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Abstract

Let P(G, t) and F(G, t) denote the chromatic and flow polynomials of
a graphG. G.D. Birkhoff and D.C. Lewis showed that, ifG is a plane near
triangulation, then the only zeros ofP(G, t) in (−∞,2] are 0, 1 and 2. We will
extend their theorem by showing that a stonger result to the dual statement
holds for both planar and non-planar graphs: ifG is a bridgeless graph with
at most one vertex of degree other than three, then the only zeros ofF(G, t)
in (−∞,α] are 1 and 2, whereα ≈ 2.225. . . is the real zero in(2,3) of the
polynomialt4−8t3 + 22t2−28t + 17. In addition we construct a sequence
of ‘near-cubic’ graphs whose flow polynomials have zeros converging toα
from above.

1 Introduction

All graphs considered are finite and may contain loops and multiple edges. We
shall refer to graphs without loops or multiple edges as simple graphs. We use
P(G, t) to denote the chromatic polynomial of a graphG, andF(G, t) to denote
its flow polynomial. We shall use the termschromatic rootandflow rootof G to
refer to the zeros ofP(G, t) andF(G, t), respectively. The study of the distribution
of chromatic roots was initiated by G.D. Birkhoff and D.C. Lewis in [1]. Inspired
by the 4-Colour Conjecture, they showed that for all plane near triangulationsG,
P(G, t) has no zeros in the intervals(−∞,0), (0,1), (1,2) and[5,∞). In addition,
D.R. Woodall [15] has shown that 2 is a simple zero ofP(G, t) if G is 3-connected.

For an arbitrary loopless graphG, it is known, see Tutte [12] or Woodall [15],
that P(G, t) has no zeros in the intervals(−∞,0) and (0,1), that 0 is a zero of
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P(G, t) of multiplicity equal to the number of components ofG, and that 1 is a zero
of P(G, t) of multiplicity equal to the number of non-trivial blocks ofG, where
a block isnon-trivial if it has at least one edge. In addition, in [3], it is shown
thatP(G, t) has no zeros in the interval(1, 32

27 ]. Wakelin [13] showed that the dual
statements also hold for an arbitrary bridgeless graphG: F(G, t) has no zeros in
the intervals(−∞,1) and(1, 32

27 ] and 1 is a zero ofF(G, t) of multiplicity equal to
the number of non-trivial blocks ofG. (A common extension of these results on
chromatic and flow polynomials to matroids is obtained in [2].)

In this paper we show that the dual statements to the above mentioned results
on plane near triangulations hold for both planar and non-planar graphs. We will
considernear-cubic graphs: graphs with minimum degree at least two and at most
one vertex of degree greater then three. We will show that ifG is bridgeless and
near-cubic, thenF(G, t) has no zeros in(1,2); 2 is a simple zero ofF(G, t) when
G is 3-connected; andF(G, t) has no zeros in(2,α], whereα≈ 2.225. . . is the real
zero in(2,3) of the polynomialt4−8t3+22t2−28t +17. We give an example of a
sequence of near-cubic graphs whose flow polynomials have zeros converging toα
from above. These results extend the above mentioned results on chromatic roots
of plane near triangulations in(∞,2] by planar duality. We refer the reader to [4]
for a more detailed survey of chromatic and flow roots of graphs.

2 Definitions and Preliminary Results

Let G be a graph. Anedge-cutof G is the set of edges,S, fromU to V(G)−U for
some proper subsetU ⊂V(G). We say that the subgraphs ofG induced byU and
V(G)−U are thesidesof Sand thatS is ak-edge-cut if|S| = k. A bridgeof G is
a 1-edge-cut. The graphG is k-edge-connectedif G has nor-edge-cuts forr < k.
An edge-cutSof G is cyclic if both sides ofScontain circuits, andG is cyclically
k-edge-connectedif each cyclic edge-cut ofG has at leastk edges.

We say thatG is k-connectedfor some integerk≥ 2 if G is loopless,|V(G)| ≥
k+ 1, andG−U is connected for all allU ⊂V(G) with |U | < k. A vertexx is a
cut-vertexof a graphG if G− x has more components thanG. We say thatG is
non-separableif either |V(G)|= 1 and|E(G)| ≤ 1, orG is loopless, connected and
has no cut-vertices. Thus a graph on at least three vertices is non-separable if and
only if it is 2-connected. Ablockof G is a maximal non-separable subgraph ofG.
(Thus every loop ofG is the edge set of a block ofG.)

Given an edgeeof G, we shall useG/eandG−e to denote the graphs obtained
from G by contractinge and deletinge, respectively. Note that, ife is a loop, then
G/e = G− e and that, ife belongs to a set of parallel edges, then every edge in
the set other thane becomes a loop inG/e. Throughout this paper we usen andm
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to denote the numbers of vertices and edges, respectively, in a graphG. We shall
extend this notation by using subscripts and superscripts. Thus, for example, the
number of edges in a graphG+

1 will be denoted bym+
1 .

Flow Polynomials

Let Γ be an additive abelian group andG be a graph. Suppose we construct a
digraph~G by giving the edges ofG an arbitrary orientation. ForU ⊆ V(G) and
Ū =V(G)−U , letE+(U) be the set of arcs fromU toŪ in ~G andE−(U) = E+(Ū).
Let f : E(~G)→Γ and putf +(U) = ∑e∈E+(U) f (e) and f−(U) = ∑e∈E−(U) f (e). For
v ∈ V(G) let f +(v) = f +({v}) and f−(v) = f−({v}). Then f is a Γ-flow for G,
with respect to~G, if f +(v) = f−(v) for all v∈V(G). If, in addition, f (e) 6= 0 for all
e∈E(G), then we say thatf is anowhere-zeroΓ-flow for G. It can be seen that the
condition f +(v) = f−(v) for all v∈V(G) is equivalent to the apparently stronger
condition thatf +(U) = f−(U) for all U ⊆V(G). Thus, ifG has a nowhere-zero
Γ-flow, thenG is bridgeless. Since reversing the orientation on an edgee of ~G
is equivalent to replacingf (e) by − f (e), the number of distinct nowhere-zeroΓ-
flows forG is independent of the chosen orientation~G of G.

A nowhere-zero t-flowfor G is a nowhere-zeroZ-flow, f , such that| f (e)| ≤ t−
1 for all e∈E(G). Tutte [9] has shown thatG has a nowhere-zerot-flow if and only
if G has a nowhere-zeroZt-flow. Furthermore, the number of distinct nowhere-zero
Γ-flows forG is the same for all abelian groupsΓ of the same order. Note, however,
that the number of nowhere-zeroZt-flows for G may differ from the number of
nowhere-zerot-flows for G. Nowhere-zero flows were introduced by Tutte [9] as
a dual concept to proper colourings. He showed that a connected plane graphG
has a propert-colouring if and only if its planar dualG∗ has a nowhere-zerot-
flow. The two concepts differ for non-planar graphs, however. Indeed, whereas
there exist loopless graphs which are nott-colourable for arbitrarily large integers
t, Tutte [10] conjectured that every bridgeless graph has a nowhere-zero 5-flow.
Jaeger [6] obtained a partial solution by showing that every bridgeless graph has a
nowhere-zero 8-flow. His result was subsequently improved by Seymour:

Theorem 1 [8] Every bridgeless graph has a nowhere-zero6-flow.

Following Tutte [10] we define theflow polynomial F(G, t) of G as the number
of distinct nowhere-zeroZt-flows forG for any positive integert. ThusF(G, t)≡ 1
if E(G) = /0 andF(G, t)≡ 0 if G has a bridge.

By the above remarks,F(G, t) is independent of the chosen orientation ofG.
Note also that since the existence of a nowhere-zerot-flow for G implies the exis-
tence of a nowhere-zero(t +1)-flow by definition, and is equivalent to the existence
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of a nowhere-zeroZt-flow as noted above, we may deduce that ifF(G, t0) 6= 0 for
some positive integert0, thenF(G, t) 6= 0 for all integerst ≥ t0.

We could also consider the polynomialI(G, t) defined to be the number of dis-
tinct nowhere-zerot-flows for G. Kochal [7] gives relationships betweenI(G, t)
andF(G, t), but these seem to be the only results onI(G, t) in the literature. Atten-
tion has concentrated onF(G, t) because it is dual toP(G, t) for plane graphs: ifG
is a connected plane graph andG∗ its planar dual, then there is a surjection from
the t-vertex-colourings ofG∗ to the nowhere-zeroZt-flows for G such that each
nowhere-zeroZt-flow for G has exactlyt pre-images, see [10]. Thus

F(G, t) = t−1P(G∗, t).

We may use this identity to restate results and conjectures on chromatic roots of
families of plane graphs in terms of flow roots of the dual families. For non-planar
graphs, however, the zero distributions of chromatic and flow polynomials are very
different. Indeed there is a tendency for the zero distribution of flow polynomials
to be similar in both the planar and non-planar case. The results of this paper
are an example of this. The following conjectured strengthening of Tutte’s 5-flow
conjecture due to Welsh [14] would be another example.

Conjecture 1 Let G be a bridgeless graph. Then F(G, t) > 0 for all t ∈ (4,∞).

Although Theorem 1 implies thatF(G, t) > 0 for all bridgeless graphsG and
all integerst ≥ 6, it is not even known whether there exists a finitet0 such that
F(G, t) > 0 for all t ∈ (t0,∞). This contrasts with the result of Birkoff and Lewis
[1] that P(G, t) > 0 for all loopless planar graphsG and all t ∈ [5,∞), and their
conjecture thatP(G, t) > 0 for all t ∈ [4,∞).

Some recurrence relations for flow polynomials

Our inductive proof technique for working with flow polynomials is based on the
following elementary recurrence relations.

Lemma 2 Let G be a graph and e be an edge of G.
(a) If e is a loop then F(G, t) = (t−1)F(G/e, t).
(b) If e is not a loop then F(G, t) = F(G/e, t)−F(G−e, t).

Proof. We may deduce that the lemma holds for each integert ≥ 2, and hence for
all t, as follows. Ife is a loop then each nowhere-zeroZt-flow for G−ecorresponds
to t−1 nowhere-zeroZt-flows forG. If e is not a loop then each nowhere-zeroZt-
flow for G/ecoresponds to either a nowhere-zeroZt-flow for G or a nowhere-zero
Zt-flow for G−e.
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We may use Lemma 2 inductively to obtain the following reduction lemmas
for flow polynomials of graphs of low connectivity.

Lemma 3 The flow polynomials of two homeomorphic graphs are identical.

Lemma 4 Let G be a graph and G1 and G2 be edge-disjoint subgraphs of G such
that G1∪G2 = G and|V(G1)∩V(G2)| ≤ 1. Then

F(G, t) = F(G1, t)F(G2, t).

Lemma 5 Let G be a graph, v be a vertex of G, e= u1u2 be an edge of G, and H1
and H2 be edge-disjoint subgraphs of G such that H1∪H2 = G−e, H1∩H2 = {v},
u1 ∈V(H1) and u2 ∈V(H2). Let Gi be obtained from G by contracting E(H3−i),
for i ∈ {1,2}. Then

F(G, t) =
F(G1, t)F(G2, t)

(t−1)
.

As a special case of Lemma 5 we have

Lemma 6 Let G be a graph, S be a 2-edge-cut of G, and H1 and H2 be the sides
of S. Let Gi be obtained from G by contracting E(H3−i), for i ∈ {1,2}. Then

F(G, t) =
F(G1, t)F(G2, t)

(t−1)
.

Lemma 7 Let G be a graph, S be a3-edge-cut of G, and H1 and H2 be the sides
of S. Let Gi be obtained from G by contracting E(H3−i), for i ∈ {1,2}. Then

F(G, t) =
F(G1, t)F(G2, t)
(t−1)(t−2)

.

Lemma 8 Let G be a graph, x be a vertex of G, e= u1u2, f = v1v2 be edges of G,
and H1 and H2 be edge-disjoint subgraphs of G such that H1∪H2 = G−{e, f},
H1∩H2 = {x}, u1,v1 ∈V(H1) and u2,v2 ∈V(H2). Let G+ be the graph obtained
from G−x by adding two new vertices, x1,x2, an edge x1x2, and an edge from xi to
each of the neighbours of x in Hi , for 1≤ i ≤ 2. For i = 1,2, let G+

i be the graph
obtained from G+[V(Hi)−x+xi ] by adding a new vertex yi and edges yixi ,yiui ,yivi .
Let G−i = G+

i −xiyi . Then

(t−1)(t−2)F(G, t) = F(G+
1 , t)F(G+

2 , t)+(t−2)F(G−
1 , t)F(G−

2 , t).

Proof. By Lemma 2,F(G, t) = F(G+, t)+F(G−, t). The lemma now follows by
applying Lemmas 6 and 7 toG− andG+, respectively.
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3 Near-cubic graphs

The family of cubic graphs has special significance for nowhere-zero flows since
many problems on flows in general graphs can be reduced to the special case of
cubic graphs. In particular, the truth of Tutte’s 5-flow conjecture and Conjecture 1
would follow from their special cases for cubic graphs. Since the family of cubic
graphs is not closed under the operations of edge contraction or deletion, it is often
helpful to consider the larger family of near-cubic graphs. We shall use the ordered
pair (G,x) to represent a near-cubic graphG together with a distinguished vertex
x such that each vertex ofG other thanx has degree two or three. Ak-bond is a
loopless graph with two vertices andk edges. We denote the isomorphism class of
all k-bonds byKk

2.

3.1 The interval (−∞,2)

We show in this subsection that a bridgeless near-cubic graph(G,x) has no flow
roots in (−∞,2) apart from the integer flow root at 1. We shall in fact prove a
stronger result concerning the derivatives of the quotient polynomialq1(G, t) =
F(G, t)/(t − 1). SinceG is near-cubic, it has at least one edge and hence 1 is a
zero ofF(G, t). SinceF(G, t) is a polynomial int of degreem−n+1, it follows

thatq1(G, t) is a polynomial of degreem−n. Let q(i)
1 (G, t) be thei’th derivative of

q1(G, t).

Theorem 9 Let (G,x) be a non-separable near-cubic graph with n vertices and m

edges. Then q(i)1 (G, t) is non-zero with sign(−1)m−n+i for all 0≤ i ≤ m−n and
all t ∈ (−∞,2).

Proof. We proceed by contradiction. Suppose the theorem is false and let(G,x) be
a counterexample chosen such thatm is as small as possible. Ifn = 1 thenm= 1,
F(G, t) = t−1 andq1(G, t) = 1. If n = 2 then eitherG = K2

2 , F(G, t) = t−1 and
q1(G, t) = 1, or G = K3

2 , F(G, t) = (t−1)(t−2) andq1(G, t) = t−2. Since the
theorem holds in all three cases we haven≥ 3. ThusG is 2-connected. Using
Lemma 3 we may also deduce thatG has minimum degree three.

Claim 1 G−x is2-edge-connected.

Proof. SinceG is non-separable,G−x is connected. SupposeG−x has a bridge
e. Adopting the notation of Lemma 5, we haveF(G, t) = F(G1, t)F(G2, t)/(t−1),
and henceq1(G, t) = q1(G1, t)q1(G2, t). Thus

q(i)
1 (G, t) =

i

∑
j=0

(
i
j

)
q( j)

1 (G1, t)q
(i− j)
1 (G2, t).
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The graphs(G1,x) and(G2,x) are both non-separable near-cubic graphs with fewer
edges thanG. Sincem= m1+m2−1 andn = n1+n2−1, we may deduce that the
theorem holds forG by applying induction toG1 andG2.

Let e be an edge ofG incident tox. The facts that(G,x) is near-cubic,G− x
is 2-edge-connected andn≥ 3 imply that(G/e,x) and(G−e,x) are non-separable
near-cubic graphs. Applying Lemma 2 toG− e and G/e, and differentiatingi
times, we may deduce inductively that the theorem holds forG.

Note that if (G,x) is a separable bridgeless near-cubic graph, thenx is the
unique cut-vertex ofG and we may apply Theorem 9 to each block ofG using
Lemma 4 to deduce thatqi

1(G, t) 6= 0 for all 0≤ i ≤m−n and allt ∈ (−∞,2).

3.2 The mutiplicity of the zero at 2

It is easy to see that a graphG has a nowhere-zeroZ2-flow if and only if every
vertex ofG has even degree. Thus 2 is a zero ofF(G, t) if and only if G has at least
one vertex of odd degree. We shall show in this section that 2 is a simple zero of
a cubic graphG if and only if G is 3-connected. As in the previous section, our
inductive proof requires us to work with near-cubic graphs.

We say that a graph isessentially 3-connectedif it is a subdivision of a 3-
connected graph or ak-bond for somek≥ 3. We shall use the following ‘reduction’
lemma due to Tutte [11, Theorem 12.65].

Lemma 10 Let G be a 3-connected graph and e∈ E(G). Then either G− e is
essentially 3-connected or G/e is 3-connected.

Theorem 11 Let (G,x) be a non-separable near-cubic graph with m edges, n ver-
tices, and at least one vertex of degree three. Let

q2(G, t) =
F(G, t)

(t−1)(t−2)
.

Then q2(G, t) is a polynomial in t. Furthermore:
(a) if G is not essentially 3-connected then q2(G,2) = 0;
(b) if G is essentially 3-connected then q2(G,2) is non-zero with sign(−1)m−n+1.

Proof. The fact thatq2(G, t) is a polynomial int follows from the fact thatF(G, t)
is a polynomial int with a zero at 1 and a zero at 2 (sinceG has at least one vertex
of degree three).

(a) Suppose thatG is not essentially 3-connected. Since(G,x) is near cubic it
follows that we can find a vertexvof G, an edgeeof G, and edge-disjoint subgraphs
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H1 andH2 of G such thatH1∪H2 = G−e, H1∩H2 = {v}, and bothH1 andH2

contain a vertex of degree three inG. Without loss of generalityx ∈ V(H1). Let
G1 be obtained fromG by contractingE(H2) to v, and defineG2 analogously. By
Lemma 5,F(G, t) = F(G1, t)F(G2, t)/(t−1), and hence

q2(G, t) = q2(G1, t)q2(G2, t)(t−2). (1)

It can be seen that(G1,x) and (G2,v) are both non-separable near-cubic graphs
with fewer edges thanG and both contain a vertex of degree three. Thusq2(G1, t)
andq2(G2, t) are both polynomials int andq2(G,2) = 0 by (1). This completes the
proof of (a).

(b) Suppose thatG is essentially 3-connected. We prove (b) by induction onm. Let
G′ be the graph of minimum degree three which is homeomorphic toG. If G′ 6= G
then sinceq2(G′, t) = q2(G, t) by Lemma 3, andm′−n′ = m−n, we may deduce
inductively that the theorem holds forG. Thus we may suppose thatG′ = G. If
G = K3

2 , thenF(G, t) = (t−1)(t−2), q2(G, t) ≡ 1 and the theorem holds forG.
Hence we may assume thatG is 3-connected.

Let ebe an edge ofG incident tox. By Lemma 10, eitherG−eor G/e is essen-
tially 3-connected. IfG−e is essentially 3-connected, then we may use Lemma
2 to deduce that (b) holds forG by applying (b) inductively toG− e, applying
(a) to G/e if G/e is not essentially 3-connected, and applying (b) inductively to
G/e if G/e is essentially 3-connected. A similar proof holds ifG/e is essentially
3-connected

3.3 Cleavage units

Tutte [11] developed a theory by which a 2-connected graphG can be uniquely
decomposed into pieces calledcleavage unitswhich are either 3-connected simple
graphs or bonds or circuits. We will use this decomposition extensively in the
next subsection to show that the interval(2,α] contains no flow roots of near-
cubic graphs. We give a brief description of Tutte’s theory below for the sake of
completeness.

We shall adopt the notation and terminology of Tutte [11] with the exception
that we will refer to ‘polygons’, ‘simple paths’, and ‘valency’ as circuits, paths and
degree respectively. Letx andy be vertices of a 2-connected graphG such that
G−{x,y} has componentsG1,G2, . . . ,Gr , with r ≥ 2 if xy is not a multiple edge of
G, andr ≥ 1 otherwise. Each of the subgraphs ofG induced byV(Gi)∪{x,y}, but
with edges joiningx andy deleted, is called an{x,y}-componentof G. In addition,
if xy∈ E(G), the subgraph induced by{x,y} is a trivial {x,y}-componentof G.
Let H be an{x,y}-component ofG and putH ′ = G− (H−{x,y}). We say thatH
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is excisableif H is nontrivial and eitherH or H ′ is a 2-connected graph or ak-bond
for somek≥ 2. If an excisable{x,y}-componentH of G exists, we say that{x,y}
is ahingeof G andH is called ahinge componentof G. A hinge{x,y} of G is of
Type I if G has exactly two{x,y}-components and ofType II otherwise.

For each hinge{x,y} of G we adjoin toG a virtual edgewith endsx andy
for each excisable{x,y}-component ofG to form theaugmented graph Ga. Two
distinct hinge components ofG give rise to the same virtual edge if and only if they
are the two{x,y}-components of some hinge{x,y} of Type I. The virtual edges are
required to be distinct from the true edges ofG (but may be parallel to them). IfH
is an excisable{x,y}-component of G , the two graphsD1 andD2 derived fromH
andH ′ by adjoining to each ofH andH ′ the virtual edgee associated withH are
called thecleavage graphsof G ate.

The cleavage unitsof G are the minimal cleavage graphs obtained by recur-
sively constructing cleavage graphs from cleavage graphs. Thus no cleavage unit
of G can have a hinge, and each virtual edge ofG belongs to exactly two cleavage
units. Thecleavage unit tree Tof G is the graph whose vertices and edges are the
cleavage units and virtual edges, respectively, ofG, in which a cleavage unitD and
an edgee are incident inT if and only if e is an edge ofD. We say thatG is a
cleavage unit pathif its cleavage unit tree is a path on at least two vertices.

These definitions are illustrated for the graphG in Figure 1. We formGa by
adding the five virtual edgese1, e2, e3, e4 ande5 to G. The hinges ofG are the pairs
of end vertices of the virtual edges. The cleavage units ofG, X1,X2,X3,X4,X5,X6,
and its cleavage unit tree,T, are shown in Figure 2.

Tutte shows in [11, Chapter 11] that the cleavage unit tree of a 2-connected
graphG is indeed a tree and that each cleavage unit ofG is either a 3-connected
simple graph or a circuit of length at least three, or a bond with at least three edges.
By an end-cleavage unitof G we shall mean a cleavage unit which has degree
one in the cleavage unit tree. By aninternal vertexof G we shall mean a vertex
which does not belong to any hinge ofG. Thusv is an internal vertex ofG if either
d(v) = 2, orG−v is non-separable andv is not incident with a parallel edge ofG.

We shall need the following observations on the cleavage unit decomposition
of a graph.

Lemma 12 Let G be a2-connected graph and T be the cleavage unit tree of G.

(a) The set of circuit cleavage units and the set of bond cleavage units of G are
independent sets of vertices in T ;

(b) Suppose G has at least two end cleavage units. Let G′ be obtained from G by
adding a new vertex x and an edge from x to an internal vertex in each end
cleavage unit of G. Then G′ is essentially 3-connected.
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We shall also need the following elementary result on 3-connectivity.

Lemma 13 Let G be a3-connected graph and e= uv be an edge of G of multi-
plicity one. Suppose G−{u,v} is 2-connected. Then G/e is3-connected.

Cleavage units of near-cubic graphs

It can be seen that the degree of a vertex in a cleavage unit of a 2-connected graph
G is bounded above by its degree inG. Thus the cleavage units of a near-cubic
graph(G,x) are themselves near-cubic. Lemma 5 can be used to expressF(G, t)
in terms of the flow polynomials of its non-circuit cleavage units.

Lemma 14 Let (G,x) be a2-connected near-cubic graph and G1,G2, . . . ,Gc be
the cleavage units of G which are not circuits. Then

F(G, t) = (t−1)−c+1
c

∏
i=1

F(Gi , t).

Proof. We use induction on the total number of cleavage units ofG. The lemma
holds trivially if G is a 3-connected simple graph, or a 3-bond, or a circuit (in the
case of a circuit we havec = 0, the empty product is equal to 1, andF(G, t) =
t − 1). Thus we may assume thatG has at least two cleavage units and hence
G has a hinge{u,v}. Let H be an excisable{u,v}-component,e be the virtual
edge incident withu,v corresponding toH, andG1,G2 the cleavage graphs ofG
at e. Supposeu 6= x. ThendG(u) = 3 andu is incident to a bridgeuu′ of G− v.
Relabelling if necessary we haveu′ ∈ V(G2) anddG2(u) = 2. By Lemmas 3 and
5, F(G, t) = (t − 1)−1F(G1, t)F(G2, t). Furthermore, each cleavage unit ofG is
a cleavage unit ofG1 or G2 (but not both). The lemma now follows by applying
induction toG1 andG2.

As an example, we may apply Lemma 14 to the graphG in Figure 1 to deduce
that

F(G, t) = (t−1)−2F(K4, t)F(K3
2 , t)2 = (t−1)(t−2)3(t−3).

Lemma 14 and Theorem 11 imply:

Corollary 15 Let(G,x) be a2-connected near-cubic graph with at least one vertex
of degree three. Then2 is a zero of F(G, t) of multiplicity c, where c is the number
of cleavage units of G which are not circuits.

We shall use the following property of circuit cleavage units in graphs of max-
imum degree three.
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Lemma 16 Let G be a2-connected graph of maximum degree three. If X is a cir-
cuit cleavage unit of G then the virtual edges of G contained in X are independent.

Proof. Let e = uv be a virtual edge ofG contained inX and letY be the other
cleavage unit ofG which containse. Let H1,H2 be the cleavage graphs ofG at e.
Realbelling if necessary we haveV(X) ⊂ H1 andV(Y) ⊆ H2. Lemma 12(a) and
the fact thatX is a circuit cleavage unit imply thatY is not a circuit cleavage unit.
ThusdH2(u) ≥ 3 anddH2(v) ≥ 3. SinceG has maximum degree three, we must
havedH1(u) = 2 = dH1(v). Thusu andv are both internal vertices ofH1. Hence
neitheru nor v can be incident to a virtual edge ofH1. Thuse is the only virtual
edge ofG incident tou andv in X.

3.4 The interval (2,α]

We shall first construct a sequence of near-cubic graphs with flow roots converging
to α from above. We then show that bridgeless near-cubic graphs have no flow
roots in(2,α].

3.4.1 A special family of near-cubic graphs

Let (H,x) and(G,x) be near-cubic graphs, andxu,uv,uw∈ E(H). We say thatG
is a single edge extensionof H if G can be obtained fromH − u by adding four
new verticesu1,u2,u3,u4 and eight new edgesxu1, xu2, u1u2, u2u3, u3u4, u4u1,
u3v, u4w. We say that(G,x) is anextensionof (H,x) if (G,x) can be obtained from
(H,x) by a sequence of single edge extensions. We shall show that near-cubic
graphs which are extensions of(K4,x) have no flow roots in(2,α], but can have
flow roots arbitrarily close toα. An example of an extension of(K4,x) is given
in Figure 3. This can be seen by recursively performing the inverse operation to a
single edge extension: choosing a pair of edgese1,e2 incident tox which belong to
both a 3-cyclee1,e2, f0 and a 5-cyclee1,e2, f1, f2, f3; contractingf0, f1, f2, f3 and
deleting eithere1 or e2.

We need to consider one other family of near-cubic graphs. Let(L0,x) be the
loopless near-cubic graph withV(L0) = {x,y,z} in which x has degree two and
all other vertices have degree three. LetL(x,y) be the isomorphism class of all
near-cubic graphs which are isomorphic to either(L0,x) or a graph which can be
obtained recursively from(L0,x) by applying the single edge extension operation
to edges which are incident tox but not toy. Let (L1,x) be the near-cubic graph ob-
tained from(L0,x) by applying the single edge extension operation to the edgexz.
ThusV(L1)= {x,z1,z2,z3,z4,y} andE(L1)= {xz1,xz2,z1z2,z2z3,z3z4,z4z1,z3y,z4y}.
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Figure 3: An extension of(K4,x)

Lemma 17 Let(G,x)∈L(x,y). Let t∈ (2,3) and g≥ 0 be real numbers satisfying
f (t,g) := (3− t)g−2(t−2)≥ 0 and

h(t,g) := (3− t)2(g2+ t−2)−(3− t)(t−2)(3− t +2g)−g(t−2)(g2+ t−2)≥ 0.

Then:

(a) F(G−xy, t)≥ 0 with strict inequality when G6= L0;

(b) F(G, t)≥ gF(G−xy, t);

(c) F(G, t) > 0.

Proof. We prove (a), (b) and (c) simultaneously by induction onm. If m= 4 then
G = L0, F(G, t) = (t − 1)(t − 2), F(G− xy, t) ≡ 0 and the lemma holds. Hence
we may suppose thatG is either equal to(L1,x) or can be obtained from(L1,x) by
recursively applying the single edge extension operation to edges incident tox but
not y. ThusdG(y) = 3, yx,yz3,yz4,z3z4 ∈ E(G), andG−{x,y,z3,z4} has a bridge
e= u1u2 corresponding to the bridgez1z2 of L1−{x,y,z3,z4}. Hence there exist
G1,G2∈L(x,y), such thatG−{y,z3,z4,e}= (G1−y)∪(G2−y), (G1−y)∩(G2−
y) = {x}, u1 ∈ V(G1− y) andu2 ∈ V(G2− y). The near-cubic graphs(Gi ,x) are
obtained by applying the same sequence of single edge extensions to the edgexz
of (L0,x) as were applied to the edgexzi in the construction of(G,x) from (K4,x).

We shall expressF(G− xy, t) andF(G, t) in terms ofF(G1, t), F(G1− xy, t),
F(G2, t) andF(G2−xy, t). LetG+ be the graph obtained by contracting{z3z4,yz3,yz4}

14



ontoy. Using Lemmas 6 and 8, we have

(t−1)F(G−xy, t) = (t−1)(t−2)F(G+−xy, t) =
= F(G1, t)F(G2, t)+(t−2)F(G1−xy, t)F(G2−xy, t). (2)

Applying (a), (c) inductively toG1,G2,G1− xy,G2− xy we deduce thatF(G−
xy, t) > 0. Hence (a) holds forG.

By Lemma 7,(t−1)F(G, t) = (t−1)(t−3)F(G+, t). Applying Lemma 2 to
the edgexy of G+ and then using Lemmas 5 and 8, and the fact thatF(Gi/xy, t) =
F(Gi , t)+F(Gi −xy, t) by Lemma 2, we may deduce that

(t−1)(t−2)F(G, t) = (3− t) [(3− t)F(G1, t)F(G2, t)
−(t−2)F(G1, t)F(G2−xy, t)− (t−2)F(G1−xy, t)F(G2, t)] .

Let r be a real number such that 3− t−2r ≥ 0. Then

(t−1)(t−2)F(G, t) = (3− t) [(3− t−2r)F(G1, t)F(G2, t)+
+F(G1, t)(rF (G2, t)− (t−2)F(G2−xy, t))+
+ F(G2, t)(rF (G1, t)− (t−2)F(G1−xy, t))] .

Sincet ∈ (2,3) and 3− t−2r ≥ 0, we may apply the inductive hypothesis to
G1,G2 to obtain

(t−1)(t−2)F(G, t)≥ (3− t)×
[(3− t−2r)F(G1, t)F(G2, t)+2g(rg− t +2)F(G1−xy, t)F(G2−xy, t)] .

(3)

In order to compareF(G, t) andF(G− xy, t), we choose a value forr so that the
ratio of the coefficients in (2) and (3) are equal. Letr = 1

2(t−2)(3− t +2g)(g2 +
t − 2)−1. Then 3− t − 2r = g(g2 + t − 2)−1 f (t,g) ≥ 0 by the hypotheses of the
lemma. Thus we may use (2) and (3) to obtain

F(G, t)≥
[
(3− t)2

t−2
− (3− t)(3− t +2g)

g2 + t−2

]
F(G−xy, t).

Sinceh(t,g)≥ 0 we haveF(G, t)≥ gF(G, t) and (b) holds forG. The truth of (c)
now follows from (a) and (b).

We next choose a value forg in Lemma 17 in order to maximise the range of
values oft for which the lemma can be applied. It can be seen that the maximum
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value oft ∈ (2,3) for which the contrainth(t,g) ≥ 0 holds occurs whenh(t,g) =
0 = ∂h

∂g. Solving these simultaneous equations we obtaint = α andg = ρ where

ρ ≈ 1.33. . . is the zero in(1,2) of the polynomialg4 +2g3−2g2−4g+1. Since
f (t,ρ) andh(t,ρ) are decreasing functions oft for t ∈ (2,α) and f (α,ρ) > 0 =
h(α,ρ), we have:

Corollary 18 Let (G,x) ∈ L(x,y) and t∈ (2,α]. Then:

(a) F(G−xy, t)≥ 0 with strict inequality when G6= L0;

(b) F(G, t) ≥ ρF(G− xy, t), whereρ ≈ 1.33. . . is the zero in(1,2) of the poly-
nomial g4 +2g3−2g2−4g+1;

(c) F(G, t) > 0.

We now use this Corollary to prove that no extension of(K4,x) can have a flow
root in (2,α].

Lemma 19 Let(G,x) be an extension of(K4,x). Then F(G, t) < 0 for all t ∈ (2,α].

Proof. Let e1,e2,e3 be the edges of(K4,x) which are not incident tox. Since(G,x)
is an extension of(K4,x), there exist graphs(G1,x), (G2,x), and(G3,x) in L(x,y)
such thatG−{e1,e2,e3}= (G1−y)∪ (G2−y)∪ (G3−y), (Gi−y)∩ (Gi+1−y) =
{x}, andei is incident with a vertex ofGi−x andGi+1−x for all 1≤ i ≤ 3, reading
subscripts modulo three. Applying Lemmas 8,7, 6 and 2 toG we may deduce that

(t−1)2(t−2)2F(G, t) =
(t−3)F(G1, t)F(G2, t)F(G3, t)+(t−2)F(G1, t)F(G2, t)F(G3−xy, t)+
(t−2)F(G1, t)F(G2−xy, t)F(G3, t)+(t−2)F(G1−xy, t)F(G2, t)F(G3, t)
+(t−2)2F(G1−xy, t)F(G2−xy, t)F(G3−xy, t). (4)

If G1 = G2 = G3 = L0 thenG = K4, F(G, t) = (t−1)(t−2)(t−3) and the lemma
holds forG. Hence we may suppose thatG1 6= L0.

Suppose thatG2 = G3 = L0. ThenF(Gi , t) = (t−1)(t−2) and
F(Gi −xy, t)≡ 0 for all 2≤ i ≤ 3. Substituting into (4), we obtain

F(G, t) = (t−3)F(G1, t)+(t−2)F(G1−xy, t).

Corollary 18 and the fact thatt ∈ (2,α] now give

F(G, t)≤− [ρ(3−α)− (α−2)]F(G1−xy, t) < 0.
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Hence we may suppose thatG1,G2 6= L0.
Suppose thatG3 = L0. ThenF(G3) = (t−1)(t−2) andF(G3−xy)≡ 0. Sub-

stituting into (4), we obtain

(t−1)(t−2)F(G, t)
= (t−3)F(G1, t)F(G2, t)+

(t−2) [F(G1−xy, t)F(G2, t)+F(G1, t)F(G2−xy, t)]
= −1

2F(G1, t) [(3− t)F(G2, t)−2(t−2)F(G2−xy, t)]−
1
2F(G2, t) [(3− t)F(G1, t)−2(t−2)F(G1−xy, t)] . (5)

Corollary 18 and the fact thatt ∈ (2,α] now give

(t−1)(t−2)F(G, t)≤−ρ [ρ(3−α)−2(α−2)]F(G1−xy, t)F(G2−xy, t) < 0.

Hence we may suppose thatG1,G2,G3 6= L0.
We may rewrite (4) as

(t−1)2(t−2)2F(G, t) =
1
3F(G1, t)F(G2, t) [(3− t)F(G3, t)−3(t−2)F(G3−xy, t)]−
1
3F(G1, t)F(G3, t) [(3− t)F(G2, t)−3(t−2)F(G2−xy, t)]−
1
3F(G2, t)F(G3, t) [(3− t)F(G1, t)−3(t−2)F(G1−xy, t)]+

(t−2)2F(G1−xy, t)F(G2−xy, t)F(G3−xy, t).

Corollary 18 and the fact thatt ∈ (2,α] now give

(t−1)2(t−2)2F(G, t)≤−
[
(3−α)ρ3−3(α−2)ρ2− (α−2)2]×

F(G1−xy, t)F(G2−xy, t)F(G3−xy, t) < 0.

Our final result in this subsection is to show that there exists a sequence of
extensions of(K4,x) with flow roots converging toα from above. Let(G1,x) be
a copy of(K4,x) ande be an edge ofG1 incident tox. For i ≥ 2, let (Gi ,x) be
the near-cubic graph obtained from(Gi−1,x) by applying the single edge extension
operation to every edge incident tox other thane.

Theorem 20 For all ε > 0 there exists an n≥ 1 such that Gn has a flow root in
(α,α+ ε].
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Proof. Let (L0,x) be the near-cubic graph defined in the paragraph before Lemma
17. Fori ≥ 1, let(Li ,x) be the near cubic graph obtained from(Li−1,x) by applying
the single edge extension operation to every edge incident tox other thanxy. For
i ≥ 0, letai(t) = F(Li , t), bi(t) = F(Li −xy, t), andci+1(t) = F(Gi+1, t). Applying
the argument used in the derivation of (2), we deduce that fori ≥ 0,

(t−1)bi+1 = a2
i +(t−2)b2

i . (6)

Applying the argument used in the derivation of (5), we deduce that fori ≥ 0,

(t−1)(t−2)ci+1 = (t−3)a2
i +2(t−2)aibi . (7)

Applying Lemma 7 toLi for i ≥ 1, using the 3-edge-cut incident to the triangle
containingy, we have

ai = (t−3)ci . (8)

For i ≥ 1, letr i(t) = ci(t)/bi(t). Thusr1(t) = (t−3)/(t−2) and equations (6), (7)
and (8) imply that

r i+1(t) =
(t−3)

[
(t−3)2r2

i +2(t−2)r i
]

(t−2)
[
(t−3)2r2

i +(t−2)
] . (9)

Let

f (r, t) =
(t−3)

[
(t−3)2r2 +2(t−2)r

]
(t−2) [(t−3)2r2 +(t−2)]

.

Thusr i+1(t) = f (r i(t), t) for all i ≥ 1.

Claim 2 If r < 0 and t∈ (α,3) then f(r, t) > r.

Proof. We have

f (r, t)− r =−r(t−2)−1[
(3− t)2r2 +(t−2)

]−1
g(r, t),

where

g(r, t) = (3− t)
[
(3− t)2r +2(t−2)

]
+(t−2)

[
(3− t)2r2 +(t−2)

]
.

Solvingg(r, t) = 0 for r, we obtain

r =
t2−6t +9±

√
t4−8t3 +22t2−28t +17

2(t−2)(t−3)
.

Sincet4−8t3 +22t2−28t +17< 0 for t ∈ (α,3) we deduce thatg(r, t) > 0 for all
r and allt ∈ (α,3). Thus f (r, t)− r > 0 for all r < 0 and allt ∈ (α,3).
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Claim 3 If t ∈ (α,3) then rn(t)≥ 0 for some n≥ 1.

Proof. Supposern(t) < 0 for all n≥ 1. Sincer i+1(t) = f (r i(t), t), Claim 2 imples
that{r i(t) : i ≥ 1} is a monotonicly increasing sequence bounded above by zero.
Hence it must converge to a limitr ≤ 0 satisfyingr = f (r, t). Using Claim 2, we
may deduce thatr = 0. This is impossible since for fixedt ∈ (α,3), the right hand
side of (9) is positive whenr i(t) is negative and sufficiently close to zero.

We may now complete the proof of the theorem. By Claim 3, we may choose
n ≥ 1 such thatrn(α + ε) ≥ 0. Since (6) implies thatbn(α + ε) ≥ 0, we must
havecn(α + ε) ≥ 0. On the other hand, Lemma 19 implies thatcn(α) < 0. Since
F(Gn, t) = cn(t) is continuous, it must have a zero in(α,α+ ε].

3.4.2 The zero-free interval

We show that no near-cubic graph can have a flow root in(2,α]. We shall need
the following ‘characterisation’ of the family of near-cubic graphs which are ex-
tensions of(K4,x). We only state and prove the direction of the characterization
which we require. The reader may find it helps their understanding of the following
proof if they first verify that the graph in Figure 3 satisfies conditions (a) and (b)
below.

Lemma 21 Let (G,x) be a3-connected near-cubic graph and T be the cleavage
unit tree of G−x. Suppose that:

(a) each non-circuit cleavage unit of G−x is a K3
2 and has degree two in T ;

(b) each circuit cleavage unit of G−x either is a C4 and has degree one in T , or
is a C5 and has degree two in T , or is a C6 and has degree three in T .

Then(G,x) is an extension of(K4,x).

Proof. Let P = X1X2 . . .Xr be a longest path inT. ThenX1 has degree one inT
so is aC4-cleavage unit ofG− x by (b). LetX1 = u1u2u3u4u1 whereu1,u2 have
degree two inG− x. SinceG is 3-connected,xu1,xu2 ∈ E(G). By Lemma 12(a)
and hypothesis (a) of the lemma,X2 is aK3

2-cleavage unit ofG−x and has degree
two in T. ThusV(X2) = {u3,u4} andu3u4∈E(G). By Lemma 12(a),X3 is a circuit
cleavage unit ofG. By (b), X3 has degree at most three inT. If X3 has degree one
in T then, by hypothesis (b),X3 is aC4-cleavage unit ofG−x and(G,x) is a single
edge extension of(K4,x). Thus we may assume thatX3 has degree two or three in
T.
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SupposeX3 has degree two inT. By (b),X3 is aC5-cleavage unit ofG−x. Let
X3 = u3vzwu4u3. By Lemma 16 and symmetry, we may suppose that the virtual
edge ofG− x contained inX3 and distinct fromu3u4, is wz. Thusv is a vertex of
degree two inG− x andxv∈ E(G). Let (G′,x) be the near-cubic graph obtained
from G−{u1,u2,u3,u4} by adding a new vertexu and edgesux,uv,uw. Then
(G,x) is a single edge extension of(G′,x). FurthermoreG′ is 3-connected, the set
of cleavage units ofG′ is obtained from the set of cleavage units ofG by deleting
X1,X2,X3 and adding a newC4-cleavage unitX′ = uvzwu, and the cleavage unit
treeT ′ of G′−x is obtained fromT−{X1,X2,X3} by adding the new vertexX′ and
edgeX′X4. ThusG′ satisfies the hypotheses of the Lemma. By induction,(G′,x) is
an extension of(K4,x). Thus(G,x) is an extension of(K4,x).

SupposeX3 has degree three inT. By (b), X3 is aC6-cleavage unit ofG− x.
Let X3 = u3vyzwu4u3. By Lemma 16, the virtual edges ofG− x contained inX3

areu3u4,wy,zw. By symmetry, we may assume thatvy∈ E(X4). Let Y2 be the
neighbour ofX3 in T distinct fromX4. As above,Y2 is aK3

2-cleavage unit ofG−x
and has degree two inT. ThusV(Y2) = {w,z} and wz∈ E(G). Let Y1 be the
neighbour ofY2 in T distinct fromX3. The maximality ofP implies thatY1 is an
end-vertex ofT and hence is aC4-cleavage unit ofG. Let (G′,x) be the near-
cubic graph obtained fromG−{u1,u2,u3,u4} by adding a new vertexu and edges
ux,uv,uw. Then(G,x) is a single edge extension of(G′,x). FurthermoreG′ is 3-
connected, the set of cleavage units ofG′ is obtained from the set of cleavage units
of G by deletingX1,X2,X3 and adding a newC5-cleavage unitX′ = wuvyzw, and the
cleavage unit treeT ′ of G′−x is obtained fromT−{X1,X2,X3} by adding the new
vertexX′ and edgesX′X4,X′Y2. ThusG′ satisfies the hypotheses of the Lemma. By
induction,(G′,x) is an extension of(K4,x). Thus(G,x) is an extension of(K4,x).

Let Ck denote the isomorphism class of circuits of lengthk.

Theorem 22 Let (G,x) be a non-separable near-cubic graph with m edges, n
vertices and c non-circuit cleavage units. Then F(G, t) is non-zero with sign
(−1)m−n+c for t ∈ (2,α], whereα ≈ 2.225... is the real zero in(2,3) of the poly-
nomial t4−8t3 +22t2−28t +17.

Proof. We proceed by contradiction. Suppose the theorem is false. Then we may
choose at ∈ (2,α] and a near-cubic graph(G,x) satisfying the hypotheses of the
theorem such that(−1)m−n+cF(G, t)≤ 0 and such that, for this fixed value oft, m
is as small as possible. We shall show thatG satisfies the hypotheses of Lemma 21
and hence is an extension of(K4,x). This will give the required contradiction by
Lemma 19. Since the theorem holds ifG is a circuit or a 3-bond, we deduce that
G is 2-connected,n≥ 3 andm≥ 4. Since suppressing vertices of degree two inG
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leavesm−n andc unchanged and also leavesF(G, t) unchanged by Lemma 3,G
has minimum degree three.

Claim 4 G is 3-connected.

Proof. Suppose the claim is false and letG1 be an end-cleavage unit ofG. SinceG
has minimum degree three,G1 is not a circuit, and henceG1 is either a 3-bond or
is 3-connected. We may expressG asG = H1∪H2 with H1∩H2 = {u,v} for some
u,v∈V(G) andG1 = H1+uv. Without loss of generalityx 6= v. Let G2 = H2+uv.
SinceG is near-cubic anddG1(v) = 3, we havedG2(v) = 2. For i = 1,2, letxi = x
if x ∈ V(Hi) and otherwise relabel an arbitrary vertex ofGi asxi . Then(Gi ,xi)
is near-cubic and non-separable,m = m1 + m2− 2, n = n1 + n2− 2, c1 = 1 and
c2 = c−1. By Lemma 5,(t−1)F(G, t) = F(G1, t)F(G2, t). Sincem1,m2 ≥ 3, we
havem1,m2 ≤ m−1. Thus we may apply induction toG1 andG2 to deduce that
the theorem holds forG.

Claim 5 G is cyclically4-edge-connected.

Proof. Suppose the claim is false. LetSbe a cyclic 3-edge-cut inG andH1, H2 be
the components ofG−S. For i = 1,2, letGi be the near-cubic graph obtained from
G by contractingE(H3−i). SinceG is 3-connected,G1 andG2 are 3-connected,
and hencec = 1 = c1 = c2. Furthermorem= m1 +m2 +3, n = n1 +n2 +2 and, by
Lemma 7,(t−1)(t−2)F(G, t) = F(G1, t)F(G2, t). Applying induction toG1 and
G2 we deduce that the theorem holds forG.

Using Claim 5 we immediately deduce:

Claim 6 G−e is essentially3-connected for all e∈ E(G).

Claim 7 G/e is a cleavage unit path with an even number of non-circuit cleavage
units for all edges e of G incident to x.

Proof. Let G1 = G/eandG2 = G−e. By Claim 4,G1 is 2-connected and by Claim
6,G2 is essentially 3-connected. By Lemma 2,F(G, t)= F(G1, t)−F(G2, t). Since
n = n1 + 1 = n2, m = m1− 1 = m2− 1 andc = 1 = c2, we may deduce that the
theorem will hold forG by applying induction toG1 andG2 if c1 is odd. Hencec1

is even.
Let e= xv and letx1 be the vertex ofG1 obtained by contractinge. Choose an

end cleavage unitH1 of G1. Then we may expressG1 asG1 = (H1− yz)∪ (H2−
yz) whereH1∩H2 = {y,z,yz} for somey,z∈ V(G1). SinceG is 3-connected by
Claim 4, x1 ∈ {y,z}, sayx1 = y. ThenG−{x,v,z} is disconnected. SinceG is
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3-connected, some vertex ofV(H1)−{x1,z} is adjacent tov in G. Thus every end
cleavage unit ofG1 has an internal vertex which is a neighbour ofv in G distinct
from x. SinceG is near-cubic,v has exactly two neighbours distinct fromx. Thus
G1 has exactly two end cleavage units and henceG1 is a cleavage unit path.

Claim 8 Suppose S= {u1u2,v1v2} is a 2-edge-cut of G−x. Let G−S= H1∪H2

where H1∩H2 = {x}, u1,v1 ∈ V(H1) and u2,v2 ∈ V(H2). Suppose further that
dH1(x) ≥ 2 and dH2(x) ≥ 2. Let G− be the graph obtained from G− x by adding
two new vertices x1,x2, and joining xi to each neighbour of x in Hi for 1≤ i ≤ 2.
Let G+ be obtained from G− by adding a new edge e= x1x2. For i = 1,2, let G+

i
be the graph obtained from G+ by contracting E(H3−i) to the single vertex yi , and
G−

i = G+
i −xiyi . Then:

(a) G− is a cleavage unit path and c− = c−1 +c−2 is odd;

(b) if x is adjacent to a vertex in{ui ,vi} for some i∈{1,2}, then G−i is essentially
3-connected;

(c) x is not adjacent to both a vertex in{u1,v1} and a vertex in{u2,v2};

(d) if c−2 is odd, then c(G+
2 /x2y2) is even and c−2 = 1.

Proof.
(a) The fact thatG− is a cleavage unit path follows since the 3-connectivity ofG
implies that each end cleavage unit ofG− must contain eitherx1 or x2 as an internal
vertex. By Lemma 8,

(t−1)(t−2)F(G, t) = F(G+
1 , t)F(G+

2 , t)+(t−2)F(G−
1 , t)F(G−

2 , t). (10)

SinceG is 3-connected,G+
1 and G+

2 are both 3-connected. Thusc+
1 = 1 = c+

2 .
Furthermore

m= m+
1 +m+

2 −4 = m−
1 +m−

2 −2

and
n = n+

1 +n+
2 −3 = n−1 +n−2 −3.

If c−1 +c−2 is even, then we may deduce that the theorem holds forG from (10)
by applying induction toG+

1 ,G+
2 ,G−

1 ,G−
2 . Thusc− = c−1 +c−2 is odd.

(b) Supposex is adjacent tou1. SinceG+
1 is 3-connected andG+

1 /x1y1 is not
3-connected (u1 has only two neighbours inG+

1 /x1y1), Lemma 10 implies that
G−

1 = G+
1 −x1y1 is essentially 3-connected.

(c) Supposex is adjacent to both a vertex in{u1,v1} and a vertex in{u2,v2}. Using
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(b) we deduce thatG−
1 andG−

2 are both essentially 3-connected. Thusc−1 = c−2 = 1.
This is impossible sincec−1 +c−2 = c− is odd by (a).

(d) Henceforth we assume thatc−2 is odd. Thenc−1 is even by (a). If|V(H2)| = 3
thenG+

2
∼= K4 and (d) holds. Thus we may assume that|V(H2)| ≥ 4.

Let G2 = G+
2 /x2y2, and suppose thatc2 is odd. By Lemma 2,F(G+

2 , t) =
F(G2, t)−F(G−

2 , t). Substitution into (10) gives

(t−1)(t−2)F(G, t) = F(G+
1 , t)F(G2, t)−[

F(G+
1 , t)− (t−2)F(G−

1 , t)
]
F(G−

2 , t). (11)

Let G∗
1 be the graph obtained fromG+

1 − y1 by adding three new vertices
z1,z2,z3 and edgesz1x1,z2u1,z3v1,z1z2,z2z3,z3z1, and letG′

1 = G∗
1/x1z1. SinceG+

1
is 3-connected,G∗

1 andG′
1 are 3-connected andc′1 = 1. Applying induction toG′

1,
we deduce that(−1)m′

1−n′1+1F(G′
1, t) > 0. Applying Lemma 2 toG∗

1 using the edge
x1z1, and then using Lemmas 5 and 7, we deduce that

F(G′
1, t) = (t−3)F(G+

1 , t)+(t−2)F(G−
1 , t).

Thus(−1)m′
1−n′1+1[(t−3)F(G+

1 , t)+(t−2)F(G−
1 , t)] > 0. Sincem′

1 = m+
1 +2 and

n′1 = n+
1 +1 we have

(3− t)(−1)m+
1 −n+

1 +1F(G+
1 , t)− (t−2)(−1)m+

1 −n+
1 +1F(G−

1 , t) > 0.

Since 0< 3− t < 1, and(−1)m+
1 −n+

1 +1F(G+
1 , t) > 0 by induction, we have

(−1)m+
1 −n+

1 +1[
F(G+

1 , t)− (t−2)F(G−
1 , t)

]
> 0.

ThusF(G+
1 , t)− (t − 2)F(G−

1 , t) is non-zero with sign(−1)m+
1 −n+

1 +1. Substitut-
ing into (11), applying induction toG+

1 ,G2,G
−
2 , and usingm = m+

1 + m2− 3 =
m+

1 +m−
2 −3, n = n+

1 +n2−2 = n+
1 +n−2 −3, c = 1 = c+

1 andc2,c
−
2 are odd, we

deduce thatF(G, t) is non-zero with sign(−1)m−n+1. This contradicts the choice
of G. Thus the assumption thatc2 is odd must be false. Hencec2 is even and, in
particular,G2 is not 3-connected. Lemma 10 now implies thatG−

2 = G+
2 −x2y2 is

essentially 3-connected and hencec−2 = 1.

Claim 9 Let X be an end cleavage unit of G−x. Then X∼= C4.

Proof. SinceG is 3-connected,x is adjacent to at least one internal vertexv of
X. ThusdG−x(v) = 2 = dX(v). HenceX is neither 3-connected nor a 3-bond, so
X ∼= Cr for somer ≥ 3. LetX = v1v2 . . .vrv1, wherevi is an internal vertex ofX for
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2≤ i ≤ r−1. Then, for 2≤ i ≤ r−1, we havedX(vi) = 2 = dG−x(vi) and hence
ei = xvi ∈ E(G). SincedG−x(v1),dG−x(vr)≥ 3, we havexv1,xvr 6∈ E(G). If r = 3,
thenG−{x,v2} is 2-connected and Lemma 13 implies thatG/e2 is 3-connected.
This would contradict Claim 7 and hencer ≥ 4.

Let S= {v1v2,v3v4}. ThenSis a 2-edge-cut ofG−x. We haveG−S= H1∪H2

whereH1∩H2 = {x} andV(H1) = {x,v2,v3}. Let G−,G−
1 ,G−

2 be as defined in the
statement of Claim 8. ThenG−

1 is homeomorphic toK3
2 soc−1 = 1.

Supposer ≥ 5. Thenxv4 ∈ E(G) so by Claim 8(b),G−
2 is essentially 3-

connected. Thusc−2 = 1 andc− = c−1 + c−2 = 2. This contradicts Claim 8(a) and
hencer = 4.

Claim 10 Let X be a non-circuit cleavage unit of G−x and u2v2 be a virtual edge
of G−x contained in X. Let S= {u1u2,v1v2} be the2-edge-cut of G−x incident to
{u2,v2}. Let G−,G+

1 ,G+
2 ,G−

1 ,G−
2 be as defined in the statement of Claim 8. Then:

(a) c−2 is even and c−1 = 1;

(b) X has degree two in the cleavage unit tree T of G−x;

Proof. Note that Claim 9 implies thatdG−
1
(x),dG−

2
(x)≥ 2.

(a) Supposec−2 is odd. Then Claim 8(d) implies thatG2 = G+
2 /x2y2 is not 3-

connected. SinceG+
2 is 3-connected and near-cubic, we may use Lemma 13 to

deduce thatG+
2 −{x2,y2} has a cut edgef . Thusu2 andv2 belong to different

components ofG−
2 −{x2,y2, f}. This contradicts the fact thatu2 andv2 belong to

the same non-circuit cleavage unitX of G−x and hence are joined by three inter-
nally disjoint paths inG−x. Thusc−2 is even, and by Claim 8(a),(d),c−1 = 1.

(b) SupposeX had degree at least three inT. Lete∗ be the edge ofT corresponding
to the virtual edgeu2v2 of G−x, andT2 be the component ofT−e∗ which contains
X. ThenT2 is the cleavage unit tree of the graphG∗

2 obtained by suppressingy2 in
G−

2 . SinceX has degree at least three inT, it has degree at least two inT2. Thus
X is not an end cleavage unit ofG∗

2. SinceG is 3-connected,x is adjacent to an
internal vertex in each end cleavage unit ofG−x. Thusx2 is adjacent to an internal
vertex in each end cleavage unit ofG∗

2− x2. By Lemma 12(b),G∗
2 is essentially

3-connected. SinceG−
2 is homeomorphic toG∗

2, G−
2 is essentially 3-connected.

Hencec−2 = 1. This contradicts (a) and completes the proof of (b).

Claim 11 Let X be a3-connected cleavage unit of G−x and uv,wz be the virtual
edges of G−x contained in X. Let X∗ be obtained from X−{uv,wz} by adding a
new vertex y and new edges yu,yv,yw,yz. Then X∗ is 3-connected.
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Proof. SinceX is 3-connected, no vertex ofX is adjacent tox in G. SupposeX∗ is
not 3-connected. Theny is contained in a 2-vertex-cut ofX∗. Since each vertex of
X∗ other thany has degree three, this implies thatX∗−{y,e} is disconnected for
somee∈ E(X∗). ThusS= {uv,wz,e} is a 3-edge-cut ofX. Let X1 andX2 be the
components ofX−S. Relabelling if necessary we may suppose thatu,w∈V(X1)
andv,z∈ V(X2). Let S1 = {uu1,vv1} andS2 = {ww1,zz1} be the 2-edge-cuts of
G−x incident to the hinges{u,v} and{w,z}, respectively. ThenS′1 = {uu1,ww1,e}
is a 3-edge-cut ofG andX1 is a component ofG−S′1. Using Claim 5, we deduce
thatX1

∼= K1. Arguing similarly usingS′2 = {vv1,zz1,e}, we may deduce thatX2
∼=

K1. ThusX ∼= K3
2 , contradicting the hypothesis thatX is 3-connected.

Claim 12 Let X be a non-circuit cleavage unit of G−x. Then X is a3-bond.

Proof. SupposeX is 3-connected. LetT be the cleavage unit tree ofG− x. By
Claim 10(b),X has degree two inT and henceX contains exactly two virtual edges
u1v1,w1z1 of G−x. Let S= {u1u2,v1v2} andS′ = {w1w0,z1z0} be the 2-edge-cuts
of G− x incident to the hinges{u1,v1} and{w1,z1}, respectively. SinceX is a
3-connected cleavage unit ofG−x, no vertex ofX is adjacent tox in G.

Let x1,x2,G−,G+ be as defined in the statement of Claim 9 with respect toS.
By Lemma 2,

F(G, t) = F(G+, t)+F(G−, t). (12)

Let G−S= H1∪H2 whereH1∩H2 = {x} andV(X) ⊆ V(H1). Let G+
2 be the

graph obtained fromG+ by contractingE(H1) to the single vertexy2, andG−
2 =

G+
2 − x2y2. Let G−S′ = H0∪H ′

1 whereH0∩H ′
1 = {x} andV(X) ⊆ V(H ′

1). De-
fine G+

0 ,G−
0 ,y0 in a similar way toG+

2 ,G−
2 ,y2 by contractingE(H ′

1). Finally let
G−

1 be obtained fromG− by contractingE(H2) to a single vertexy2 and then con-
tractingE(H0) to a single vertexy0. Let G+

1 = G−
1 + y2y0. The 3-connectivity of

G impies thatG+
0 ,G+

1 ,G+
2 are 3-connected, Claim 10(a) implies thatG−

2 ,G−
0 are

essentially 3-connected, and the fact thatG−
1 is homeomorphic toX implies that

G−
1 is essentially 3-connected.

Applying Lemma 7 twice toG+ using the 3-edge-cuts{u1u2,v1v2,x1x2} and
{w1w0,z1z0,x1x2} we obtain

(t−1)2(t−2)2F(G+, t) = F(G+
0 , t)F(G+

1 , t)F(G+
2 , t).

Similarly, applying Lemma 5 twice toG− using the 2-edge-cuts{u1u2,v1v2} and
{w1w0,z1z0} we obtain

(t−1)2F(G−, t) = F(G−
0 , t)F(G−

1 , t)F(G−
2 , t).
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Substituting into (12) gives

(t−1)2(t−2)2F(G, t) = F(G+
0 , t)F(G+

1 , t)F(G+
2 , t)+

(t−2)2F(G−
0 , t)F(G−

1 , t)F(G−
2 , t). (13)

Let G1 be obtained fromG+
1 by contracting the edgey0y2. Then G1 is 3-

connected by Claim 11. By Lemma 2,F(G+
1 , t) = F(G1, t)−F(G−

1 , t). Substitut-
ing into (13) we obtain

(t−1)2(t−2)2F(G, t) = F(G+
0 , t)F(G+

2 , t)F(G1, t)−
F(G−

1 , t)
[
F(G+

0 , t)F(G+
2 , t)− (t−2)2F(G−

0 , t)F(G−
2 , t)

]
. (14)

We shall show that both of the terms on the right hand side of (14) are non-zero
with sign(−1)m−n+1.

Let G3 be obtained fromG−V(X) by adding two new verticesu,v and new
edgesuv,uw0,vz0,uu2,vv2. The 3-connectivity ofG implies thatG3 is 3-connected.
We may apply the reduction used in the derivation of (13) toG3. In this analysis
the graphsX, G+

1 , andG−
1 are replaced by graphs isomorhic toK3

2 , K4, andK−
4 ,

respectively, whereK−
4 is obtained fromK4 by deleting an edge. Using the fact that

F(K4, t) = (t−1)(t−2)(t−3) andF(K−
4 , t) = (t−1)(t−2), we deduce that

(t−1)2(t−2)2F(G3, t) = F(G+
0 , t)(t−1)(t−2)(t−3)F(G+

2 , t)+
(t−2)2F(G−

0 , t)(t−1)(t−2)F(G−
2 , t).

Applying induction toG3 we have

(−1)m3−n3+1[
(t−3)F(G+

0 , t)F(G+
2 , t)+(t−2)2F(G−

0 , t)F(G−
2 , t)

]
> 0.

Thus

(−1)m3−n3
[
(3− t)F(G+

0 , t)F(G+
2 , t)− (t−2)2F(G−

0 , t)F(G−
2 , t)

]
> 0.

By induction(−1)m+
0 −n+

0 +m+
2 −n+

2 F(G+
0 , t)F(G+

2 , t) > 0. Sincem3 = m+
0 +m+

2 −1,
n3 = n+

0 +n+
2 −1, and 3− t > 0, we have

(−1)m3−n3(3− t)F(G+
0 , t)F(G+

2 , t) > 0.

Since 0< 3− t < 1, it follows that

(−1)m3−n3
[
F(G+

0 , t)F(G+
2 , t)− (t−2)2F(G−

0 , t)F(G−
2 , t)

]
> 0. (15)

Applying induction toG−
1 , we obtain(−1)m−

1 −n−1 +1F(G−
1 , t) > 0. Using (15), and

the facts thatm= m3 +m−
1 −5, andn = n3 +n−1 −4, we may deduce that

(−1)m−nF(G−
1 , t)

[
(F(G+

0 , t)F(G+
2 , t)− (t−2)2F(G−

0 , t)F(G−
2 , t)

]
> 0. (16)
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We may also deduce by induction that

(−1)m+
0 −n+

0 +m+
2 −n+

2 +m1−n1+1F(G+
0 , t)F(G+

2 , t)F(G1, t) > 0.

Sincem= m+
0 +m+

2 +m1−6, andn = n+
0 +n+

2 +n1−4, it follows that

(−1)m−n+1F(G+
0 , t)F(G+

2 , t)F(G1, t) > 0. (17)

Using (14), (16) and (17), we deduce that(−1)m−n+1F(G, t) > 0. This contradicts
the choice ofG as a counterexample to the theorem and completes the proof of the
claim.

Claim 13 Let X = v1v2 . . .vrv1 be a circuit cleavage unit of G−x which is not an
end cleavage unit and T be the cleavage unit tree of G−x.

(a) Each neighbour of X in T is a3-bond cleavage unit of G−x.

(b) At most one vertex of X is adjacent to x in G.

(c) If a vertex of X is adjacent to x in G then X∼= C5 and X has degree two in T .

(d) If no vertex of X is adjacent to x in G then X∼= C6 and X has degree three in
T .

Proof. (a) follows from Lemma 12(a) and Claim 12.

(b) Supposexvi ,xvj ∈ E(G) for some 1≤ i < j ≤ r. If v j 6∈ {vi−1,vi+1} then
S= {vi−1vi ,v j−1v j} is a 2-edge-cut ofG−x which contradicts Claim 8(c). Hence
we may assume without loss of generality thatxv1,xv2 ∈E(G) and thatxvs 6∈E(G)
for all 3≤ s≤ r. Since each vertex ofG other thanx has degree 3, it follows thatr
is even andv2s−1v2s is a virtual edge ofG contained inX for all 2≤ s≤ r/2. Since
X has degree at least two inT, it contains at least two virtual edges ofG and hence
r ≥ 6. LetS= {v2v3,vrv1}. ThenS is a 2-edge-cut ofG−x. Let G−,G−

1 ,G−
2 be as

defined in the statement of Claim 8, wherev1,v2 ∈V(G−
1 ). SinceG−

1 s homeomor-
phic toK3

2 , c−1 = 1. Furthermorec−2 = 1 by Lemma 12(b). This contradicts Claim
8(a).

(c) We assume thatx is adjacent to exactly one vertex ofX. Relabelling if neces-
sary, we may assume without loss of generality thatxv1∈E(G) and thatxvs 6∈E(G)
for all 2≤ s≤ r. Thusr is odd andv2sv2s+1 is a virtual edge ofG contained inX
for all 1≤ s≤ (r−1)/2. SinceX has degree at least two inG, it contains at least
two virtual edges ofG and hencer ≥ 5.
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Supposer ≥ 7. Let S= {v1v2,v5v6}. ThenS is a 2-edge-cut ofG− x. Let
G−,G−

1 ,G−
2 be as defined in the statement of Claim 8, wherev1,v6 ∈V(G−

1 ). Then
c−1 = 1 by Claim 8(b) andc−2 = 1 by Lemma 12(b). This contradicts Claim 8(a).
Hencer = 5, X contains exactly two virtual edges ofG, andX has degree two in
T.

(d) We assume thatx is adjacent to no vertex ofX. Thenr is even and the virtual
edges ofG in X are a 1-factor ofX. Relabelling if necessary, we may assume
without loss of generality thatv2sv2s+1 is a virtual edge ofG contained inX for all
1≤ s≤ r/2. SinceX has degree at least two inG, it contains at least two virtual
edges ofG and hencer ≥ 4.

Supposer = 4. Let S= {v1v2,v3v4}. ThenS is a 2-edge-cut ofG− x. Let
G−,G−

1 ,G−
2 be as defined in the statement of Claim 8, wherev1,v4∈V(G−

1 ). Since
the two cleavage units ofG−x adjacent toX in T have degree two inT by Claim
10(b), we havec−1 ≥ 2 andc−2 ≥ 2. This gives a contradiction since Claim 8(a) and
(d) imply that eitherc−1 = 1 orc−2 = 1. Hencer ≥ 6.

Supposer ≥ 8. Let S= {v1v2,v5v6}. ThenS is a 2-edge-cut ofG− x. Let
G−,G−

1 ,G−
2 be as defined in the statement of Claim 8, wherev1,v6 ∈V(G−

1 ). Then
c−1 = 1 = c−2 by Lemma 12(b). This contradicts Claim 8(a). Hencer = 6, X
contains exactly three virtual edges ofG, andX has degree three inT.

Lemma 21 and Claims 4, 9, 12, and 13 imply thatG is an extension of(K4,x).
Since each single edge extension adds three vertices and five edges toK4, we have
m−n is even. By Lemma 19,F(G, t) < 0 for t ∈ (2,α]. This contradicts the choice
of G as a counterexample to the theorem.

Using Theorems 9, 22, and planar duality we have:

Corollary 23 Let G be plane near triangulation. Then the only zeros of P(G, t) in
(−∞,α] are1 and2.

Since extensions of(K4,x) are planar, Theorem 20 and planar duality show
that there exists an infinite family of plane near triangulations with chromatic roots
converging toα from above.

4 Closing Remarks

In a subsequent paper [5] we extend the zero-free interval(2,α] for certain fami-
lies of near-cubic graphs. As a corollary we deduce that ifG is a cubic bridgeless
graph, thenF(G, t) has no zeros in(2,γ), whereγ≈ 2.54. . . is the root in(2,3) of
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the flow polynomial of the cube. The dual statement for plane triangulations had
previously been verified by Woodall [16, 17].

AcknowledgementI would like to thank Douglas Woodall for his many helpful
comments and suggestions. In particular for his suggestion that my original proof
of Theorem 9 could be extended from flow polynomials to the derivatives of the
functionq1(G, t).
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