Pseudo 2-Factor Isomorphic Regular Bipartite Graphs

M. Abreu, Dipartimento di Matematica, Università della Basilicata, C. da Macchia Romana, 85100 Potenza, Italy.
e-mail: abreu@unibas.it
A. A. Diwan,
Department of Computer Science and Engineering, Indian Institute of Technology, Mumbai 400076 India.
e-mail: aad@cse.iitb.ac.in
\section*{Bill Jackson,}
School of Mathematical Sciences, Queen Mary College, London E1 4NS, England.
e-mail: b.jackson@qmul.ac.uk
D. Labbate,
Dipartimento di Matematica, Politecnico di Bari
I-70125 Bari, Italy.
e-mail: labbate@poliba.it
\section*{J. Sheehan,} Department of Mathematical Sciences, King's College, Old Aberdeen AB24 3UE, Scotland.
e-mail: j.sheehan@maths.abdn.ac.uk

Abstract

A graph is pseudo 2-factor isomorphic if the numbers of circuits of length congruent to zero modulo four in each of its 2 -factors, have the same parity. We prove that there exist no pseudo 2 -factor isomorphic

k-regular bipartite graphs for $k \geq 4$. We also propose a characterization for 3 -connected pseudo 2 -factor isomorphic cubic bipartite graphs and obtain some partial results towards our conjecture.

1 Introduction

All graphs considered are finite and simple (without loops or multiple edges). We shall use the term multigraph when multiple edges are permitted.

A graph with a 2 -factor is said to be 2 -factor hamiltonian if all its 2 factors are Hamilton circuits, and, more generally, 2-factor isomorphic if all its 2 -factors are isomorphic. Examples of such graphs are $K_{4}, K_{5}, K_{3,3}$, the Heawood graph (which are all 2-factor hamiltonian) and the Petersen graph (which is 2-factor isomorphic).

Several recent papers have addressed the problem of characterizing families of graphs (particularly regular graphs) which have these properties. It is shown in $[1,7]$ that k-regular 2 -factor isomorphic bipartite graphs exist only when $k \in\{2,3\}$ and an infinite family of 3-regular 2 -factor hamiltonian bipartite graphs, based on $K_{3,3}$ and the Heawood graph, is constructed in [7]. It is conjectured in [7] that every 3-regular 2-factor hamiltonian bipartite graph belongs to this family, and, in [1], that every connected 3-regular 2factor isomorphic bipartite graph is 2 -factor hamiltonian. (We shall see in Section 3.2.4 of this paper that the latter conjecture is false.) Faudree, Gould and Jacobsen [6] determine the maximum number of edges in both 2-factor hamiltonian graphs and 2 -factor hamiltonian bipartite graphs. In addition, Diwan [5] has shown that K_{4} is the only 3-regular 2-factor hamiltonian planar graph.

In this paper, we extend the above mentioned results to the more general family of pseudo 2 -factor isomorphic graphs i.e. graphs G with the property that the numbers of circuits of length congruent to zero modulo four in each $2-$ factor of G, have the same parity. We prove that pseudo 2 -factor isomorphic k-regular bipartite graphs exist only when $k \in\{2,3\}$. We then propose a conjectured characterization of 3-connected pseudo 2-factor isomorphic cubic bipartite graphs, and obtain some partial results towards our conjecture. We show in particular that there are no planar pseudo 2-factor isomorphic cubic bipartite graphs.

2 Preliminaries

An r-factor of a graph G is an r-regular spanning subgraph of G. A 1factorization of G is a partition of the edge set of G into 1 -factors.

Let G be a bipartite graph with bipartition (X, Y) such that $|X|=|Y|$,
and A be its bipartite adjacency matrix. In general $0 \leq|\operatorname{det}(A)| \leq \operatorname{per}(A)$. We say that G is det-extremal if G has a 1 -factor and $|\operatorname{det}(A)|=\operatorname{per}(A)$. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$. For F a 1 -factor of G, define the sign of $F, \operatorname{sgn}(F)$, to be the sign of the permutation of $\{1,2, \ldots, n\}$ corresponding to F. Then G is det-extremal if and only if G has a 1 -factor and all its 1 -factors have the same sign.

We shall need the following results. The first is elementary (and is a special case of [8, Lemma 8.3.1]).

Lemma 2.1 Let F_{1}, F_{2} be 1-factors in a bipartite graph G and t be the number of circuits in $F_{1} \cup F_{2}$ of length congruent to zero modulo four. Then $\operatorname{sgn}\left(F_{1}\right) \operatorname{sgn}\left(F_{2}\right)=(-1)^{t}$.

A k-circuit is a circuit of length k. A central circuit of a graph G is a circuit C such that $G-V(C)$ has a 1-factor. Lemma 2.1 easily implies:

Lemma 2.2 Let G be a bipartite graph. Then G is det-extremal if and only if G has a 1-factor and every central circuit of G has length congruent to two modulo four.

The next result follows from a more general theorem of Thomassen [11].
Theorem 2.3 Let G be a det-extremal bipartite graph. If each edge of G is contained in a 1-factor then G has a vertex of degree at most three.

We next describe a result of Asratian and Mirumyan [3], see also [2], concerning transformations between 1-factorizations of a regular bipartite graph. Let G be a t-regular bipartite graph, $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{t}\right\}$ be a 1-factorization of G, and C be a circuit of G.

Suppose $E(C) \subseteq F_{i} \cup F_{j}$ for some $1 \leq i<j \leq t$. Then we may obtain a new 1-factorization \mathcal{F}^{\prime} of G by putting $F_{i}^{\prime}=F_{i} \triangle E(C), F_{j}^{\prime}=F_{j} \triangle E(C)$ and $\mathcal{F}^{\prime}=\left(\mathcal{F}-\left\{F_{i}, F_{j}\right\}\right) \cup\left\{F_{i}^{\prime}, F_{j}^{\prime}\right\}$, where \triangle denotes symmetric difference. We say that \mathcal{F}^{\prime} is obtained from \mathcal{F} by a 2-transformation.

Suppose $E(C) \subseteq F_{i} \cup F_{j} \cup F_{k}$ for some $1 \leq i<j<k \leq t$, and that $F_{i} \cap E(C)$ is a 1-factor of C. Let $X=\left(F_{j} \cup F_{k}\right) \triangle E(C)$. Since the edges of C alternate with respect to $F_{j} \cup F_{k}, X$ is a 2 -factor of G. Let $\left\{F_{j}^{\prime}, F_{k}^{\prime}\right\}$ be a 1 -factorization of X. We may obtain a new 1-factorization \mathcal{F}^{\prime} of G by putting $F_{i}^{\prime}=F_{i} \triangle E(C)$, and $\mathcal{F}^{\prime}=\left(\mathcal{F}-\left\{F_{i}, F_{j}, F_{k}\right\}\right) \cup\left\{F_{i}^{\prime}, F_{j}^{\prime}, F_{k}^{\prime}\right\}$. We say that \mathcal{F}^{\prime} is obtained from \mathcal{F} by a 3 -transformation.

Theorem 2.4 [2, 3] Let G be a t-regular bipartite graph. Then every 1factorization of G can be obtained from a given 1-factorization by a sequence of 2- and 3-transformations.

3 Pseudo 2-factor isomorphic regular bipartite graphs

Let G be a bipartite graph. For each 2-factor F of G let $t^{*}(F)$ be the number of circuits of F of length congruent to 0 modulo 4 , and let

$$
t(F)= \begin{cases}0 & \text { if } t^{*}(F) \text { is even } \\ 1 & \text { if } t^{*}(F) \text { is odd }\end{cases}
$$

We say that a bipartite graph G is pseudo 2-factor isomorphic if G has at least one 2 -factor, and t has the same value on all 2-factors of G. In this case, we denote this constant value of t by $t(G)$.

3.1 Regular graphs of degree at least four

We show that there are no pseudo 2 -factor isomorphic k-regular bipartite graphs for $k \geq 4$. Our proof uses the results of Thomassen, and Asratian and Mirumyan described in Section 2. We also use the fact that there is a close relationship between pseudo 2-factor isomorphic bipartite graphs and detextremal bipartite graphs. This is illustrated by the following proposition.

Proposition 3.1 Suppose G is a pseudo 2-factor isomorphic bipartite graph.
(a) $G-F$ is det-extremal for all 1-factors F of G.
(b) If G is k-regular and $k \geq 3$ then $t^{*}(X)=0$ for all 2 -factors X of G. In particular, $t(G)=0$.

Proof. (a) Let F be a 1-factor of G and $H=G-F$. Let F^{\prime} be a 1-factor in H. Then $F \cup F^{\prime}$ is a 2 -factor of G, and hence has $t(G)$ circuits of length congruent to 0 modulo 4 . By Lemma 2.1, $\operatorname{sign}(F) \operatorname{sign}\left(F^{\prime}\right)=(-1)^{t(G)}$. Since the choice of F^{\prime} is arbitrary, all 1 -factors of H have the same sign. Thus H is det-extremal.
(b) Let X be a 2-factor of G and F be a 1-factor of $G-X$. By (a), $H=G-F$ is det-extremal. Since every circuit of X is a central circuit of H, Lemma 2.2 implies that $t^{*}(X)=0$.

Theorem 3.2 Let G be a pseudo 2 -factor isomorphic k-regular bipartite graph. Then $k \in\{2,3\}$.

Proof. Suppose the theorem is false. Let G be a pseudo 2 -factor isomorphic k-regular bipartite graph with $k \geq 4$. By Proposition 3.1(a), all 1-factors in any 1 -factorization of G have the same sign. By Theorem $2.3, G$ contains two 1 -factors with different signs. Since every 1 -factor is contained in a 1 factorization of G, there are two 1 -factorizations $\mathcal{F}_{0}, \mathcal{F}_{1}$ of G such that all

1-factors in \mathcal{F}_{0} have positive sign and all 1-factors in \mathcal{F}_{1} have negative sign. However, by Theorem 2.4, \mathcal{F}_{1} can be obtained from \mathcal{F}_{0} by a sequence of $2-$ and 3 -transformations. Since $k \geq 4$, at least one 1 -factor is preserved in every transformation, and hence the signs of all 1 -factors in the resulting 1 -factorization must be the same as those of the 1 -factors in the original 1 -factorization. This gives a contradiction.

Theorem 3.2 generalises the analogous results for 2 -factor hamiltonian graphs [7] and 2-factor isomorphic graphs [1]. Its proof is substantially simpler than the proofs given for the latter two results.

3.2 Cubic graphs

It is straightforward to show that $K_{3,3}$ and the Heawood graph H_{0}, shown in Figure 1(a), are 2-factor hamiltonian and hence pseudo 2-factor isomorphic, see [7]. We first show that the Pappus graph P_{0}, shown in Figure 1(b), is pseudo 2-factor isomorphic but not 2-factor isomorphic.

Figure 1: (a) Heawood H_{0}

(b) Pappus P_{0}

Proposition 3.3 The Pappus graph P_{0} is pseudo 2-factor isomorphic but not 2 -factor isomorphic.

Proof. We adopt the labelling of the Pappus graph P_{0} given in Figure 1(b). Let F be a 2 -factor of P_{0} and C be a shortest circuit in F. Since P_{0} is 3 -arc-transitive, see [4], we may assume that the path $P=v_{1} v_{2} v_{3} v_{4}$ is contained in C. Since P_{0} is bipartite, has 18 vertices, and has girth six, we have $|C| \in\{6,8,18\}$.

Suppose $|C|=6$. By inspection, P is contained in exactly one 6 -circuit $v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1}$. This implies that edges $v_{18} v_{1}, v_{6} v_{7}, v_{2} v_{9}, v_{3} v_{14}, v_{4} v_{11}$ do not
belong to F, which in turn implies that F contains the 6 -circuits $v_{13} v_{14} v_{15} v_{16}$ $v_{17} v_{18} v_{13}$, and $v_{7} v_{8} v_{9} v_{10} v_{11} v_{12} v_{7}$. Thus F consists of exactly three 6 -circuits.

Now, suppose that $|C|=8$. Then, by inspection, C is either: $v_{1} v_{2} v_{3} v_{4} v_{5} v_{16}$ $v_{17} v_{18} v_{1}, v_{1} v_{2} v_{3} v_{4} v_{11} v_{10} v_{17} v_{18} v_{1}, v_{1} v_{2} v_{3} v_{4} v_{11} v_{12} v_{13} v_{18} v_{1}$, or $v_{1} v_{2} v_{3} v_{4} v_{11} v_{12} v_{7} v_{6} v_{1}$. These in turn, respectively, imply that $v_{6}, v_{9}, v_{14}, v_{5}$ have degree 1 in F which is impossible. Thus we cannot have $|C|=8$.

The remaining case, when $|C|=18$, occurs when C is a hamiltonian circuit of P_{0}, which clearly can occur.

In both the cases $|C|=6$ and $|C|=18$, we have $t(F)=0$. Thus P_{0} is pseudo 2-factor isomorphic. It is not 2-factor isomorphic since, by the above, it has two non-isomorphic 2 -factors.

3.2.1 Star products

We show that $K_{3,3}, H_{0}$ and P_{0} can be used to construct an infinite family of 3-connected pseudo 2-factor isomorphic cubic bipartite graphs.

Let G, G_{1}, G_{2} be graphs such that $G_{1} \cap G_{2}=\emptyset$. Let $y \in V\left(G_{1}\right)$ and $x \in V\left(G_{2}\right)$ such that $d_{G_{1}}(y)=3=d_{G_{2}}(x)$. Let x_{1}, x_{2}, x_{3} be the neighbours of y in G_{1} and y_{1}, y_{2}, y_{3} be the neighbours of x in G_{2}. If $G=\left(G_{1}-y\right) \cup$ $\left(G_{2}-x\right) \cup\left\{x_{1} y_{1}, x_{2} y_{2}, x_{3} y_{3}\right\}$, then we say that G is a star product of G_{1} and G_{2} and write $G=\left(G_{1}, y\right) *\left(G_{2}, x\right)$, or more simply as $G=G_{1} * G_{2}$ when we are not concerned which vertices are used in the star product. The set $\left\{x_{1} y_{1}, x_{2} y_{2}, x_{3} y_{3}\right\}$ is a 3-edge cut of G and we shall also say that G_{1} and G_{2} are 3-cut reductions of G.

We next show that star products preserve the property of being pseudo 2 -factor isomorphic in the family of cubic bipartite graphs.

Lemma 3.4 Let G be a star product of two pseudo 2 -factor isomorphic cubic bipartite graphs G_{1} and G_{2}. Then G is also pseudo 2-factor isomorphic.

Proof. Suppose $G=\left(G_{1}, y\right) *\left(G_{2}, x\right)$ with x_{1}, x_{2}, x_{3} the neighbours of y in G_{1} and y_{1}, y_{2}, y_{3} the neighbours of x in G_{2}. Suppose further that G is not pseudo 2 -factor isomorphic. Then G has a 2 -factor F with $t(F)=1$. Since G is bipartite F contains exactly two edges of the 3-edge-cut $S=$ $\left\{x_{1} y_{1}, x_{2} y_{2}, x_{3} y_{3}\right\}$. Let C be the circuit of F which intersects S and C_{i} be the circuit of G_{i} corresponding to $C, i=1,2$. Let F_{i} be the 2 -factor of G_{i} consisting of the circuits of F which are contained in G_{i} together with C_{i}. Since $|C|=\left|C_{1}\right|+\left|C_{2}\right|-2$, we have $1=t(F) \equiv t\left(F_{1}\right)+t\left(F_{2}\right) \bmod 2$. Hence $t\left(F_{i}\right)=1$ for some $i \in\{1,2\}$. Applying Proposition 3.1, we contradict the hypothesis that G_{i} is pseudo 2-factor isomorphic.

Given a set $\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$ of 3-edge-connected cubic bipartite graphs let $\mathcal{S P}\left(G_{1}, G_{2}, \ldots, G_{k}\right)$ be the set of cubic bipartite graphs which can be obtained
from $G_{1}, G_{2}, \ldots, G_{k}$ by repeated star products. Lemma 3.4 implies that all graphs in $\mathcal{S P}\left(K_{3,3}, H_{0}, P_{0}\right)$ are pseudo 2 -factor isomorphic. We conjecture that these are the only 3-connected pseudo 2-factor isomorphic cubic bipartite graphs.

Conjecture 3.5 Let G be a 3-connected cubic bipartite graph. Then G is pseudo 2-factor isomorphic if and only if G belongs to $\mathcal{S P}\left(K_{3,3}, H_{0}, P_{0}\right)$.

Note that McCuaig [9] has shown that a 3-connected cubic bipartite graph G is det-extremal if and only if $G \in \mathcal{S P}\left(H_{0}\right)$.

Let G be a graph and E_{1} be an edge-cut of G. We say that E_{1} is a nontrivial edge-cut if all components of $G-E_{1}$ have at least two vertices. The graph G is essentially 4 -edge-connected if G is 3-edge-connected and has no non-trivial 3 -edge-cuts. It is easy to see that Conjecture 3.5 holds if and only if Conjectures 3.6 and 3.7 below are both valid.

Conjecture 3.6 Let G be an essentially 4-edge-connected pseudo 2-factor isomorphic cubic bipartite graph. Then $G \in\left\{K_{3,3}, H_{0}, P_{0}\right\}$.

Conjecture 3.7 Let G be a 3-edge-connected pseudo 2-factor isomorphic cubic bipartite graph and suppose that $G=G_{1} * G_{2}$. Then G_{1} and G_{2} are both pseudo 2-factor isomorphic.

We will obtain partial results on Conjectures 3.6 and 3.7 in the following two subsections.

3.2.2 Essentially 4-edge-connected cubic bipartite graphs

We show that if G is an essentially 4-edge-connected pseudo 2-factor isomorphic cubic bipartite graph and G has a 4-circuit then $G=K_{3,3}$. We need the following result of Plummer [10].

Proposition 3.8 [10] Let G be an essentailly 4-edge-connected cubic bipartite graph and e, f be independent edges of G. Then $\{e, f\}$ is contained in a 1 -factor of G.

Proposition 3.9 Let G be an essentially 4-edge-connected cubic bipartite graph distinct from $K_{3,3}$, and C be a 4-circuit in G. Then C is contained in a 2-factor of G.

Proof. Suppose the theorem is false and let G be a counterexample. Let $C=x_{1} y_{2} x_{3} y_{4} x_{1}$ and let $y_{1}, x_{2}, y_{3}, x_{4}$ be the neighbours in $V(G)-V(C)$ of $x_{1}, y_{2}, x_{3}, y_{4}$ respectively. If $y_{1}, x_{2}, y_{3}, x_{4}$ were not distinct then the essential 4 -edge-connectivity of G would imply that $G=K_{3,3}$. Thus $y_{1}, x_{2}, y_{3}, x_{4}$ are distinct. By proposition $3.8, G$ has a 1 -factor F with $\left\{x_{1} y_{1}, x_{3} y_{3}\right\} \subseteq F$. This implies that we must also have $\left\{x_{2} y_{2}, x_{4} y_{4}\right\} \subseteq F$. Thus $G-F$ is a 2 -factor of G containing C.

Propositions 3.1(b) and 3.9 immediately imply:
Theorem 3.10 Let G be an essentially 4-edge-connected pseudo 2-factor isomorphic cubic bipartite graph. Suppose G contains a 4-circuit. Then $G=K_{3,3}$.

3.2.3 Cubic bipartite graphs of edge-connectivity three

We present a partial converse of Lemma 3.4. We need the following definition.
Let G be a connected cubic bipartite graph. We say that G is badly behaved if there is an edge f of G with the property that, for every 2 -factor F of G :
(i) $t(F)=1$ if and only if $f \in F$;
(ii) if $t(F)=0$ then each circuit of F has length congruent to two modulo four;
(iii) if $t(F)=1$ then F has exactly one circuit C of length congruent to zero modulo 4 and $f \in E(C)$.

In this case f is said to be a bad edge of G. Note that a badly behaved graph cannot be pseudo 2 -factor isomorphic by (i).

We next introduce some additional notation for working with 2-factors. Given a 2 -factor F of a graph G containing a vertex x and and edge e, we use C_{x} and C_{e} to denote the circuits of F to which x and e belong. Let $G=\left(G_{1}, y\right) *\left(G_{2}, x\right)$ be a cubic bipartite graph with bipartition (X, Y). Let F_{i} be a 2 -factor of $G_{i}, i=1,2$. We say that F_{1} and F_{2} are compatible 2 factors if for each $j \in\{1,2,3\}, y x_{j} \in C_{y}$ if and only if $x y_{j} \in C_{x}$. In this case we define a circuit $C_{x} * C_{y}$ in G by setting $C_{x} * C_{y}=\left(C_{y}-y\right) \cup\left(C_{x}-\right.$ $x) \cup\left\{x_{j} y_{j}: y x_{j} \in C_{y}, j=1,2,3\right\}$, and a 2 -factor $F_{1} * F_{2}$ of G by setting $F_{1} * F_{2}=\left(F_{1}-C_{y}\right) \cup\left(F_{2}-C_{x}\right) \cup\left\{C_{x} * C_{y}\right\}$. The 2-factor $F_{1} * F_{2}$ is said to be the join 2 -factor of F_{1} and F_{2}. Note that the circuit C has length $|C|=\left|C_{x}\right|+\left|C_{y}\right|-2$. Using this notation we have the following lemma.

Lemma 3.11 Let F_{i} be a 2-factor of $G_{i}, i=1,2$, such that F_{1}, F_{2} are compatible. Then $t\left(F_{1} * F_{2}\right)=1$ if and only if $t\left(F_{1}\right) \neq t\left(F_{2}\right)$.

Proof. It follows from the above definition that $\left|C_{x} * C_{y}\right|=\left|C_{x}\right|+\left|C_{y}\right|-2$. Thus, $t^{*}\left(F_{1} * F_{2}\right) \equiv t^{*}\left(F_{1}\right)+t^{*}\left(F_{2}\right) \bmod 2$. Hence, $t\left(F_{1} * F_{2}\right)=1$ if and only if $t\left(F_{1}\right) \neq t\left(F_{2}\right)$.

Theorem 3.12 Let $G=\left(G_{1}, y\right) *\left(G_{2}, x\right)$ be a cubic bipartite graph with x_{1}, x_{2}, x_{3} the neighbours of y in G_{1} and y_{1}, y_{2}, y_{3} the neighbours of x in G_{2}. Then G is pseudo 2-factor isomorphic if and only if either:
(a) G_{1}, G_{2} are both pseudo 2-factor isomorphic, or
(b) G_{1}, G_{2} are both badly behaved and, for some $i \in\{1,2,3\}$, $y x_{i}$ is a bad edge of G_{1} and $x y_{i}$ is a bad edge of G_{2}.

Proof. We first assume that (a) or (b) holds. If (a) holds, G is pseudo 2 -factor isomorphic by Lemma 3.4. Hence we may suppose that (b) holds and, relabelling if necessary, that $y x_{3}$ and $x y_{3}$ are bad edges of G_{1} and G_{2}, respectively. Let F be a 2 -factor of G. Then $F=F_{1} * F_{2}$ for 2-factors F_{1} of G_{1} and F_{2} of G_{2}. If $x_{3} y_{3} \notin F$ then $x_{3} y \notin F_{1}$ and $x y_{3} \notin F_{2}$. This implies that $t\left(F_{1}\right)=0=t\left(F_{2}\right)$. Otherwise, if $x_{3} y_{3} \in F$ then $x_{3} y \in F_{1}$ and $x y_{3} \in F_{2}$. This implies that $t\left(F_{1}\right)=1=t\left(F_{2}\right)$. In both cases $t(F)=0$ by Lemma 3.11. Since the choice of F was arbitrary, G is pseudo 2 -factor isomorphic.

We next assume that G is pseudo 2-factor isomorphic. Choose $j \in\{1,2,3\}$ and let F_{j}, respectively F_{j}^{\prime}, be a 2 -factor of G_{1}, respectively G_{2}, avoiding $x_{j} y$, respectively $y_{j} x$. Then F_{j} and F_{j}^{\prime} are compatible 2 -factors and $F=F_{j} * F_{j}^{\prime}$ is a 2 -factor of G avoiding $x_{j} y_{j}$. Since G is pseudo 2-factor isomorphic, Proposition 3.1(b) and Lemma 3.11 imply that $t\left(F_{j}\right)=t\left(F_{j}^{\prime}\right)=t_{j}$, say. It follows that every 2-factor X_{j} of G_{1} which avoids $y x_{j}$ satisfies $t\left(X_{j}\right)=t_{j}$ and every 2 -factor X_{j}^{\prime} of G_{2} which avoids $x y_{j}$ satisfies $t\left(X_{j}^{\prime}\right)=t_{j}$. If $t_{1}=t_{2}=t_{3}$ then G_{1} and G_{2} are both pseudo 2-factor isomorphic and (a) holds. Hence we suppose without loss of generality that $1=t_{1} \geq t_{2} \geq t_{3}=0$.

Suppose $t_{2}=0$. Let L_{1}, L_{2}, L_{3} be a 1-factorization of G_{1}, labelled so that $y x_{j} \in L_{j}$ for all $1 \leq j \leq 3$. By Lemma 2.1, $\operatorname{sign}\left(L_{1}\right) \operatorname{sign}\left(L_{2}\right)=(-1)^{t_{3}}=$ $1, \operatorname{sign}\left(L_{1}\right) \operatorname{sign}\left(L_{3}\right)=(-1)^{t_{2}}=1$, and $\operatorname{sign}\left(L_{2}\right) \operatorname{sign}\left(L_{3}\right)=(-1)^{t_{1}}=-1$. Clearly this is impossible. Hence $t_{2}=1$, and thus $t_{3}=0$.

Let F_{j}, respectively F_{j}^{\prime}, be a 2 -factor of G_{1}, respectively G_{2}, avoiding $x_{j} y$, respectively $y_{j} x$, for $1 \leq j \leq 3$. Let C_{y}, respectively C_{x}, be the circuit of F_{j}, respectively F_{j}^{\prime}, containing y, respectively x. Then $F=F_{j} * F_{j}^{\prime}$ is a 2factor of G. Since G is pseudo 2-factor isomorphic, Proposition 3.1(b) implies that all circuits of F have length conguent to two modulo four. This implies that all circuits of $F_{j} \cup F_{j}^{\prime}$ other than C_{y}, C_{x} have length congruent to two modulo four. Furthermore, the facts that $\left|C_{y} * C_{x}\right|=\left|C_{y}\right|+\left|C_{x}\right|-2$ has length congruent to two modulo four, $t_{1}=1=t_{2}$ and $t_{3}=0$, imply that $\left|C_{x}\right| \equiv\left|C_{y}\right| \equiv 0 \bmod 4$ if $j \in\{1,2\}$ and $\left|C_{y}\right| \equiv\left|C_{x}\right| \equiv 2 \bmod 4$ if $j=3$.

Thus G_{1} and G_{2} are both badly behaved, $y x_{3}$ is a bad edge of G_{1} and $x y_{3}$ is a bad edge of G_{2}.

Theorem 3.12 implies that Conjecture 3.7 is equivalent to the statement that there are no 3 -edge-connected badly behaved cubic bipartite graphs. We will see in the next subsection that 2-edge-connected badly behaved cubic bipartite graphs can exist. We close this subsection by showing that a 3-edge-connected badly behaved cubic bipartite graph can have at most one bad edge. This will follow easily from the following result.

Lemma 3.13 Let G be a 3-edge-connected cubic bipartite graph and e, $f \in$ $E(G)$. Then G has a 1-factor containing e and avoiding f.

Proof. We proceed by contradiction. Suppose that G, e, f is a counterexample with as few vertices as possible. Choose an edge h of G incident with f but not incident with e. If G had a 1-factor F with $\{e, h\} \subseteq F$ then we would have $f \notin F$ and F would be the required 1 -factor of G. Hence no such 1-factor exists and, by Proposition 3.8, G has a non-trivial 3-edge-cut $K=\left\{e_{1}, e_{2}, e_{3}\right\}$. Let H_{1}, H_{2} be the components of $G-K$ and let G_{i} be obtained from G by contracting $E\left(H_{i}\right)$ for $i=1,2$. Without loss of generality, $e \in E\left(G_{1}\right)$. By induction, G_{1} has a 1-factor F_{1} containing e, and avoiding f if $f \in E\left(G_{1}\right)$. Relabelling e_{1}, e_{2}, e_{3} if necessary we may suppose that $e_{1} \in F_{1}$. By induction G_{2} has a 1-factor F_{2} containing e_{1}, and avoiding f if $f \in E\left(G_{2}\right)$. Then $F=F_{1} \cup F_{2}$ is a 1-factor of G containing e and avoiding f.

Corollary 3.14 Suppose that G is a badly behaved 3-connected cubic bipartite graph. Then G contains exactly one bad edge.

Proof. Suppose f and f^{*} are distinct bad edges of G. By Lemma 3.13, G has a 1 -factor F containing f and avoiding f^{*}. Let $X=G-F$. Since $f^{*} \in X$ we must have $t(X)=1$ and since $f \notin X$ we must have $t(X)=0$, a contradiction.

3-cut reductions

Let G be a cubic bipartite graph with bipartition (X, Y) and K be a nontrivial 3-edge-cut of G. Let H_{1}, H_{2} be the components of $G-K$. We have seen that G can be expressed as a star product $G=\left(G_{1}, y_{K}\right) *\left(G_{2}, x_{K}\right)$ where $G_{1}-y_{K}=H_{1}$ and $G_{2}-x_{K}=H_{2}$. We say that y_{K}, repectively x_{K}, is the marker vertex of G_{1}, repectively G_{2}, corresponding to the cut K. Each nontrivial 3-edge-cut of G distinct from K is a non-trivial 3-edge-cut of G_{1} or G_{2}, and vice versa. If G_{i} is not essentially 4-edge-connected for $i=1,2$, then we may reduce G_{i} along another non-trivial 3-edge-cut. We can continue this process until all the graphs we obtain are essentially 4-edge-connected. We
call these resulting graphs the constituents of G. It is easy to see that the constituents of G are unique i.e. they are independent of the order we choose to reduce the non-trivial 3-edge-cuts of G. Furthermore, each vertex of G and each marker vertex belong to a unique constituent of G. Let $T(G)$ be the graph whose vertex set is the set of constituents of G, in which two vertices are adjacent if the corresponding constituents contain two marker vertices x_{K}, y_{K} corresponding to the same non-trivial 3-edge-cut K. It is straightforward to check that $T(G)$ is a tree, which we will call the 3 -cut reduction tree of G. Conjecture 3.5 is equivalent to the statement that if G is a 3-edge-connected pseudo 2-factor isomorphic cubic bipartite graph then every constituent of G is isomorphic to $K_{3,3}, H_{0}$ or P_{0}.

We can use Theorem 3.10 to deduce some evidence in favour of this statement.

Theorem 3.15 Let G be a 3-edge-connected pseudo 2-factor isomorphic bipartite graph. Suppose G contains a 4-cycle C. Then C is contained in a constituent of G which is isomorphic to $K_{3,3}$.

Proof. It is easy to see that no edge of C can be obtained in a non-trivial 3 -edge-cut of G. Thus C is contained in a unique constituent G_{1} of G and no vertex of C is a marker vertex of G_{1}. Suppose $G_{1} \neq K_{3,3}$. By Theorem 3.10, C is contained in a 2 -factor F_{1} of G_{1}. It is straightforward to show, as in the proof of Theorem 3.12, that F_{1} can be extended to a 2-factor F of G with $C \subseteq F$. This contradicts Proposition 3.1(b).

3.2.4 Cubic bipartite graphs of edge-connectivity two

We shall construct infinite families of 2-edge-connected badly behaved cubic bipartite graphs and 2-edge-connected non-hamiltonian 2-factor isomorphic cubic bipartite graphs.

Let G, G_{1}, G_{2} be graphs such that $G_{1} \cap G_{2}=\emptyset$. Let $e_{i}=u_{i} v_{i} \in V\left(G_{i}\right)$ for $i=1,2$. If $G=\left(G_{1}-e_{1}\right) \cup\left(G_{2}-e_{2}\right) \cup\left\{u_{1} u_{2}, v_{1} v_{2}\right\}$, then we say that G is a 2 -join of G_{1} and G_{2} and write $G=\left(G_{1}, e_{1}\right) \circ\left(G_{2}, e_{2}\right)$, or more simply $G=G_{1} \circ G_{2}$ when we are not concerned which edges are used in the 2-join. The set $\left\{u_{1} u_{2}, v_{1} v_{2}\right\}$ is a 2 -edge cut of G and we shall also say that G_{1} and G_{2} are 2-cut reductions of G.

Lemma 3.16 Let G_{i} be a pseudo 2-factor isomorphic cubic bipartite graph and $e_{i}=u_{i} v_{i} \in E\left(G_{i}\right)$ for $i=1,2$. Let $G=\left(G_{1}, e_{1}\right) \circ\left(G_{2}, e_{2}\right)$. Then G is badly behaved and both $u_{1} u_{2}$ and $v_{1} v_{2}$ are bad edges of G.

Proof. The lemma can be proved in a similar way to Lemma 3.4.

Lemma 3.16 can be used to construct an infinite family of badly behaved cubic bipartite graphs of edge-connectivity two, by choosing any $G_{1}, G_{2} \in$ $\mathcal{S P}\left(K_{3,3}, H_{0}, P_{0}\right)$. The badly behaved graphs G constructed in this way will all have the property that their bad edges belong to 2 -edge-cuts. We can modify the construction to obtain badly behaved graphs without this property. Let G_{1}, G_{2} be graphs and $e_{i}=x_{i} y_{i} \in E\left(G_{i}\right)$ for $i=1,2$. Define $\left(G_{1}, e_{1}\right) \diamond\left(G_{2}, e_{2}\right)$ to be the graph consisting of the disjoint union of $G_{1}-e_{1}$ and $G_{2}-e_{2}$ and two new adjacent vertices u, v together with the new edges $u v, x_{1} u, y_{1} v, x_{2} u, y_{2} v$. It is straightforward to show that if G_{1}, G_{2} are pseudo 2 -factor isomorphic cubic bipartite graphs then $\left(G_{1}, e_{1}\right) \diamond\left(G_{2}, e_{2}\right)$ is badly behaved with $u v$ as its bad edge.

We next state a similar result to Proposition 3.12 for 2-edge-cuts, which we will use in the following subsection to show that there are no planar pseudo 2-factor isomorphic cubic bipartite graphs.

Lemma 3.17 Let G_{i} be a cubic bipartite graph and $e_{i}=u_{i} v_{i} \in E\left(G_{i}\right)$ for $i=1,2$. Let $G=\left(G_{1}, e_{1}\right) \circ\left(G_{2}, e_{2}\right)$ and suppose that G is pseudo 2-factor isomorphic. Then for some $\{i, j\}=\{1,2\}, G_{i}$ is pseudo 2-factor isomorphic and G_{j} is badly behaved with $u_{j} v_{j}$ as a bad edge.

Proof. The lemma can be proved in a similar way to Lemma 3.12.
We close this subsection by constructing an infinite family of non-hamiltonian connected 2-factor isomorphic cubic bipartite graphs.

Proposition 3.18 Let G_{i} be a 2-factor hamiltonian cubic bipartite graph with k vertices and $e_{i}=u_{i} v_{i} \in E\left(G_{i}\right)$ for $i=1,2,3$. Let G be the graph obtained from the disjoint union of the graphs $G_{i}-e_{i}$ by adding two new vertices w and z and new edges $w u_{i}$ and $z v_{i}$ for $i=1,2,3$. Then G is a non-hamiltonian connected 2-factor isomorphic cubic bipartite graph of edgeconnectivity two.

Proof. The assertion that G has edge-connectivity two follows from the fact that connected cubic bipartite graphs are 2-edge-connected. The assertion that G is non-hamiltonian holds since $G-\{w, z\}$ has three components.

Let F be a 2 -factor of G. By symmetry we may assume that $F=F^{\prime} \cup F_{3}$, where F_{3} is a 2-factor of G_{3} avoiding $u_{3} v_{3}$ and $F^{\prime}=\left(F_{1}-e_{1}\right) \cup\left(F_{2}-\right.$ $\left.e_{2}\right) \cup\left\{w u_{1}, w u_{2}, z v_{1}, z v_{2}\right\}$ is a 2 -factor of $G-G_{3}$, with F_{i} a 2-factor of G_{i} containing $u_{i} v_{i}$ for $i=1,2$. Since G_{i} is 2-factor hamiltonian, F_{i} is a k-circuit for $i=1,2,3$. Thus F has exactly two circuits, one of which has length k and the other length $2 k+2$. Hence G is 2 -factor isomorphic.

It was shown in [7] that all graphs in $\mathcal{S P}\left(K_{3,3}, H_{0}\right)$ are 2-factor hamiltonian. Thus we may apply Proposition 3.18 by taking $G_{1}=G_{2}=G_{3}$ to be any
graph in $\mathcal{S P}\left(K_{3,3}, H_{0}\right)$ to obtain an infinite family of 2-edge-connected nonhamiltonian 2 -factor isomorphic graphs. This family gives counterexamples to the conjecture [1, Conjecture 1.2] that all connected 2-factor isomorphic graphs are 2-factor hamiltonian. Note, however, that Conjecture 3.5 would imply the truth of the modified conjecture that all 3-edge-connected 2-factor isomorphic graphs are 2-factor hamiltonian.

3.2.5 Planar cubic bipartite graphs

We show that there are no planar pseudo 2-factor-isomorphic cubic bipartite graphs.

Theorem 3.19 Let G be a pseudo 2-factor-isomorphic cubic bipartite graph. Then G is non-planar.

Proof. Suppose the theorem is false and let G be a counterexample with as few edges as possible. Clearly G is connected, and hence 2-edge-connected. Since G is a planar cubic bipartite graph Euler's formula implies that G has a face of size four. Thus G contains a 4 -circuit. If G were 3 -edge-connected then Theorem 3.15 would imply that some constituent of G is isomorphic to $K_{3,3}$. This would contradict the planarity of G since each constituent of G can be obtained by edge-contractions (which preserve planarity). Hence G has edgeconnectivity two. Lemma 3.17 now implies that some 2 -cut reduction of G is a pseudo 2-factor-isomorphic planar cubic bipartite graph. This contradicts the minimality of G.

Acknowledgement The fifth named author would like to thank Claude Candat for his help while writing this paper.

References

[1] R. Aldred, M. Funk, B. Jackson, D. Labbate and J. Sheehan, Regular bipartite graphs with all 2-factors isomorphic, J. Combin. Th. Ser. B, 92 (2004), 151-161.
[2] A.S. Asratian, Short solution of Kotzig's problem for bipartite graphs, J. Combin. Theory Ser. B 74 (1998),160-168.
[3] A.S. Asratian and A.N. Mirumyan, Transformations of edge colorings of a bipartite multigraph and their applications. (Russian) Dokl. Akad. Nauk SSSR 316 (1991), no. 1, 11-13; translation in Soviet Math. Dokl. 43 (1991), no. 1, 1-3.
[4] N. Biggs, Algebraic Graph Theory, Second edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993.
[5] A.A. Diwan, Disconnected 2-factors in planar cubic bridgeless graphs, J. Combin. Th. Ser. B, 84, (2002), 249-259.
[6] R.J. Faudree, R.J. Gould, and M.S. Jacobson, On the extremal number of edges in 2-factor hamiltonian graphs, preprint.
[7] M. Funk, B. Jackson, D. Labbate and J. Sheehan, 2-factor hamiltonian graphs, J. Combin. Th. Ser. B, 87, (2003), 138-144.
[8] L. Lovász and M.D. Plummer, Matching Theory., Ann. Discrete Math., 29, North-Holland, Amsterdam, 1986.
[9] W. McCuaig, Even dicircuits. J. Graph Theory, 35, (2000), no. 1, 46-68.
[10] M.D. Plummer, Matching extensions in regular graphs, in Graph Theory, Combinatorics, Algorithms and Applications, San Francisco, CA, 1989, 416-436.
[11] C. Thomassen, The even cycle problem for directed graphs, J. Amer. Math. Soc., 5 (1992), 217-229.

