (G2 —
y) = {x}, u1 € V(G1 —y) andu; € V(G, —y). The near-cubic graph&s;,x) are
obtained by applying the same sequence of single edge extensions to theedge
of (Lo, X) as were applied to the edgg in the construction ofG, x) from (Kg, X).
We shall expresE (G — xy,t) andF (G,t) in terms ofF (Gy,t), F(G1 — xy;t),
F(Gy,t) andF (G, —xy,t). LetG" be the graph obtained by contractifmz,, yz, yz }
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ontoy. Using Lemmas 6 and 8, we have

t—DF(G—xyt) = (t—1)(t—2)F(G" —xy;t) =
= F(Gl,t)F(Gz,t) + (t —2)F(Gl—xy,t)F(Gz—xy,t). (2)

Applying (a), (c) inductively toG1,G;, G1 — Xy, G2 — Xy we deduce thaF (G —
xy,t) > 0. Hence (a) holds foB.

By Lemma 7,(t — 1)F(G,t) = (t — 1)(t — 3)F(G™,t). Applying Lemma 2 to
the edgexy of G* and then using Lemmas 5 and 8, and the factEH&; /xy;t) =
F(Gi,t) + F(Gj —xy,t) by Lemma 2, we may deduce that

(t—1)(t—2)F(G,t) = (3—1)[(3—1t)F(Gy,t)F(Gy,1)
—(t—2)F(G1,t)F(Ga—xy,t) — (t —2)F (G1 — xy, 1) F (Gg,t)].

Letr be a real number such that3 — 2r > 0. Then

(t—=1)(t—2)F(G,t) = (3—1)[(B3—t —2r)F(Gy,t)F(Gp,t)+
+F(G1,t) (rF (Ga,t) — (t —2)F (G2 — xy,t)) +
+ F(Go,t) (rF (Gy,t) — (t —2)F (G1 —xy;t))].

Sincet € (2,3) and 3—t —2r > 0, we may apply the inductive hypothesis to
Gy, Gy to obtain

(t—1)(t—-2)F(G,t) > (3—1t)x
[(B—t—2r)F(G1,t)F(Go,t) +29(rg —t + 2)F (G1 — xy, t)F (G2 — xy, t)] .
®3)

In order to comparé& (G,t) andF (G — xy,t), we choose a value farso that the
ratio of the coefficients in (2) and (3) are equal. Let %(t —2)(3—t+29)(0?+
t—2)71 Then 3—t—2r = g(g?> +t —2)~1f(t,g) > 0 by the hypotheses of the
lemma. Thus we may use (2) and (3) to obtain

(3-1)2 (3-1)(3—t+2g)

> - — .
F(Gt) > > - F(G—xyt)

Sinceh(t,g) > 0 we have- (G,t) > gF(G,t) and (b) holds foiG. The truth of (c)
now follows from (a) and (b). 1

We next choose a value fgrin Lemma 17 in order to maximise the range of
values oft for which the lemma can be applied. It can be seen that the maximum
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value oft € (2,3) for which the contrainh(t,g) > 0 holds occurs wheh(t,g) =
0= ag Solving these simultaneous equations we obtaina andg = p where

p~ 1.33... is the zero in(1,2) of the polynomialg* 4- 2g® — 2g°> — 4g+ 1. Since
f(t,p) andh(t,p) are decreasing functions bffor t € (2,a) and f(a,p) > 0=
h(a,p), we have:

Corollary 18 Let(G,x) € L(x,y) andte (2,a]. Then:
(@) F(G—xy,t) > 0with strict inequality when G- Lo;

(b) F(G,t) > pF(G —xy,t), wherep ~ 1.33... is the zero in(1,2) of the poly-
nomial ¢ + 2g° — 2¢? — 49+ 1;

(c) F(G,t) >0.

We now use this Corollary to prove that no extensiofikaf, x) can have a flow
root in (2,q].

Lemma 19 Let(G,x) be an extension ¢K4,x). Then HG,t) < Oforallt € (2,qa].

Proof. Letes,ey,e; be the edges dKy, x) which are not incident te. Since(G, x)
is an extension ofKa, x), there exist graphGs, x), (Gz,x), and(Gz,X) in L(X,y)
such thalG—{ey, &,e3} = (G1—y)U(GC2—y)U (G —Y), (G —Y)N(Git1—Y) =
{x}, andg is incident with a vertex o6; —x andG;1 —xfor all 1 <i < 3, reading
subscripts modulo three. Applying Lemmas 8,7, 6 and @ tee may deduce that

(t-1*t-2°F(Gt) =

(t=3)F(G1,1)F (G2, t)F(Ggs,t) + (t = 2)F (G, 1)F (G2, t)F (Gz — xy;t) +
(t=2)F(Ga,t)F (G2 —xy,t)F (G3,t) + (t — 2)F (G1 — xy, ) F (G2, t)F (Gg, 1)
+(t—2)°F (G1— xy,t)F (G2 — Xy, t)F (Gs — xy;t). @)

If G1 =Gy =Gz =LothenG =Ky, F(G,t) = (t —1)(t — 2)(t — 3) and the lemma
holds forG. Hence we may suppose th@at # L.

Suppose thab; = G3 = Lo. ThenF(Gj,t) = (t —1)(t—2) and
F(Gi —xy,t) =0 for all 2<i < 3. Substituting into (4), we obtain

F(G,t) = (t—3)F(Gy,t) + (t —2)F (G1 — xy,t).
Corollary 18 and the fact thate (2,a] now give

F(G1) < —[p(3-0a)—(a—2)]F(GL—xyt) <0
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Hence we may suppose that, G, # Lo.
Suppose thabsz = Lo. ThenF (Gz) = (t —1)(t — 2) andF (Gz —xy) = 0. Sub-
stituting into (4), we obtain

(t—1)(t—2)F(G,

= (t 3)F(Gl,) (Go,t) +
(t—2)[F(G1—xy,t)F (Gp,t) + F(G1,t)F (G2 — xy, )]

= —QF(Gl,t)[(3—t)F(Gz,t)—2(t—2)F(Gz—xy,t)]—
IF(G2,t) [(3—1)F(Gy,t) — 2(t — 2)F (Gr — xy.t)] . (5)

Corollary 18 and the fact thate (2, a] now give
(t=D(t-2F(Gt) < —p[p(3—a)—2(a—2)]F(G1—xyt)F (G2 —xyt) <0

Hence we may suppose that, G, G3 # Lo.
We may rewrite (4) as

(t—1)2(t—2°F(G,t) =
IF(GLt)F (G, 1) [(3—t)F (Ga,t) — 3(t — 2)F (G — xy,t)] —
LF(GLt)F(Ga,1) [(B3—t)F (Gayt) — 3(t — 2)F (Gp — xy,t)] —
LF (G, t)F (Ga, 1) [(3—t)F (Gy,t) — 3(t — 2)F (G — xy,t)] +
(t—2)%F (G — xy,t)F (G — xy,t)F (Gz — xy.t).

Corollary 18 and the fact thatc (2, a] now give

(t—1)2(t—2)%F(G,t) < — [(3—a)p®—3(a — 2)p* — (a — 2)?] x
F(G1—xy,t)F(Gy —xy,t)F(Gz—xy,t) <O.

Our final result in this subsection is to show that there exists a sequence of
extensions of K4, x) with flow roots converging ta from above. LetGy,x) be
a copy of(K4,x) ande be an edge o6; incident tox. Fori > 2, let (G;,x) be
the near-cubic graph obtained frdi@;_1,X) by applying the single edge extension
operation to every edge incidentt@ther thare.

Theorem 20 For all € > 0 there exists an &> 1 such that G has a flow root in
(a,a+eg|.
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Proof. Let (Lo, x) be the near-cubic graph defined in the paragraph before Lemma
17. Fori > 1, let(L;, x) be the near cubic graph obtained froln_1, x) by applying

the single edge extension operation to every edge incidenbtber tharxy. For

i >0, leta(t) =F(Lj,t), bi(t) = F(Li —xy,t), andci+1(t) = F(Gi11,t). Applying

the argument used in the derivation of (2), we deduce that*o0,

(t=1)bi = a + (t—2)bf. (6)
Applying the argument used in the derivation of (5), we deduce that+td,
(t=1)(t—2)c1 = (t—3)a’ +2(t - 2)ab;. ©)

Applying Lemma 7 toL; for i > 1, using the 3-edge-cut incident to the triangle
containingy, we have

a = (t—3)c. (8)
Fori > 1, letr;(t) = ci(t)/bi(t). Thusri(t) = (t —3)/(t — 2) and equations (6), (7)
and (8) imply that

(t—3) [(t—3)%r2+2(t—2)ri]

(t-2) [t-3)2r2+ (t-2)] ©)

risa(t) =
Let
frt) — (t—3) [(t—3)%r2+2(t—2)r]
W) = ) [i—3a2t (=2
Thusri;1(t) = f(ri(t),t) foralli > 1.

Claim2 Ifr <Oandte (a,3) then f(r,t) >r.

Proof. We have

f(rt)—r=—rt—21[@-t)2r2+(t—-2)] "

g(r.t),
where
g(r.t) = (3—t) [(B-1)%r+2(t—2)] + (t—2) [(B—1)*r?+ (t - 2)] .

Solvingg(r,t) = 0 for r, we obtain

P60k Vit 83+ 227 28 +17
- 2(t—2)(t-3) ‘

Sincet* - 8t3 4+ 222 - 28+ 17 < 0 fort € (a, 3) we deduce thag(r,t) > 0 for all
rand allt € (a,3). Thusf(r,t)—r > 0forallr <0 and allt € (a,3). ]
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Claim 3 Ift € (a,3) then (t) > 0 for some n> 1.

Proof. Suppose(t) < 0foralln> 1. Sinceri1(t) = f(ri(t),t), Claim 2 imples
that{r;(t) : i > 1} is a monotonicly increasing sequence bounded above by zero.
Hence it must converge to a limit< 0 satisfyingr = f(r,t). Using Claim 2, we
may deduce that= 0. This is impossible since for fixads (a, 3), the right hand
side of (9) is positive when (t) is negative and sufficiently close to zero. 1

We may now complete the proof of the theorem. By Claim 3, we may choose
n > 1 such thatrp(a +¢€) > 0. Since (6) implies thab,(a +€) > 0, we must
havecy(a +¢€) > 0. On the other hand, Lemma 19 implies thato) < 0. Since
F(Gn,t) = cn(t) is continuous, it must have a zero(im, o + €]. ]

3.4.2 The zero-free interval

We show that no near-cubic graph can have a flow rogRju]. We shall need

the following ‘characterisation’ of the family of near-cubic graphs which are ex-
tensions of(K4,Xx). We only state and prove the direction of the characterization
which we require. The reader may find it helps their understanding of the following
proof if they first verify that the graph in Figure 3 satisfies conditions (a) and (b)
below.

Lemma 21 Let (G,x) be a3-connected near-cubic graph and T be the cleavage
unit tree of G- x. Suppose that:

(a) each non-circuit cleavage unit of 6x is a K§°’ and has degree two in T

(b) each circuit cleavage unit of Gx either is a G and has degree onein T, or
is a G and has degree two in T, or is g@nd has degree three in T.

Then(G,x) is an extension ofKs, X).

Proof. Let P = X;X5... X be a longest path ifi. ThenX; has degree one i
S0 is aCy-cleavage unit of5 — x by (b). LetX; = ujupusugu; whereus, u, have
degree two inG — x. SinceG is 3-connectedxu;, X, € E(G). By Lemma 12(a)
and hypothesis (a) of the lemmy; is aK23-cIeavage unit o5 — x and has degree
two inT. ThusV (Xz) = {us,us} andusus € E(G). By Lemma 12(a)Xs is a circuit
cleavage unit of. By (b), X3 has degree at most threeTin If X3 has degree one
in T then, by hypothesis (bXs is aCs-cleavage unit 06 — x and(G, x) is a single
edge extension dfK4,x). Thus we may assume th¥éj has degree two or three in
T.
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SupposeXs has degree two ifi. By (b), X3 is aCs-cleavage unit oc — x. Let
X3 = uzvzwiuz. By Lemma 16 and symmetry, we may suppose that the virtual
edge ofG — x contained inX3 and distinct fromusug, iswz Thusv is a vertex of
degree two inG—x andxv € E(G). Let (G',x) be the near-cubic graph obtained
from G — {ug,up,u3,us} by adding a new vertex and edgesix, uv,uw. Then
(G,x) is a single edge extension @&',x). Furthermore' is 3-connected, the set
of cleavage units o' is obtained from the set of cleavage units®by deleting
X1, X2, X3 and adding a newZ;-cleavage uniX’ = uvzwy and the cleavage unit
treeT’ of G’ —xis obtained fronT — {X;, X,, X3} by adding the new vertex’ and
edgeX’Xy. ThusG' satisfies the hypotheses of the Lemma. By inducti@,x) is
an extension ofK4,x). Thus(G,x) is an extension ofK, X).

SupposexXz has degree three ifi. By (b), X3 is aCs-cleavage unit of5 — x.
Let X3 = ugvyzwuyus. By Lemma 16, the virtual edges &f — x contained inX3
are uzug, Wy, zw. By symmetry, we may assume thatc E(X4). LetY, be the
neighbour ofX3 in T distinct fromXs. As abovey is aKg’-cIeavage unit o — x
and has degree two ii. ThusV(Y2) = {w,z} andwze€ E(G). LetY; be the
neighbour ofY, in T distinct fromXs. The maximality ofP implies thaty; is an
end-vertex ofT and hence is &;-cleavage unit ofG. Let (G',x) be the near-
cubic graph obtained fro® — {us, U, us,us} by adding a new verten and edges
ux,uv,uw. Then(G,x) is a single edge extension (&',x). FurthermoreG' is 3-
connected, the set of cleavage unit$bfs obtained from the set of cleavage units
of G by deletingX;, Xo, X3 and adding a new@s-cleavage uniK’ = wuvyzwand the
cleavage unit tre&’ of G’ — x is obtained fronl — {X;, X2, X3} by adding the new
vertexX’ and edgeX’Xs, X'Y,. ThusG' satisfies the hypotheses of the Lemma. By
induction,(G',x) is an extension ofK4,x). Thus(G,x) is an extension ofKy, X).
|

Let C denote the isomorphism class of circuits of lenkth

Theorem 22 Let (G,x) be a non-separable near-cubic graph with m edges, n
vertices and ¢ non-circuit cleavage units. ThefGht) is non-zero with sign
(—1)™"*Cfor t € (2,a], wherea ~ 2.225.. is the real zero in2,3) of the poly-
nomial t* — 8t3 4 2212 — 28 4 17.

Proof. We proceed by contradiction. Suppose the theorem is false. Then we may
choose & € (2,a] and a near-cubic grapl, x) satisfying the hypotheses of the
theorem such thgt-1)™"*°F(G,t) < 0 and such that, for this fixed value tofm

is as small as possible. We shall show Batatisfies the hypotheses of Lemma 21
and hence is an extension @€4,x). This will give the required contradiction by
Lemma 19. Since the theorem hold<3fis a circuit or a 3-bond, we deduce that

G is 2-connectedy > 3 andm > 4. Since suppressing vertices of degree twGin
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leavesm— n andc unchanged and also leavE$G,t) unchanged by Lemma &
has minimum degree three.

Claim 4 G is3-connected.

Proof. Suppose the claim is false and &t be an end-cleavage unit & SinceG
has minimum degree thre€y is not a circuit, and hend@; is either a 3-bond or
is 3-connected. We may expreéSa1sG = H; UH, with Hy NHy = {u, v} for some
u,v e V(G) andG; = Hi + uv. Without loss of generality # v. Let G, = Hy+uv.
SinceG is near-cubic andg, (v) = 3, we havedg,(v) = 2. Fori = 1,2, letx, = x
if x € V(H;) and otherwise relabel an arbitrary vertex@fasx;. Then(G;,x)
is near-cubic and non-separable=m +nm -2, n=n;+np—2,¢; =1 and
c;=c—1. ByLemma5(t—1)F(G,t) = F(Gy,t)F (Gy,t). Sincemy,m, > 3, we
havem;,mp, < m—1. Thus we may apply induction ©8; andG, to deduce that
the theorem holds fd®&. |

Claim 5 G is cyclically4-edge-connected.

Proof. Suppose the claim is false. L&be a cyclic 3-edge-cut i® andH;, Hz be
the components &b — S. Fori = 1,2, letG; be the near-cubic graph obtained from
G by contractinge(Hs_;). SinceG is 3-connected; and G, are 3-connected,
and hence = 1= ¢; = ¢,. Furthermoran=m; +n, +3,n=n; +ny+2 and, by
Lemma 7,(t —1)(t — 2)F (G,t) = F(G,t)F(Ggp,t). Applying induction toG; and
G, we deduce that the theorem holds €ar |

Using Claim 5 we immediately deduce:
Claim 6 G— e is essentiallpB-connected for all & E(G).

Claim 7 G/e is a cleavage unit path with an even number of non-circuit cleavage
units for all edges e of G incident to x.

Proof. LetG; = G/eandG,; = G—e. By Claim 4,G; is 2-connected and by Claim
6, G, is essentially 3-connected. By Lemma2G,t) = F(Gy,t) — F(Gy,t). Since
nN=m+1l=n, m=m—-1=nm—1andc=1=c, we may deduce that the
theorem will hold forG by applying induction tas; andG; if ¢; is odd. Hence;

is even.

Lete= xvand letx; be the vertex of5; obtained by contracting. Choose an
end cleavage unii; of Gi. Then we may express; asG; = (Hy —y2) U (Hz —
yz) whereH1 NHz = {y,z,yz} for somey,ze€ V(G;). SinceG is 3-connected by
Claim 4,x; € {y,z}, sayx; =y. ThenG — {x,v,z} is disconnected. Sinc8 is
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3-connected, some vertex'\dfH;) — {xq, z} is adjacent tov in G. Thus every end
cleavage unit of51 has an internal vertex which is a neighbourvah G distinct
from x. SinceG is near-cubicy has exactly two neighbours distinct from Thus
G; has exactly two end cleavage units and heB¢és a cleavage unit path. &

Claim 8 Suppose S {ujup,viVo} is a 2-edge-cut of G- x. Let G— S=H; UH>
where H N Hy = {x}, u,v1 € V(H1) and w,v» € V(Hz2). Suppose further that
du, (X) > 2 and dy,(x) > 2. Let G be the graph obtained from G x by adding
two new vertices XX», and joining x to each neighbour of x injHor L <i < 2.
Let G" be obtained from G by adding a new edge-e x;x,. Fori=1,2, let G
be the graph obtained fromGby contracting EHs_;) to the single vertex;yand
G, =G/ —xyi. Then:

(a) G is acleavage unit path andc=c; +c, is odd,;

(b) ifxis adjacentto a vertex ifu;,Vv; } for some ie {1,2}, then G is essentially
3-connected,;

(c) xis not adjacent to both a vertex{ii, v, } and a vertex infuy, va};
(d) if ¢, is odd, then (G5 /x2y2) is even and ¢ = 1.

Proof.

(a) The fact thats~ is a cleavage unit path follows since the 3-connectivitysof
implies that each end cleavage unit®f must contain eithex; or x, as an internal
vertex. By Lemma 8,

(t—1)(t—2)F(G,t) = F(G],t)F(GJ,t) + (t—2)F (G, ,t)F(G,,t).  (10)

SinceG is 3-connectedG; andGJ are both 3-connected. Theg = 1=c;.
Furthermore
m=m+m} —4=m; +m, —2

and
n=n; +n; —3=n; +n, —3.

If c; +c; is even, then we may deduce that the theorem hold& foom (10)
by applying induction t&5],GJ,G; ,G, . Thusc™ = ¢, +c, is odd.

(b) Supposex is adjacent tau;. SinceG; is 3-connected an; /xiy: is not
3-connected; has only two neighbours iG] /x1y1), Lemma 10 implies that
G, = GJ —x1y1 is essentially 3-connected.

(c) Supposeis adjacent to both a vertex {ru1, v1 } and a vertex i{uz, v2}. Using
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(b) we deduce thas; andG, are both essentially 3-connected. Tleys=c, =1.
This is impossible since; +c, = ¢~ is odd by (a).
(d) Henceforth we assume theit is odd. Therc; is even by (a). IV (H2)| =3
thenG; = K4 and (d) holds. Thus we may assume thatH,)| > 4.

Let G, = GJ /x2y2, and suppose thap is odd. By Lemma 2F (G ,t) =
F(G2,t) —F (G, ,t). Substitution into (10) gives

(t—-1(t-2F(Gt) = F(G],t)F(Gyt)—
[F(Gf,t) = (t=2)F (G ,t)|F(G,,1).  (11)

Let G} be the graph obtained fro®] —y; by adding three new vertices
21,22,73 and edgezlxl, 20Uy, 23V, 2120, 2273,7373 , and |etG3_ = G’{/xlzl. Sincer
is 3-connectedi; andG) are 3-connected arg] = 1. Applying induction toG],
we deduce that—1)™"+1F (G],t) > 0. Applying Lemma 2 ta5} using the edge
X121, and then using Lemmas 5 and 7, we deduce that

F(GL,t) = (t—=3)F(G],t) + (t—2)F (G ,t).

Thus(—1)™~"+1[(t — 3)F (G ,t) + (t — 2)F (G ,t)] > 0. Sincent, = m{ 42 and
n; =nj +1 we have

(B-)(-™ HF(GL,) ~ (t - ()™ (G 1) > 0.
Since 0< 3—t < 1, and(—1)™ " *1F(G7,t) > 0 by induction, we have
(~)™ M [F(GLLY) ~ (t-2)F (Gt > 0.

ThusF (G ,t) — (t — 2)F(G7,t) is non-zero with signi—1)™ " +1. Substitut-
ing into (11), applying induction t&;,G,G,, and usingn=m; +m, — 3 =
mi+m, —3,n=n{ +n,—2=n] +n, —3,c=1=c] andcy,c, are odd, we
deduce thaF (G,t) is non-zero with sigri—1)™ "1, This contradicts the choice
of G. Thus the assumption thes is odd must be false. Henag is even and, in
particular,G; is not 3-connected. Lemma 10 now implies tBgt = G; — Xy» is
essentially 3-connected and hemge= 1. |

Claim 9 Let X be an end cleavage unit of-&. Then X= C4.

Proof. SinceG is 3-connectedx is adjacent to at least one internal verierf
X. Thusdg_x(v) = 2 =dx(v). HenceX is neither 3-connected nor a 3-bond, so
X =G, forsomer > 3. LetX =wv1v»...V;vq, wherey; is an internal vertex oX for
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2<i<r—1. Then, for 2<i <r—1, we havedx(vi) = 2= ds_x(Vi) and hence
6 =XV € E(G). Sincedg_x(V1),dc—x(Vr) > 3, we havexvy,xv; € E(G). If r =3,
thenG — {x,v2} is 2-connected and Lemma 13 implies ti@te, is 3-connected.
This would contradict Claim 7 and hence> 4.

LetS= {v1v2,vaVv4}. ThenSis a 2-edge-cut o6& — x. We haveG — S=H; UH>
whereH; NHz = {x} andV (H1) = {x,v2,v3}. LetG~,G;,G; be as defined in the
statement of Claim 8. The@; is homeomorphic t&3 soc; = 1.

Supposer > 5. Thenxvs € E(G) so by Claim 8(b),G, is essentially 3-
connected. Thus, =1 andc™ =c¢; +¢, = 2. This contradicts Claim 8(a) and
hencer = 4. ]

Claim 10 Let X be a non-circuit cleavage unit of-6x and yv, be a virtual edge
of G—x contained in X. Let S {ujuy,viv2} be the2-edge-cut of G- x incident to
{uz,v2}. Let G",GJ,G3,G;,G, be as defined in the statement of Claim 8. Then:

(@) ¢ isevenandg =1,
(b) X has degree two in the cleavage unittree T of §

Proof. Note that Claim 9 implies thats (x),dGE (x) > 2.

(a) Suppose, is odd. Then Claim 8(d) implies th@, = G5 /xay» is not 3-
connected. Sinc&; is 3-connected and near-cubic, we may use Lemma 13 to
deduce thaG; — {x,y»} has a cut edgé. Thusu, andv, belong to different
components 06, — {x2,Yy», f}. This contradicts the fact thap andv, belong to

the same non-circuit cleavage uiitof G — x and hence are joined by three inter-
nally disjoint paths irG — x. Thusc; is even, and by Claim 8(a),(d); = 1.

(b) Suppos«& had degree at least threelinLete* be the edge of corresponding
to the virtual edgei,v» of G— %, andT, be the component &f — e* which contains
X. ThenT; is the cleavage unit tree of the grad) obtained by suppressing in
G, . SinceX has degree at least threeTn it has degree at least two 1. Thus
X is not an end cleavage unit &;. SinceG is 3-connectedx is adjacent to an
internal vertex in each end cleavage unif x. Thusx; is adjacent to an internal
vertex in each end cleavage unit@ —x,. By Lemma 12(b)G5 is essentially

3-connected. Sinc&, is homeomorphic taG5, G, is essentially 3-connected.
Hencec, = 1. This contradicts (a) and completes the proof of (b). 1

Claim 11 Let X be a3-connected cleavage unit of-&x and uywz be the virtual
edges of G- x contained in X. Let Xbe obtained from X- {uv,wz} by adding a
new vertex y and new edgesyyyw yz. Then X is 3-connected.
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Proof. SinceX is 3-connected, no vertex &fis adjacent txin G. SupposeX* is
not 3-connected. Thepis contained in a 2-vertex-cut of*. Since each vertex of
X* other thary has degree three, this implies théit— {y, e} is disconnected for
somee € E(X*). ThusS= {uv,wz e} is a 3-edge-cut oK. Let X; andX; be the
components oK — S. Relabelling if necessary we may suppose that € V (X;)
andv,ze V(Xp). LetS = {uu,vw1} andS, = {wwy,zz} be the 2-edge-cuts of
G—xincident to the hinge$u, v} and{w, z}, respectively. The;, = {uw, ww;, e}

is a 3-edge-cut o6 andX; is a component o6 — S;. Using Claim 5, we deduce
thatX; = Kj. Arguing similarly usingS, = {vvi,zz,e}, we may deduce tha, =
Ki. ThusX = Kg, contradicting the hypothesis thétis 3-connected. |

Claim 12 Let X be a non-circuit cleavage unit of-6x. Then X is &-bond.

Proof. SupposeX is 3-connected. LeT be the cleavage unit tree & — x. By
Claim 10(b),X has degree two ifi and henc& contains exactly two virtual edges
uvi,Wiz3 of G—x. Let S= {ujup,v1vo} andS = {wywp, 217y} be the 2-edge-cuts
of G —x incident to the hingegus,v1} and{wi,z}, respectively. Sinc& is a
3-connected cleavage unit Gf— x, no vertex ofX is adjacent tox in G.

Let x3,%2,G~,G" be as defined in the statement of Claim 9 with respe& to
By Lemma 2,

F(Gt)=F(G"t) +F(G,t). (12)

Let G— S= H; UH, whereH; NH; = {x} andV(X) C V(Hi1). LetGJ be the
graph obtained fronG™ by contractingg (H;) to the single vertey,, andG, =
GJ — Xoy2. LetG—S = HoUH; whereHoNH; = {x} andV(X) C V(H;). De-
fine G, Gy, Yo in a similar way toG; , G, ,y» by contractingE(H;). Finally let
G] be obtained fronG~ by contractinge(H,) to a single vertey, and then con-
tractingE(Ho) to a single verteyo. Let G] = G| +Yayo. The 3-connectivity of
G impies thatG{,G;,G; are 3-connected, Claim 10(a) implies ti@g,G, are
essentially 3-connected, and the fact tGgt is homeomorphic tX implies that
G is essentially 3-connected.

Applying Lemma 7 twice tdG" using the 3-edge-cutfiup,viVo, X1%2} and
{W1Wo, z1 29, X1X2 } We obtain

(t—1)%(t—2)%F(G",t) = F(G§ ,t)F(G{ ,t)F (G5 ,t).

Similarly, applying Lemma 5 twice t&~ using the 2-edge-cutauup, v1vo} and
{w1wo, 7179} we obtain

(t—1)%F(G™,t) = F(Gy,t)F (G ,t)F (G5 ,t).
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Substituting into (12) gives
(t-1%t-2%F(Gt) = F(G§,t)F(G,t)F(GJ,t)+
(t—2)%F(Gy,t)F (G, )F(G;,t). (13)

Let G; be obtained fronG] by contracting the edggoy.. ThenG; is 3-
connected by Claim 11. By LemmaR(G; ,t) = F(Gy,t) — F(G,t). Substitut-
ing into (13) we obtain

(t—1)%(t—2)%F(G,t) = F(G§,t)F (G5, t)F (Gy,t)—
F(GL,t) [F(GE,HF(GS.t)—(t —2)2F(Gg,t)F(Gg,t)] . (14)

We shall show that both of the terms on the right hand side of (14) are non-zero
with sign (—1)™ "1,

Let G3 be obtained fronG —V (X) by adding two new vertices,v and new
edgesuy, uwg, VZy, Uk, VW». The 3-connectivity o implies thatGs is 3-connected.
We may apply the reduction used in the derivation of (13%%0 In this analysis
the graphsX, Gf, andG; are replaced by graphs isomorhicKg, K4, andK; ,
respectively, wherl, is obtained fronkK, by deleting an edge. Using the fact that
F(Ks,t) = (t—1)(t—2)(t —3) andF (K, ,t) = (t — 1)(t — 2), we deduce that

(t—1)%(t—2)%F(Gs,t) = F(G§,t)(t—1)(t—2)(t—3)F(Gs,t)+
(t—2)%F(Gy,t)(t — 1)(t — 2)F (G5 ,t).

Applying induction toGs we have
(—1)™ Tt = 3)F (G, HF (G ,t) + (t — 2)°F (Gy ,t)F (G5 ,t)] > 0.
Thus
(—=1)™ ™ [(3—t)F(G§,t)F(Gy,t) — (t —2)°F(Gq ,t)F (G5, t)] > 0.

By induction (—1)™ "6 ™ " F (G ,t)F (GJ,t) > 0. Sincemg = my +mj} — 1,
ng=ng +nJ —1,and 3-t > 0, we have

(=1)™"(3-1)F(Gy,t)F(G;,t) > 0.
Since 0< 3—t < 1, it follows that
(=)™ [F(Gy,HF (G5 ,t) — (t—2)°F (Gy ,t)F (G, )] >0.  (15)

Applying induction toG; , we obtain(—1)™ ~™ *1F(G],t) > 0. Using (15), and
the facts thalm=mg +m; — 5, andn = n3 4 n; — 4, we may deduce that

(=1)™"F(Gy,t) [(F(G§,t)F(G3,t) — (t—2)%F (G, ,t)F(G,,t)] >0. (16)
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We may also deduce by induction that
(—1)™ "o tMe M FMomElE (G t)F (G, t)F (Gt > 0.
Sincem= my +m; +m, — 6, andn = ng +nJ +n, — 4, it follows that
(=)™ "R (GY L, t)F (G, t)F(Gy,t) > 0. (17)

Using (14), (16) and (17), we deduce tifatl)™ "*1F (G,t) > 0. This contradicts
the choice ofG as a counterexample to the theorem and completes the proof of the
claim. 1

Claim 13 Let X =wv1Vv»...VyVvp be a circuit cleavage unit of G x which is not an
end cleavage unitand T be the cleavage unit tree eHG

(a) Each neighbour of X in T is &bond cleavage unit of G x.
(b) At most one vertex of X is adjacent to x in G.
(c) If avertex of X is adjacent to x in G then=XCs and X has degree two in T.

(d) If no vertex of X is adjacent to x in G then=XCg and X has degree three in
T.

Proof. (a) follows from Lemma 12(a) and Claim 12.

(b) Supposexv,xv; € E(G) for some 1<i < j<r. If vj & {vi_1,Viy1} then
S={Vvi_1Vi,Vj_1Vj} is a 2-edge-cut o6 — x which contradicts Claim 8(c). Hence
we may assume without loss of generality tkiat xv> € E(G) and thatvs & E(G)
for all 3 <s<r. Since each vertex @ other tharx has degree 3, it follows that
is even ands_1Vos is a virtual edge o6 contained inX for all 2 <s<r/2. Since
X has degree at least twoTn it contains at least two virtual edges®fand hence
r > 6. LetS={vov3,vv1}. ThenSis a 2-edge-cut o6 — x. LetG~,G;,G, be as
defined in the statement of Claim 8, whetev, € V(G; ). SinceG; s homeomor-
phic toK3, ¢; = 1. Furthermore, = 1 by Lemma 12(b). This contradicts Claim
8(a).

(c) We assume thatis adjacent to exactly one vertex ¥f Relabelling if neces-
sary, we may assume without loss of generality #vat E(G) and thakvs € E(G)
forall 2 <s<r. Thusr is odd andvssvos, 1 is a virtual edge ofs contained inX
forall 1 <s< (r—1)/2. SinceX has degree at least two @ it contains at least
two virtual edges o6 and hence > 5.
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Suppose > 7. LetS= {vivo,v5v6}. ThenSis a 2-edge-cut o6 —x. Let
G~,G; ,G, be as defined in the statement of Claim 8, whares € V(G; ). Then
¢; =1 by Claim 8(b) andt;, = 1 by Lemma 12(b). This contradicts Claim 8(a).
Hencer = 5, X contains exactly two virtual edges & andX has degree two in
T.

(d) We assume thatis adjacent to no vertex of. Thenr is even and the virtual
edges ofG in X are a 1-factor oX. Relabelling if necessary, we may assume
without loss of generality thabsvos. 1 is a virtual edge ofs contained inX for all

1 <s<r/2. SinceX has degree at least two @, it contains at least two virtual
edges ofG and hence > 4.

Suppose = 4. LetS= {vivp,v3W4}. ThenSis a 2-edge-cut oG — x. Let
G~,G; ,G, be as defined in the statement of Claim 8, where, € V(G; ). Since
the two cleavage units @ — x adjacent toX in T have degree two it by Claim
10(b), we have; > 2 andc, > 2. This gives a contradiction since Claim 8(a) and
(d) imply that eitheic; =1 orc, = 1. Hencer > 6.

Suppose > 8. LetS= {vivo,v5v6}. ThenSis a 2-edge-cut o6 —x. Let
G~,G;, G, be as defined in the statement of Claim 8, whereg € V(G ). Then
¢, =1=c, by Lemma 12(b). This contradicts Claim 8(a). Hermce 6, X
contains exactly three virtual edges@fandX has degree three ih. 1

Lemma 21 and Claims 4, 9, 12, and 13 imply t@ais an extension ofKs, ).
Since each single edge extension adds three vertices and five edgesvhave
m—nis even. By Lemma 1% (G,t) < 0 fort € (2,a]. This contradicts the choice
of G as a counterexample to the theorem. 1

Using Theorems 9, 22, and planar duality we have:

Corollary 23 Let G be plane near triangulation. Then the only zeros @®) in
(—co,0] arel and2.

Since extensions dfK4,X) are planar, Theorem 20 and planar duality show
that there exists an infinite family of plane near triangulations with chromatic roots
converging tax from above.

4 Closing Remarks
In a subsequent paper [5] we extend the zero-free int¢@val for certain fami-

lies of near-cubic graphs. As a corollary we deduce th&ig a cubic bridgeless
graph, ther(G,t) has no zeros ifi2,y), wherey ~ 2.54.. . is the root in(2, 3) of
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the flow polynomial of the cube. The dual statement for plane triangulations had
previously been verified by Woodall [16, 17].

Acknowledgementl would like to thank Douglas Woodall for his many helpful
comments and suggestions. In particular for his suggestion that my original proof
of Theorem 9 could be extended from flow polynomials to the derivatives of the
functionqgy(G,t).
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