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Abstract

A graph is pseudo 2–factor isomorphic if the numbers of circuits of

length congruent to zero modulo four in each of its 2–factors, have the

same parity. We prove that there exist no pseudo 2–factor isomorphic
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2 Pseudo 2–Factor Isomorphic

k–regular bipartite graphs for k ≥ 4. We also propose a characteriza-

tion for 3-connected pseudo 2–factor isomorphic cubic bipartite graphs

and obtain some partial results towards our conjecture.

1 Introduction

All graphs considered are finite and simple (without loops or multiple edges).
We shall use the term multigraph when multiple edges are permitted.

A graph with a 2–factor is said to be 2-factor hamiltonian if all its 2-
factors are Hamilton circuits, and, more generally, 2-factor isomorphic if all
its 2-factors are isomorphic. Examples of such graphs are K4, K5, K3,3, the
Heawood graph (which are all 2-factor hamiltonian) and the Petersen graph
(which is 2-factor isomorphic).

Several recent papers have addressed the problem of characterizing families
of graphs (particularly regular graphs) which have these properties. It is
shown in [1, 7] that k–regular 2–factor isomorphic bipartite graphs exist only
when k ∈ {2, 3} and an infinite family of 3–regular 2–factor hamiltonian
bipartite graphs, based on K3,3 and the Heawood graph, is constructed in [7].
It is conjectured in [7] that every 3–regular 2–factor hamiltonian bipartite
graph belongs to this family, and, in [1], that every connected 3–regular 2–
factor isomorphic bipartite graph is 2–factor hamiltonian. (We shall see in
Section 3.2.4 of this paper that the latter conjecture is false.) Faudree, Gould
and Jacobsen [6] determine the maximum number of edges in both 2–factor
hamiltonian graphs and 2–factor hamiltonian bipartite graphs. In addition,
Diwan [5] has shown that K4 is the only 3–regular 2–factor hamiltonian planar
graph.

In this paper, we extend the above mentioned results to the more general
family of pseudo 2–factor isomorphic graphs i.e. graphs G with the property
that the numbers of circuits of length congruent to zero modulo four in each 2–
factor of G, have the same parity. We prove that pseudo 2–factor isomorphic
k–regular bipartite graphs exist only when k ∈ {2, 3}. We then propose a
conjectured characterization of 3–connected pseudo 2–factor isomorphic cubic
bipartite graphs, and obtain some partial results towards our conjecture. We
show in particular that there are no planar pseudo 2–factor isomorphic cubic
bipartite graphs.

2 Preliminaries

An r–factor of a graph G is an r–regular spanning subgraph of G. A 1–
factorization of G is a partition of the edge set of G into 1–factors.

Let G be a bipartite graph with bipartition (X, Y ) such that |X| = |Y |,
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and A be its bipartite adjacency matrix. In general 0 ≤ |det(A)| ≤ per(A).
We say that G is det–extremal if G has a 1-factor and |det(A)| = per(A).
Let X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn}. For F a 1–factor of G, define
the sign of F , sgn(F ), to be the sign of the permutation of {1, 2, . . . , n}
corresponding to F . Then G is det–extremal if and only if G has a 1-factor
and all its 1–factors have the same sign.

We shall need the following results. The first is elementary (and is a special
case of [8, Lemma 8.3.1]).

Lemma 2.1 Let F1, F2 be 1-factors in a bipartite graph G and t be the num-
ber of circuits in F1 ∪ F2 of length congruent to zero modulo four. Then
sgn(F1)sgn(F2) = (−1)t.

A k–circuit is a circuit of length k. A central circuit of a graph G is a
circuit C such that G − V (C) has a 1-factor. Lemma 2.1 easily implies:

Lemma 2.2 Let G be a bipartite graph. Then G is det-extremal if and only
if G has a 1-factor and every central circuit of G has length congruent to two
modulo four.

The next result follows from a more general theorem of Thomassen [11].

Theorem 2.3 Let G be a det–extremal bipartite graph. If each edge of G is
contained in a 1-factor then G has a vertex of degree at most three.

We next describe a result of Asratian and Mirumyan [3], see also [2], con-
cerning transformations between 1-factorizations of a regular bipartite graph.
Let G be a t-regular bipartite graph, F = {F1, F2, . . . , Ft} be a 1-factorization
of G, and C be a circuit of G.

Suppose E(C) ⊆ Fi ∪ Fj for some 1 ≤ i < j ≤ t. Then we may obtain a
new 1-factorization F ′ of G by putting F ′

i = Fi4E(C), F ′

j = Fj4E(C) and
F ′ = (F − {Fi, Fj}) ∪ {F ′

i , F
′

j}, where 4 denotes symmetric difference. We
say that F ′ is obtained from F by a 2-transformation.

Suppose E(C) ⊆ Fi ∪ Fj ∪ Fk for some 1 ≤ i < j < k ≤ t, and that
Fi ∩ E(C) is a 1-factor of C. Let X = (Fj ∪ Fk)4E(C). Since the edges
of C alternate with respect to Fj ∪ Fk, X is a 2-factor of G. Let {F ′

j, F
′

k}
be a 1-factorization of X. We may obtain a new 1-factorization F ′ of G by
putting F ′

i = Fi4E(C), and F ′ = (F − {Fi, Fj, Fk}) ∪ {F ′

i , F
′

j, F
′

k}. We say
that F ′ is obtained from F by a 3-transformation.

Theorem 2.4 [2, 3] Let G be a t-regular bipartite graph. Then every 1-
factorization of G can be obtained from a given 1-factorization by a sequence
of 2- and 3-transformations.
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3 Pseudo 2-factor isomorphic regular bipar-

tite graphs

Let G be a bipartite graph. For each 2–factor F of G let t∗(F ) be the number
of circuits of F of length congruent to 0 modulo 4, and let

t(F ) =

{

0 if t∗(F ) is even
1 if t∗(F ) is odd

We say that a bipartite graph G is pseudo 2-factor isomorphic if G has at
least one 2-factor, and t has the same value on all 2-factors of G. In this case,
we denote this constant value of t by t(G).

3.1 Regular graphs of degree at least four

We show that there are no pseudo 2–factor isomorphic k–regular bipartite
graphs for k ≥ 4. Our proof uses the results of Thomassen, and Asratian and
Mirumyan described in Section 2. We also use the fact that there is a close
relationship between pseudo 2-factor isomorphic bipartite graphs and det–
extremal bipartite graphs. This is illustrated by the following proposition.

Proposition 3.1 Suppose G is a pseudo 2-factor isomorphic bipartite graph.
(a) G − F is det-extremal for all 1-factors F of G.
(b) If G is k-regular and k ≥ 3 then t∗(X) = 0 for all 2-factors X of G. In
particular, t(G) = 0.

Proof. (a) Let F be a 1–factor of G and H = G − F . Let F ′ be a 1–factor
in H. Then F ∪ F ′ is a 2–factor of G, and hence has t(G) circuits of length
congruent to 0 modulo 4. By Lemma 2.1, sign(F )sign(F ′) = (−1)t(G). Since
the choice of F ′ is arbitrary, all 1–factors of H have the same sign. Thus H
is det–extremal.

(b) Let X be a 2-factor of G and F be a 1-factor of G−X. By (a), H = G−F
is det-extremal. Since every circuit of X is a central circuit of H, Lemma 2.2
implies that t∗(X) = 0. 2

Theorem 3.2 Let G be a pseudo 2–factor isomorphic k–regular bipartite
graph. Then k ∈ {2, 3}.

Proof. Suppose the theorem is false. Let G be a pseudo 2–factor isomorphic
k–regular bipartite graph with k ≥ 4. By Proposition 3.1(a), all 1-factors in
any 1-factorization of G have the same sign. By Theorem 2.3, G contains
two 1–factors with different signs. Since every 1–factor is contained in a 1–
factorization of G, there are two 1–factorizations F0,F1 of G such that all



M.Abreu, A.A.Diwan, B.Jackson, D.Labbate, J.Sheehan 5

1–factors in F0 have positive sign and all 1–factors in F1 have negative sign.
However, by Theorem 2.4, F1 can be obtained from F0 by a sequence of 2–
and 3–transformations. Since k ≥ 4, at least one 1–factor is preserved in
every transformation, and hence the signs of all 1–factors in the resulting
1–factorization must be the same as those of the 1–factors in the original
1–factorization. This gives a contradiction. 2

Theorem 3.2 generalises the analogous results for 2-factor hamiltonian
graphs [7] and 2-factor isomorphic graphs [1]. Its proof is substantially simpler
than the proofs given for the latter two results.

3.2 Cubic graphs

It is straightforward to show that K3,3 and the Heawood graph H0, shown in
Figure 1(a), are 2–factor hamiltonian and hence pseudo 2–factor isomorphic,
see [7]. We first show that the Pappus graph P0, shown in Figure 1(b), is
pseudo 2–factor isomorphic but not 2–factor isomorphic.
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Figure 1: (a) Heawood H0 (b) Pappus P0

Proposition 3.3 The Pappus graph P0 is pseudo 2–factor isomorphic but
not 2–factor isomorphic.

Proof. We adopt the labelling of the Pappus graph P0 given in Figure
1(b). Let F be a 2–factor of P0 and C be a shortest circuit in F . Since P0

is 3–arc–transitive, see [4], we may assume that the path P = v1v2v3v4 is
contained in C. Since P0 is bipartite, has 18 vertices, and has girth six, we
have |C| ∈ {6, 8, 18}.

Suppose |C| = 6. By inspection, P is contained in exactly one 6–circuit
v1v2v3v4v5v6v1. This implies that edges v18v1, v6v7, v2v9, v3v14, v4v11 do not
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belong to F , which in turn implies that F contains the 6–circuits v13v14v15v16

v17v18v13, and v7v8v9v10v11v12v7. Thus F consists of exactly three 6–circuits.
Now, suppose that |C| = 8. Then, by inspection, C is either: v1v2v3v4v5v16

v17v18v1, v1v2v3v4v11v10v17v18v1, v1v2v3v4v11v12v13v18v1, or v1v2v3v4v11v12v7v6v1.
These in turn, respectively, imply that v6, v9, v14, v5 have degree 1 in F which
is impossible. Thus we cannot have |C| = 8.

The remaining case, when |C| = 18, occurs when C is a hamiltonian circuit
of P0, which clearly can occur.

In both the cases |C| = 6 and |C| = 18, we have t(F ) = 0. Thus P0 is
pseudo 2–factor isomorphic. It is not 2–factor isomorphic since, by the above,
it has two non-isomorphic 2–factors. 2

3.2.1 Star products

We show that K3,3, H0 and P0 can be used to construct an infinite family of
3-connected pseudo 2–factor isomorphic cubic bipartite graphs.

Let G, G1, G2 be graphs such that G1 ∩ G2 = ∅. Let y ∈ V (G1) and
x ∈ V (G2) such that dG1

(y) = 3 = dG2
(x). Let x1, x2, x3 be the neighbours

of y in G1 and y1, y2, y3 be the neighbours of x in G2. If G = (G1 − y) ∪
(G2 − x) ∪ {x1y1, x2y2, x3y3}, then we say that G is a star product of G1 and
G2 and write G = (G1, y) ∗ (G2, x), or more simply as G = G1 ∗ G2 when
we are not concerned which vertices are used in the star product. The set
{x1y1, x2y2, x3y3} is a 3–edge cut of G and we shall also say that G1 and G2

are 3–cut reductions of G.
We next show that star products preserve the property of being pseudo

2–factor isomorphic in the family of cubic bipartite graphs.

Lemma 3.4 Let G be a star product of two pseudo 2–factor isomorphic cubic
bipartite graphs G1 and G2. Then G is also pseudo 2–factor isomorphic.

Proof. Suppose G = (G1, y) ∗ (G2, x) with x1, x2, x3 the neighbours of y
in G1 and y1, y2, y3 the neighbours of x in G2. Suppose further that G is
not pseudo 2–factor isomorphic. Then G has a 2–factor F with t(F ) = 1.
Since G is bipartite F contains exactly two edges of the 3–edge–cut S =
{x1y1, x2y2, x3y3}. Let C be the circuit of F which intersects S and Ci be
the circuit of Gi corresponding to C, i = 1, 2. Let Fi be the 2–factor of Gi

consisting of the circuits of F which are contained in Gi together with Ci.
Since |C| = |C1|+ |C2| − 2, we have 1 = t(F ) ≡ t(F1) + t(F2) mod 2. Hence
t(Fi) = 1 for some i ∈ {1, 2}. Applying Proposition 3.1, we contradict the
hypothesis that Gi is pseudo 2–factor isomorphic. 2

Given a set {G1, G2, . . . , Gk} of 3-edge-connected cubic bipartite graphs let
SP(G1, G2, . . . , Gk) be the set of cubic bipartite graphs which can be obtained
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from G1, G2, . . . , Gk by repeated star products. Lemma 3.4 implies that all
graphs in SP(K3,3, H0, P0) are pseudo 2–factor isomorphic. We conjecture
that these are the only 3-connected pseudo 2–factor isomorphic cubic bipartite
graphs.

Conjecture 3.5 Let G be a 3-connected cubic bipartite graph. Then G is
pseudo 2–factor isomorphic if and only if G belongs to SP(K3,3, H0, P0).

Note that McCuaig [9] has shown that a 3-connected cubic bipartite graph G
is det-extremal if and only if G ∈ SP(H0).

Let G be a graph and E1 be an edge-cut of G. We say that E1 is a non-
trivial edge-cut if all components of G − E1 have at least two vertices. The
graph G is essentially 4-edge-connected if G is 3-edge-connected and has no
non-trivial 3-edge-cuts. It is easy to see that Conjecture 3.5 holds if and only
if Conjectures 3.6 and 3.7 below are both valid.

Conjecture 3.6 Let G be an essentially 4-edge-connected pseudo 2–factor
isomorphic cubic bipartite graph. Then G ∈ {K3,3, H0, P0}.

Conjecture 3.7 Let G be a 3-edge-connected pseudo 2–factor isomorphic
cubic bipartite graph and suppose that G = G1 ∗ G2. Then G1 and G2 are
both pseudo 2–factor isomorphic.

We will obtain partial results on Conjectures 3.6 and 3.7 in the following
two subsections.

3.2.2 Essentially 4-edge-connected cubic bipartite graphs

We show that if G is an essentially 4-edge-connected pseudo 2–factor isomor-
phic cubic bipartite graph and G has a 4-circuit then G = K3,3. We need the
following result of Plummer [10].

Proposition 3.8 [10] Let G be an essentailly 4-edge-connected cubic bipar-
tite graph and e, f be independent edges of G. Then {e, f} is contained in a
1-factor of G.

2

Proposition 3.9 Let G be an essentially 4-edge-connected cubic bipartite
graph distinct from K3,3, and C be a 4-circuit in G. Then C is contained
in a 2-factor of G.
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Proof. Suppose the theorem is false and let G be a counterexample. Let
C = x1y2x3y4x1 and let y1, x2, y3, x4 be the neighbours in V (G) − V (C) of
x1, y2, x3, y4 respectively. If y1, x2, y3, x4 were not distinct then the essential
4-edge-connectivity of G would imply that G = K3,3. Thus y1, x2, y3, x4 are
distinct. By proposition 3.8, G has a 1-factor F with {x1y1, x3y3} ⊆ F . This
implies that we must also have {x2y2, x4y4} ⊆ F . Thus G − F is a 2-factor
of G containing C. 2

Propositions 3.1(b) and 3.9 immediately imply:

Theorem 3.10 Let G be an essentially 4-edge-connected pseudo 2-factor
isomorphic cubic bipartite graph. Suppose G contains a 4-circuit. Then
G = K3,3.

3.2.3 Cubic bipartite graphs of edge-connectivity three

We present a partial converse of Lemma 3.4. We need the following definition.
Let G be a connected cubic bipartite graph. We say that G is badly behaved

if there is an edge f of G with the property that, for every 2–factor F of G:

(i) t(F ) = 1 if and only if f ∈ F ;

(ii) if t(F ) = 0 then each circuit of F has length congruent to two modulo
four;

(iii) if t(F ) = 1 then F has exactly one circuit C of length congruent to zero
modulo 4 and f ∈ E(C).

In this case f is said to be a bad edge of G. Note that a badly behaved graph
cannot be pseudo 2–factor isomorphic by (i).

We next introduce some additional notation for working with 2–factors.
Given a 2–factor F of a graph G containing a vertex x and and edge e, we
use Cx and Ce to denote the circuits of F to which x and e belong. Let
G = (G1, y) ∗ (G2, x) be a cubic bipartite graph with bipartition (X, Y ). Let
Fi be a 2–factor of Gi, i = 1, 2. We say that F1 and F2 are compatible 2–
factors if for each j ∈ {1, 2, 3}, yxj ∈ Cy if and only if xyj ∈ Cx. In this
case we define a circuit Cx ∗ Cy in G by setting Cx ∗ Cy = (Cy − y) ∪ (Cx −
x) ∪ {xjyj : yxj ∈ Cy, j = 1, 2, 3}, and a 2–factor F1 ∗ F2 of G by setting
F1 ∗ F2 = (F1 − Cy) ∪ (F2 − Cx) ∪ {Cx ∗ Cy}. The 2–factor F1 ∗ F2 is said
to be the join 2–factor of F1 and F2. Note that the circuit C has length
|C| = |Cx| + |Cy| − 2. Using this notation we have the following lemma.

Lemma 3.11 Let Fi be a 2-factor of Gi, i = 1, 2, such that F1, F2 are com-
patible. Then t(F1 ∗ F2) = 1 if and only if t(F1) 6= t(F2).
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Proof. It follows from the above definition that |Cx ∗Cy| = |Cx|+ |Cy| − 2.
Thus, t∗(F1 ∗F2) ≡ t∗(F1) + t∗(F2) mod 2. Hence, t(F1 ∗F2) = 1 if and only
if t(F1) 6= t(F2). 2

Theorem 3.12 Let G = (G1, y) ∗ (G2, x) be a cubic bipartite graph with
x1, x2, x3 the neighbours of y in G1 and y1, y2, y3 the neighbours of x in G2.
Then G is pseudo 2-factor isomorphic if and only if either:
(a) G1, G2 are both pseudo 2-factor isomorphic, or
(b) G1, G2 are both badly behaved and, for some i ∈ {1, 2, 3}, yxi is a bad
edge of G1 and xyi is a bad edge of G2.

Proof. We first assume that (a) or (b) holds. If (a) holds, G is pseudo
2-factor isomorphic by Lemma 3.4. Hence we may suppose that (b) holds
and, relabelling if necessary, that yx3 and xy3 are bad edges of G1 and G2,
respectively. Let F be a 2–factor of G. Then F = F1 ∗ F2 for 2-factors F1

of G1 and F2 of G2. If x3y3 /∈ F then x3y /∈ F1 and xy3 6∈ F2. This implies
that t(F1) = 0 = t(F2). Otherwise, if x3y3 ∈ F then x3y ∈ F1 and xy3 ∈ F2.
This implies that t(F1) = 1 = t(F2). In both cases t(F ) = 0 by Lemma 3.11.
Since the choice of F was arbitrary, G is pseudo 2-factor isomorphic.

We next assume that G is pseudo 2-factor isomorphic. Choose j ∈ {1, 2, 3}
and let Fj, respectively F ′

j, be a 2–factor of G1, respectively G2, avoiding xjy,
respectively yjx. Then Fj and F ′

j are compatible 2–factors and F = Fj ∗ F ′

j

is a 2–factor of G avoiding xjyj. Since G is pseudo 2-factor isomorphic,
Proposition 3.1(b) and Lemma 3.11 imply that t(Fj) = t(F ′

j) = tj, say. It
follows that every 2-factor Xj of G1 which avoids yxj satisfies t(Xj) = tj and
every 2-factor X ′

j of G2 which avoids xyj satisfies t(X ′

j) = tj. If t1 = t2 = t3
then G1 and G2 are both pseudo 2-factor isomorphic and (a) holds. Hence
we suppose without loss of generality that 1 = t1 ≥ t2 ≥ t3 = 0.

Suppose t2 = 0. Let L1, L2, L3 be a 1-factorization of G1, labelled so that
yxj ∈ Lj for all 1 ≤ j ≤ 3. By Lemma 2.1, sign(L1)sign(L2) = (−1)t3 =
1, sign(L1)sign(L3) = (−1)t2 = 1, and sign(L2)sign(L3) = (−1)t1 = −1.
Clearly this is impossible. Hence t2 = 1, and thus t3 = 0.

Let Fj, respectively F ′

j, be a 2–factor of G1, respectively G2, avoiding xjy,
respectively yjx, for 1 ≤ j ≤ 3. Let Cy, respectively Cx, be the circuit of
Fj, respectively F ′

j, containing y, respectively x. Then F = Fj ∗ F ′

j is a 2-
factor of G. Since G is pseudo 2-factor isomorphic, Proposition 3.1(b) implies
that all circuits of F have length conguent to two modulo four. This implies
that all circuits of Fj ∪ F ′

j other than Cy, Cx have length congruent to two
modulo four. Furthermore, the facts that |Cy ∗ Cx| = |Cy| + |Cx| − 2 has
length congruent to two modulo four, t1 = 1 = t2 and t3 = 0, imply that
|Cx| ≡ |Cy| ≡ 0 mod 4 if j ∈ {1, 2} and |Cy| ≡ |Cx| ≡ 2 mod 4 if j = 3.



10 Pseudo 2–Factor Isomorphic

Thus G1 and G2 are both badly behaved, yx3 is a bad edge of G1 and xy3 is
a bad edge of G2. 2

Theorem 3.12 implies that Conjecture 3.7 is equivalent to the statement
that there are no 3-edge-connected badly behaved cubic bipartite graphs. We
will see in the next subsection that 2-edge-connected badly behaved cubic
bipartite graphs can exist. We close this subsection by showing that a 3-
edge-connected badly behaved cubic bipartite graph can have at most one
bad edge. This will follow easily from the following result.

Lemma 3.13 Let G be a 3-edge-connected cubic bipartite graph and e, f ∈
E(G). Then G has a 1-factor containing e and avoiding f .

Proof. We proceed by contradiction. Suppose that G, e, f is a counterex-
ample with as few vertices as possible. Choose an edge h of G incident with
f but not incident with e. If G had a 1-factor F with {e, h} ⊆ F then we
would have f 6∈ F and F would be the required 1-factor of G. Hence no
such 1-factor exists and, by Proposition 3.8, G has a non-trivial 3-edge-cut
K = {e1, e2, e3}. Let H1, H2 be the components of G − K and let Gi be ob-
tained from G by contracting E(Hi) for i = 1, 2. Without loss of generality,
e ∈ E(G1). By induction, G1 has a 1-factor F1 containing e, and avoiding f
if f ∈ E(G1). Relabelling e1, e2, e3 if necessary we may suppose that e1 ∈ F1.
By induction G2 has a 1-factor F2 containing e1, and avoiding f if f ∈ E(G2).
Then F = F1 ∪ F2 is a 1-factor of G containing e and avoiding f . 2

Corollary 3.14 Suppose that G is a badly behaved 3–connected cubic bipar-
tite graph. Then G contains exactly one bad edge.

Proof. Suppose f and f ∗ are distinct bad edges of G. By Lemma 3.13,
G has a 1-factor F containing f and avoiding f ∗. Let X = G − F . Since
f ∗ ∈ X we must have t(X) = 1 and since f 6∈ X we must have t(X) = 0, a
contradiction. 2

3-cut reductions

Let G be a cubic bipartite graph with bipartition (X, Y ) and K be a non-
trivial 3-edge-cut of G. Let H1, H2 be the components of G − K. We have
seen that G can be expressed as a star product G = (G1, yK)∗(G2, xK) where
G1 − yK = H1 and G2 − xK = H2. We say that yK, repectively xK , is the
marker vertex of G1, repectively G2, corresponding to the cut K. Each non-
trivial 3-edge-cut of G distinct from K is a non-trivial 3-edge-cut of G1 or
G2, and vice versa. If Gi is not essentially 4-edge-connected for i = 1, 2, then
we may reduce Gi along another non-trivial 3-edge-cut. We can continue this
process until all the graphs we obtain are essentially 4-edge-connected. We
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call these resulting graphs the constituents of G. It is easy to see that the
constituents of G are unique i.e. they are independent of the order we choose
to reduce the non-trivial 3-edge-cuts of G. Furthermore, each vertex of G
and each marker vertex belong to a unique constituent of G. Let T (G) be the
graph whose vertex set is the set of constituents of G, in which two vertices are
adjacent if the corresponding constituents contain two marker vertices xK, yK

corresponding to the same non-trivial 3-edge-cut K. It is straightforward to
check that T (G) is a tree, which we will call the 3-cut reduction tree of G.
Conjecture 3.5 is equivalent to the statement that if G is a 3-edge-connected
pseudo 2-factor isomorphic cubic bipartite graph then every constituent of G
is isomorphic to K3,3, H0 or P0.

We can use Theorem 3.10 to deduce some evidence in favour of this state-
ment.

Theorem 3.15 Let G be a 3-edge-connected pseudo 2-factor isomorphic bi-
partite graph. Suppose G contains a 4-cycle C. Then C is contained in a
constituent of G which is isomorphic to K3,3.

Proof. It is easy to see that no edge of C can be obtained in a non-trivial
3-edge-cut of G. Thus C is contained in a unique constituent G1 of G and
no vertex of C is a marker vertex of G1. Suppose G1 6= K3,3. By Theorem
3.10, C is contained in a 2-factor F1 of G1. It is straightforward to show, as
in the proof of Theorem 3.12, that F1 can be extended to a 2-factor F of G
with C ⊆ F . This contradicts Proposition 3.1(b). 2

3.2.4 Cubic bipartite graphs of edge-connectivity two

We shall construct infinite families of 2-edge-connected badly behaved cubic
bipartite graphs and 2-edge-connected non-hamiltonian 2-factor isomorphic
cubic bipartite graphs.

Let G, G1, G2 be graphs such that G1 ∩ G2 = ∅. Let ei = uivi ∈ V (Gi)
for i = 1, 2. If G = (G1 − e1) ∪ (G2 − e2) ∪ {u1u2, v1v2}, then we say that
G is a 2-join of G1 and G2 and write G = (G1, e1) ◦ (G2, e2), or more simply
G = G1 ◦ G2 when we are not concerned which edges are used in the 2-join.
The set {u1u2, v1v2} is a 2–edge cut of G and we shall also say that G1 and
G2 are 2–cut reductions of G.

Lemma 3.16 Let Gi be a pseudo 2-factor isomorphic cubic bipartite graph
and ei = uivi ∈ E(Gi) for i = 1, 2. Let G = (G1, e1) ◦ (G2, e2). Then G is
badly behaved and both u1u2 and v1v2 are bad edges of G.

Proof. The lemma can be proved in a similar way to Lemma 3.4. 2
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Lemma 3.16 can be used to construct an infinite family of badly behaved
cubic bipartite graphs of edge-connectivity two, by choosing any G1, G2 ∈
SP(K3,3, H0, P0). The badly behaved graphs G constructed in this way will all
have the property that their bad edges belong to 2-edge-cuts. We can modify
the construction to obtain badly behaved graphs without this property. Let
G1, G2 be graphs and ei = xiyi ∈ E(Gi) for i = 1, 2. Define (G1, e1) � (G2, e2)
to be the graph consisting of the disjoint union of G1−e1 and G2−e2 and two
new adjacent vertices u, v together with the new edges uv, x1u, y1v, x2u, y2v.
It is straightforward to show that if G1, G2 are pseudo 2-factor isomorphic
cubic bipartite graphs then (G1, e1) � (G2, e2) is badly behaved with uv as its
bad edge.

We next state a similar result to Proposition 3.12 for 2-edge-cuts, which we
will use in the following subsection to show that there are no planar pseudo
2-factor isomorphic cubic bipartite graphs.

Lemma 3.17 Let Gi be a cubic bipartite graph and ei = uivi ∈ E(Gi) for
i = 1, 2. Let G = (G1, e1) ◦ (G2, e2) and suppose that G is pseudo 2-factor
isomorphic. Then for some {i, j} = {1, 2}, Gi is pseudo 2-factor isomorphic
and Gj is badly behaved with ujvj as a bad edge.

Proof. The lemma can be proved in a similar way to Lemma 3.12. 2

We close this subsection by constructing an infinite family of non-hamiltonian
connected 2-factor isomorphic cubic bipartite graphs.

Proposition 3.18 Let Gi be a 2-factor hamiltonian cubic bipartite graph
with k vertices and ei = uivi ∈ E(Gi) for i = 1, 2, 3. Let G be the graph
obtained from the disjoint union of the graphs Gi − ei by adding two new
vertices w and z and new edges wui and zvi for i = 1, 2, 3. Then G is a
non-hamiltonian connected 2-factor isomorphic cubic bipartite graph of edge-
connectivity two.

Proof. The assertion that G has edge-connectivity two follows from the fact
that connected cubic bipartite graphs are 2-edge-connected. The assertion
that G is non-hamiltonian holds since G − {w, z} has three components.

Let F be a 2–factor of G. By symmetry we may assume that F = F ′∪F3,
where F3 is a 2–factor of G3 avoiding u3v3 and F ′ = (F1 − e1) ∪ (F2 −
e2) ∪ {wu1, wu2, zv1, zv2} is a 2–factor of G − G3, with Fi a 2–factor of Gi

containing uivi for i = 1, 2. Since Gi is 2-factor hamiltonian, Fi is a k-circuit
for i = 1, 2, 3. Thus F has exactly two circuits, one of which has length k
and the other length 2k + 2. Hence G is 2-factor isomorphic. 2

It was shown in [7] that all graphs in SP(K3,3, H0) are 2-factor hamilto-
nian. Thus we may apply Proposition 3.18 by taking G1 = G2 = G3 to be any
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graph in SP(K3,3, H0) to obtain an infinite family of 2-edge-connected non-
hamiltonian 2-factor isomorphic graphs. This family gives counterexamples
to the conjecture [1, Conjecture 1.2] that all connected 2-factor isomorphic
graphs are 2-factor hamiltonian. Note, however, that Conjecture 3.5 would
imply the truth of the modified conjecture that all 3-edge-connected 2-factor
isomorphic graphs are 2-factor hamiltonian.

3.2.5 Planar cubic bipartite graphs

We show that there are no planar pseudo 2-factor-isomorphic cubic bipartite
graphs.

Theorem 3.19 Let G be a pseudo 2-factor-isomorphic cubic bipartite graph.
Then G is non-planar.

Proof. Suppose the theorem is false and let G be a counterexample with as
few edges as possible. Clearly G is connected, and hence 2-edge-connected.
Since G is a planar cubic bipartite graph Euler’s formula implies that G has a
face of size four. Thus G contains a 4-circuit. If G were 3-edge-connected then
Theorem 3.15 would imply that some constituent of G is isomorphic to K3,3.
This would contradict the planarity of G since each constituent of G can be
obtained by edge-contractions (which preserve planarity). Hence G has edge-
connectivity two. Lemma 3.17 now implies that some 2-cut reduction of G is
a pseudo 2-factor-isomorphic planar cubic bipartite graph. This contradicts
the minimality of G. 2
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