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Siegel domains over Finsler symmetric cones
By Cho-Ho Chu at London

Abstract. Let� be a proper open cone in a real Banach space V . We show that the tube
domain V ˚ i� over � is biholomorphic to a bounded symmetric domain if and only if � is
a normal linearly homogeneous Finsler symmetric cone, which is equivalent to the condition
that V is a unital JB-algebra in an equivalent norm and � is the interior of ¹v2 W v 2 V º.

1. Introduction

Let V ˚ i� be a Siegel domain of the first kind over a proper open cone � in a real
Banach space V , often called a tube domain. If V is finite-dimensional, it is well known
from the seminal works of Koecher [24] and Vinberg [33] that V ˚ i� is biholomorphic to
a bounded symmetric domain if and only if � is a linearly homogeneous self-dual cone, or
equivalently, the closure � is the cone ¹a2 W a 2 Aº in a formally real Jordan algebra A, in
which case � carries the structure of a Riemannian symmetric space (see also [5, 15, 29]).
This result has an infinite-dimensional extension by the work of Braun, Kaup and Upmeier
in [8, 20], which shows that V ˚ i� of any dimension is biholomorphic to a bounded sym-
metric domain if and only if � D ¹a2 W a 2 Aº in a unital JB-algebra A. In both cases, V
is the underlying vector space of A. However, in contrast to the finite-dimensional case, the
question of characterising all tube domains V ˚ i� which are biholomorphic to a bounded
symmetric domain in terms of the geometric structure of � has been open. The question
amounts to extending Koecher and Vinberg’s condition of a linearly homogeneous self-dual
cone to infinite-dimensional Banach spaces. A fundamental obstacle is that the concept of a
self-dual cone is unavailable in infinite-dimensional Banach spaces from want of a positive
definite quadratic form. Nevertheless, using Finsler structure, we are able to circumvent this
difficulty and address the above question affirmatively.

We show that the tube domain V ˚ i� is biholomorphic to a bounded symmetric domain
if and only if � is a normal linearly homogeneous Finsler symmetric cone. The latter can
be viewed as an infinite-dimensional generalisation of the notion of a linearly homogeneous
self-dual cone. Further details are given below.

This research was partly supported by the Engineering and Physical Sciences Research Council (UK) grant
EP/R044228/1.
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Let � be an open cone in a real Banach space V . Then � is a real Banach manifold
modelled on V . Let L.V / be the Banach algebra of bounded linear operators on V , which is
a real Banach Lie algebra in the Lie brackets

ŒS; T � WD ST � TS .S; T 2 L.V //:

Let GL.V / be the open subgroup of L.V / consisting of invertible elements in L.V /. It is a real
Banach Lie group with Lie algebra L.V /. The linear maps g 2 GL.V / satisfying g.�/ D �
form a subgroup of GL.V / and will be denoted by

G.�/ D ¹g 2 GL.V / W g.�/ D �º:

We shall call G.�/ the linear automorphism group of �. An element g 2 GL.V / belongs to
G.�/ if and only if g.�/ D �, the latter denotes the closure of �. Hence G.�/ is a closed
subgroup of GL.V / and can be topologised to a real Banach Lie group with Lie algebra

(1.1) g.�/ D ¹X 2 L.V / W exp tX 2 G.�/ for all t 2 Rº

(cf. [32, p. 387]).
An open cone� in V can be homogeneous under various group actions. The terminology

linearly homogeneous throughout the paper is defined below.

Definition 1.1. An open cone � in a real Banach space is called linearly homogeneous
if the linear automorphism group G.�/ acts transitively on �, that is, given a; b 2 �, there is
a continuous linear isomorphism g 2 G.�/ such that g.a/ D b.

An open cone � in a real Hilbert space V with an inner product h�; �i is called self-dual
if � D ��, where

�� D ¹v 2 V W hv; xi > 0 for all x 2 �n¹0ºº

denotes the dual cone of �.

Remark. Linearly homogeneous self-dual cones are often called symmetric cones in
literature. In this paper, we adopt the former terminology to avoid the latter being confused
with the notion of symmetric domains.

Recently, the result of Koecher [24] and Vinberg [33] has been extended to infinite-dimen-
sional Hilbert spaces in [13] (cf. Corollary 4.4), where it has been shown that an open cone �
in a real Hilbert space V , with inner product h�; �i, is a linearly homogeneous self-dual cone
if and only if V carries the structure of a Jordan algebra with identity and � D ¹x2 W x 2 V º,
in which the Jordan product satisfies

hab; ci D hb; aci .a; b; c 2 V /:

Such a real Jordan algebra, with or without identity, is called a JH-algebra. Together with the
result of [8] mentioned before, the above assertion implies that the tube domain V ˚ i� over
an open cone � in a Hilbert space V is biholomorphic to a bounded symmetric domain if and
only if� is linearly homogeneous and self-dual. In this case,� is also a Riemannian symmetric
space [12].

In finite-dimensional Euclidean spaces, it has been shown by Shima [30] and Tsuji [31]
that if an open cone � is linearly homogeneous, and if � is a symmetric space in some
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Riemannian metric, then it is self-dual and hence V ˚i� is indeed biholomorphic to a bounded
symmetric domain. We extend this result to Hilbert spaces in Corollary 4.4, as a direct conse-
quence of our main result for Banach spaces.

In the absence of Riemannian structures and self-duality in Banach spaces, we establish
an equivalent geometric condition on � for V ˚ i� to be biholomorphic to a bounded sym-
metric domain for Banach spaces V , namely, that� be a normal linearly homogeneous Finsler
symmetric cone.

Definition 1.2. By a Finsler symmetric cone, we mean an open cone� in a real Banach
space, which is a symmetric Banach manifold in a compatible G.�/-invariant tangent norm
(defined in Section 2).

Normal cones are defined in Section 3. In finite dimensions, proper open cones are nor-
mal. Self-dual cones in Hilbert spaces are also normal. We prove the following main result in
Theorem 4.2, which resolves the aforementioned question.

Main Theorem. Let � be a proper open cone in a real Banach space V: The following
conditions are equivalent:

(i) The Siegel domain V ˚ i� is biholomorphic to a bounded symmetric domain.

(ii) � is a normal linearly homogeneous Finsler symmetric cone.

Condition (ii) in this theorem also provides a simple order-geometric characterisation of
unital JB-algebras as it is equivalent to V being a unital JB-algebra in an equivalent norm and�
the interior of ¹a2 W a 2 V º. Hence Finsler symmetric cones abound. The well-known charac-
terisation of unital JB-algebras by geometric properties of the state space has been established
by Alfsen and Schultz in [2], which is the culmination of a noncommutative spectral theory
developed in a series of papers [1, 3, 4].

To prove the Main Theorem, we first give, in the next two sections, the definition of
symmetric Banach manifolds and JB-algebras, together with some relevant results on cones
and hermitian operators, which will be used, in tandem with Jordan and Lie theory, to establish
the theorem in the last section.

2. Symmetric Banach manifolds

Let M be a Banach manifold (with an analytic structure), modelled on a real or complex
Banach space .V; k � kV /, with tangent bundle TM D ¹.p; v/ W p 2M; v 2 TpM º. A mapping

� W TM ! Œ0;1/

is called a tangent norm if �.p; � / is a norm on the tangent space TpM � V for each p 2M .
We call � a compatible tangent norm if it satisfies the following two conditions:

(i) � is continuous.

(ii) For each p 2M , there exist a local chart ' W U! V at p, and constants 0 < r < R such
that

rkd'a.v/kV � �.a; v/ � Rkd'a.v/kV .a 2 U �M; v 2 TaM/:
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The integrated distance d� of the tangent norm � on M is given by

d�.x; y/ D inf


²Z 1

0

�..t/;  0.t// dt W .0/ D x; .1/ D y

³
;

where  W Œ0; 1�!M is a piecewise smooth curve in M .

Remark. In finite dimensions, a compatible tangent norm satisfying certain smoothness
and convexity conditions is known as a Finsler metric [11]. Nevertheless, a Banach manifold
with a compatible tangent norm is also called a Finsler manifold in literature (e.g. [27]) and
this nomenclature has been adopted in Definition 1.2.

Given a Banach manifold M with a compatible tangent norm �, a bianalytic map

f WM !M

is called a �-isometry if it satisfies

�.f .p/; dfp. � // D �.p; � / for all .p; � / 2 TM

in which case, we have d�.f .x/; f .y// D d�.x; y/ for all x; y 2M .

Definition 2.1. Let � be an open cone in a real Banach space V , equipped with a tan-
gent norm �. We say that � is G.�/-invariant if each g 2 G.�/ is a �-isometry.

Example 2.2. A Riemannian manifold .M; g/modelled on a real Hilbert space V , with
Riemannian metric g, admits a compatible tangent norm � W TM ! Œ0;1/ defined by

�.p; v/ WD gp.v; v/
1
2 .p 2M; v 2 TpM � V /:

The �-isometries of M are exactly the isometries of M with respect to the Riemannian met-
ric g.

Example 2.3. Let D be a bounded domain in a complex Banach space V . Then the
Carathéodory differential metric, defined below, is a compatible tangent norm on D.

C.p; v/ D sup¹jf 0.p/.v/j W f 2 H.D;D/ and f .p/ D 0º ..p; v/ 2 TM/;

where H.D;D/ is the set of all holomorphic maps from D to D D ¹z 2 C W jzj < 1º. In this
case, all biholomorphic maps on D are C -isometries.

An open cone� in a real Banach space V is a real connected Banach manifold modelled
on V: A homogeneous polynomial p W V ! V of degree n is of the form

p.v/ D f .v; : : : ; v/ .v 2 V /

where f W V n ! V is a continuous n-linear map. In particular, each f 2 L.V / is a polynomial
of degree 1, and polynomials of degree 0 are the constant maps on V .

To each homogeneous polynomial p on V , we associate an analytic vector field p ààx
on V . If X D h ààx is a linear vector field on �, that is, h is (the restriction of) a continuous
linear map f 2 L.V /, we identify X with f . Conversely, each f 2 L.V / identifies with the
vector field f ààx on �.
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Let I 2 L.V / be the identity map. If X is a linear vector field on �, then evidently
ŒI; X� D 0. The converse is also true. We sketch a proof for completeness. Let X D h ààx be an
analytic vector field and ŒI; X� D 0, and let

h.x/ D

1X
nD�1

pn.x � e/

be the power series expansion of h in a neighbourhood of a point e 2 �, where

pn.v/ D fn.v; : : : ; v/

is a homogeneous polynomial of degree nC 1 with fn W V nC1 ! V , and p�1 D h.e/. We
have

X D

1X
nD�1

Xn; Xn D pn.x � e/
à
àx

in a local chart at e and

0 D ŒI; X� D

1X
nD�1

.ad I /Xn D
1X

nD�1

qn
à
àx
:

implies

(2.1)
1X

nD�1

qn.x/ D 0;

where q�1 D �h.e/, q0.x/ D p0.e/ and q1.x/ D f1.x � e; x/C f1.x; x � e/ � p1.x � e/.
This gives �h.e/C p0.e/ D 0 and

h.x/ D p0.x/C p1.x � e/C � � � :

Differentiating (2.1) twice, we obtain

q001.e/ D q
00
1.e/C q

00
2.e/C � � � D 0;

where q001.e/.x/ D f1.x; � /Cf1. � ; x/�f1.e; � /�f1. � ; e/ 2 L.V / for x 2 V . It follows that
p1.x/ D f1.x; x/ D 0. Differentiating repeatedly then gives p2 D p3 D � � � D 0 and h D p0
is linear.

To introduce the concept of a symmetric Banach manifold, we begin with the notion of
a symmetry of a manifold. Let M be a Banach manifold endowed with a compatible tangent
norm � and let p 2M . A �-symmetry (or symmetry, if � is understood) at p is a �-isometry

s WM !M

satisfying the following two conditions:

(i) s is involutive, that is, s2 is the identity map on M .

(ii) p is an isolated fixed-point of s, in other words, p is the only point in some neighbour-
hood of p satisfying s.p/ D p.
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Definition 2.4. By a symmetric Banach manifold (with a tangent norm �), we mean
a connected Banach manifold M , equipped with a compatible tangent norm �, such that there
is a unique �-symmetry sp WM !M at each p 2M (see also [19, 32]).

By definition, a Finsler symmetric cone � in a real Banach space V is a symmetric
Banach manifold of which the tangent norm is G.�/-invariant.

Example 2.5. Riemannian symmetric spaces are (real) symmetric Banach manifolds (in
the Riemannian metric). A bounded symmetric domain is a bounded domain D in a complex
Banach space such that for each p 2 D, there is an involutive biholomorphic map sp W D ! D

(necessarily unique) of which p is an isolated fixed-point. Equipped with the Carathéodory
metric, a bounded symmetric domain is a complex symmetric Banach manifold and sp is
the symmetry at p. Finite-dimensional Hermitian symmetric spaces of non-compact type are
exactly the bounded symmetric domains in Cd via the Harish-Chandra realisation and have
been classified by É. Cartan [10].

Example 2.6. A concept of a symmetric manifold has been introduced by Loos in [26]
(see also [6]), where a connected (real) smooth manifoldM is called a symmetric space if there
is a smooth map

� W .x; y/ 2M �M 7! x � y 2M

satisfying the following axioms for all x; y; z 2M :

(i) x � x D x,

(ii) x � .x � y/ D y,

(iii) x � .y � z/ D .x � y/ � .x � z/,

(iv) there is a neighbourhood U of x such that x � y D y 2 U implies x D y.

We call .M;�/ a Loos symmetric space. The left multiplication S.x/ W y 2M 7! x � y 2M

is called a symmetry around x in [26]. A diffeomorphism f WM !M is called a �-automor-
phism if f .x � y/ D f .x/ � f .y/.

Lemma 2.7. Let f; g WM !M be two �-automorphisms on a Loss symmetric space
.M;�/ such that f .x/ D g.x/ and f 0.x/ D g0.x/ at some point x 2M . Then we have f D g.

Proof. This follows from [27, Lemma 3.5, Theorem 3.6] since M is a connected mani-
fold with spray.

Given a (real) symmetric Banach manifold M , one can define � WM �M !M by

�.x; y/ D sx.y/ .sx is the symmetry at x/

which makes .M;�/ into a Loos symmetric space and sx D S.x/.
A Loos symmetric space .M;�/ is equipped with a canonical affine connection (see

[26, p. 83] and [6, Theorem 26.3]; see also Appendix), which is geodesically complete (see
[27, Theorem 3.6]). The derivative S.p/0.p/ W TpM ! TpM of the symmetry S.p/ equals�id,
where id is the identity map (see [27, Lemma 3.2]). Given a geodesic  W R!M through p
with .0/ D p, the symmetry S.p/ reverses  in that S.p/..t// D .�t /.
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3. Jordan algebras and order structures

For later applications, we review some basics of Jordan algebras, first introduced in [18],
and refer to [12, 32] for more details. We also prove some relevant order-theoretical results in
this section. In what follows, a Jordan algebra A is a real vector space, which can be infinite-
dimensional, equipped with a bilinear product .a; b/ 2 A �A 7! ab 2 A that is commutative,
but not necessarily associative, and satisfies the Jordan identity

a.ba2/ D .ab/a2 .a; b 2 A/:

A vector space A equipped with a bilinear product will be called an algebra. For each
element a in an algebra A, we define inductively

a1 D a; anC1 D aan .n D 1; 2; : : : /

and call A power associative if

aman D amCn .m; n D 1; 2; : : : /:

We call A unital if it contains an identity. Evidently, if A is unital and power associative, then
the subalgebra J.a; e/ in A generated by a and the identity e is associative.

A linear map ı W V ! V on an algebra V is called a derivation if it satisfies

ı.ab/ D ı.a/b C aı.b/ .a; b 2 V /;

which can be rephrased as

(3.1) Œı; La� D Lı.a/ .a 2 V /

whereLa W V ! V is the left multiplicationLa.x/ D ax for x 2 V , and Œı; La� D ıLa � Laı
is the usual commutator. Given a derivation ı on V and a 2 V , a simple induction shows that

(3.2) ı.a/ D 0 H) ı.an/ D 0 .n D 2; 3; : : : /:

Further, if V is commutative, then ı.a2/ D 0 implies

(3.3) 2aı.a/ D ı.a2/ D 0:

We will make use of the following result, which follows from [9, Lemma 2.4.4].

Lemma 3.1. Let V be a commutative algebra on which the commutator ŒLx; Ly � is
a derivation for all x; y 2 V . Then for all a 2 V , we have

(i) ŒLa; La3 � D 3LaŒLa; La2 �,

(ii) ŒŒLa; La2 �; ŒŒLa; La2 �; La2 �� D 0:

Proof. (i) This is proved in [9, Lemma 2.4.5]. (ii) Using (i), a simple argument in
[9, Lemma 2.4.4] gives ŒLa; La2 �2.a2/ D 0. Applying (3.1) twice yields

ŒŒLa; La2 �; ŒŒLa; La2 �; La2 �� D ŒŒLa; La2 �; LŒLa;La2 �.a2/� D LŒLa;La2 �ŒLa;La2 �.a2/ D 0:

The lemma is proved.
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Jordan algebras are power associative. An element a in a Jordan algebra A with identity
e is called invertible if there exists an element a�1 2 A (which is necessarily unique) such that
aa�1 D e and .a2/a�1 D a. A Jordan algebra A is called formally real if a21 C � � � C a

2
n D 0

implies a1 D � � � D an D 0 for any a1; : : : ; an 2 A (see [18]). A finite-dimensional formally
real Jordan algebra A is necessarily unital (cf. [12, Proposition 1.1.13]).

On a Jordan algebra A, one can define a Jordan triple product by

¹a; b; cº D .ab/c C a.bc/ � b.ac/ .a; b; c 2 A/

which plays an important role in the structures of A.
A real Jordan algebra A is called a JB-algebra if it is also a Banach space and the norm

satisfies
kabk � kakkbk; ka2k D kak2; ka2k � ka2 C b2k

for all a; b 2 A. A JB-algebra A admits a natural order structure determined by the set

AC D ¹x
2
W x 2 Aº

which forms a closed cone [16, Lemmas 3.3.5 and 3.3.7] and satisfies AC \ �AC D ¹0º. In
finite dimensions, JB-algebras are exactly the formally real Jordan algebras [12, Lemma 2.3.7].

Let V be a real Banach space. By a cone � in V , we mean a nonempty subset of V
satisfying (i) �C� � � and (ii) ˛� � � for all ˛ > 0. We note that a cone is necessarily
convex. Trivially, V itself is a cone. In the sequel, we shall exclude this case. If � is an open
cone properly contained in V , then we must have 0 … � although the closure � contains 0.

Let � be an open cone properly contained in a real Banach space V with norm k � k, and
let � be the partial order defined by the closure �, which is a cone, so that

x � y ” y � x 2 �:

We also write y � x for x � y. Let V � be the dual Banach space of V , consisting of con-
tinuous linear functionals on V . As usual, a linear functional f W V ! R is called positive if
f .�/ � Œ0;1/. By the Hahn–Banach separation theorem, we have

� D ¹v 2 V W f .v/ � 0 for each f 2 V � satisfying f .�/ � Œ0;1/º:

We note that each element e 2 � is an order unit, that is, for each v 2 V , we have

�˛v � v � ˛e

for some ˛ > 0. Indeed, since� is open, e �� is a neighbourhood of 0 2 V and therefore one
can find � > 0 such that˙�v 2 e ��, which gives �v D e � a1 and ��v D e � a2 for some
a1; a2 2 �. In other words,

�
1

�
e � v �

1

�
e:

The preceding argument also implies

(3.4) V D � ��:

An order unit e 2 � induces a semi-norm k � ke on V , defined by

kxke D inf¹� > 0 W ��e � x � �eº .x 2 V /
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which satisfies
�kxkee � x � kxkee

and

(3.5) ¹x 2 V W kxke � 1º D ¹x 2 V W �e � x � eº:

Since ¹x 2 V W kxke D 0º D � \ ��, the semi-norm k � ke is a norm if and only if

� \ �� D ¹0º

in which case � is called a proper cone and k � ke is called the order-unit norm induced by e.
All order-unit norms induced by elements in � are mutually equivalent.

Henceforth, let� be a proper open cone in V . It follows from (3.5) that every linear map
 W V ! V which is positive, meaning .�/ � �, is continuous with respect to the order-unit
norm k � ke and moreover, k ke D k .e/ke, where the former denotes the norm of  with
respect to k � ke. In particular, if  W V ! R is a positive linear functional, then k ke D  .e/.

Let .V; k � ke/ denote the vector space V equipped with the order-unit norm k � ke, and
.V; k � ke/

� its dual space. A positive linear map  W .V; k � ke/! .V; k � ke/ is an isometry
if and only if  .e/ D e (see [13, Proposition 2.3]). By [13, Lemma 2.5], there is a positive
constant c > 0 such that

(3.6) k � ke � ck � k:

It follows that every k � ke-continuous linear functional on V is also k � k-continuous. On the
other hand, given f 2 V � satisfying f .e/ D 1 D kf ke, then f is positive and hence continu-
ous with respect to the norm k � ke.

Denote the state space (with respect to the order unit e) by

Se D ¹f 2 .V; k � ke/
�
W f .e/ D 1 D kf keº(3.7)

D ¹f 2 V � W f .e/ D 1; f is positiveº;

which is a weak* compact convex set in the dual V � and we have

kxke D sup¹jf .v/j W f 2 Seº .x 2 V /

(cf. [16, Lemma 1.2.5]).

Lemma 3.2. Let � be a proper open cone in a real Banach space V and let e 2 �,
which induces an order-unit norm k � ke on V . Then we have

� D
\
f 2Se

f �1.0;1/:

Proof. Given that V is partially ordered by the closure �, we have

(3.8) � D
\
f 2Se

f �1Œ0;1/

since f
f .e/
2 Se for each nonzero positive linear functional f 2 V �.
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Let a 2 �. Then for each f 2 Se, we have f .a/ > 0 since a is an order unit, which
implies e � �a for some constant � > 0 and hence 1 � �f .a/. This proves

� �
\
f 2Se

f �1.0;1/:

Conversely, let a 2 V and f .a/ > 0 for all f 2 Se. Then a 2 � and by weak* compact-
ness of Se, one can find some ı > 0 such that f .a/ � ı for all f 2 Se. Let

N D

²
x 2 V W kx � ak <

ı

2c

³
�

²
x 2 V W kx � ake <

ı

2

³
;

where c > 0 is given in (3.6). Then N is an open neighbourhood of a and, N � � since

x 2 N H) �
ı

2
e � x � a H) a �

ı

2
e � x H)

ı

2
� f .x/

for all f 2 Se. Hence a belongs to the interior�0 of� and, as� is open and convex, we have
� D �0 and a 2 �.

We see from (3.6) that if dimV <1, then the order-unit norm k � ke is equivalent to the
norm of V by the open mapping theorem. In fact, the equivalence of the two norms is related to
the basic concept of a normal cone in the theory of partially ordered topological vector spaces.

Lemma 3.3. Let � be a proper open cone in a real Banach space V with norm k � k.
Then the order-unit norm k � ke induced by e 2 � is equivalent to k � k if and only if � is a nor-
mal cone in V , that is, there is a constant  > 0 such that 0 � x � y implies kxk � kyk for
all x; y 2 V . In particular, .V; k � ke/ is a Banach space if � is a normal cone.

Proof. By the definition of the order-unit norm k � ke, we have 0 � x � y in V implies
kxke � kyke. Hence � is normal in .V; k � ke/. If k � k is equivalent to k � ke, then evidently �
is also normal in .V; k � k/.

Conversely, let� be normal in .V; k � k/. We have already noted in (3.6) that k � ke � ck � k
for some constant c > 0. By (3.5) and normality of �, there is a constant  > 0 such that
kxke � 1 implies

�e � x � e H) 0 � x C e � 2e H) kx C ek � 2kek H) kxk < 2. C 1/kek;

which yields k � k � 2. C 1/kekk � ke and the equivalence of k � k and k � ke.

We note that a self-dual cone � in a Hilbert space H is a proper cone, and also normal
since it has been shown in [13, Lemma 2.6] that the order-unit norms induced by elements in�
are all equivalent to the norm of H .

Let L.W / be the Banach algebra of bounded linear operators on a complex Banach
space W and I 2 L.W / the identity operator. We recall that an element T 2 L.W / is called
hermitian if its numerical range V.T / is contained in R, where

V.T / D ¹ .T / W  2 L.W /� satisfies k k D 1 D  .I /º;

which is equivalent to

kexp i tT k D
I C i tT C .i tT /2

2Š
C � � �

 D 1 .t 2 R/
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(cf. [7, Chapter 2]). If T0 2 L.W / is hermitian, then the left multiplication

LT0
W S 2 L.W / 7! T0S 2 L.W /

is a hermitian operator in L(L(W)) because the linear map T 2 L.W / 7! LT 2 L.L.W // is
an isometry.

Lemma 3.4. Let � W L.W /! L.W / be a hermitian operator. Then for all T 2 L.W /,
we have k�.T /k2 � 4kT kk�2.T /k.

Proof. This is proved in [7, p. 95].

Given a real Banach space V , one can equip its complexification Vc D V ˝C D V ˚ iV
with a norm k � kc so that .Vc ; k � kc/ is a complex Banach space and

(i) the isometric embedding v 2 V 7! .v; 0/ 2 V ˚ iV identifies V as a real closed sub-
space of Vc ,

(ii) the map T 2 L.V / 7! Tc 2 L.Vc/ is isometric, where Tc is the complexification of T
defined by Tc.x C iy/ D T .x/C iT .y/ for x; y 2 V .

Moreover, if V is an algebra satisfying kxyk � kxkkyk for all x; y 2 V , the norm k � kc can
be chosen so that kabkc � kakckbkc for all a; b 2 Vc . In this case, the linear map

(3.9) a 2 Vc 7! La 2 L.Vc/

is an isometry, where La is the left multiplication. In the sequel, we will make use of this
construction.

In the preceding construction, if the norm of V is an order-unit norm k � ke, one can also
define a notion of numerical range v.a/ of an element a 2 Vc by

v.a/ D ¹f .a/ W f 2 V �c satisfies kf k D 1 D f .e/º:

If V is an algebra and the order unit e is an algebra identity, then an application of the isometry
in (3.9) implies V.La/ � v.a/ and therefore La is hermitian if v.a/ � R.

4. Tube domains over Finsler symmetric cones

We prove the main theorem in this section. Let� be a proper open cone in a real Banach
space .V; k � k/. Then it is a real connected Banach manifold modelled on V . Let .Vc ; k � kc/
be a complexification of V . The domain

D.�/ WD V ˚ i� D ¹v C i! W v 2 V; ! 2 �º � Vc D V ˚ iV

in Vc is called a tube domain over �.
Let V˚i� be biholomorphic to a bounded domain (this is always the case if dimV <1,

see [23, Chapter II, Section 5]). On D.�/ D V ˚ i�, the Carathéodory distance � is defined,
in terms of the Poincaré distance �D on D, by

�.z; w/ WD sup¹�D.f .z/; f .w// W f 2 H.D.�/;D/º .z; w 2 D.�//

which need not coincide with the integrated distance of the Carathéodory differential metric C

on V ˚ i�, defined in Example 2.3.
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If the proper open cone� in V is normal, then the order-unit norms induced by elements
in � are all equivalent to k � k by Lemma 3.3 and one can define a compatible tangent norm �

on � by

(4.1) �.p; v/ D kvkp ..p; v/ 2 � � V /

where k � kp denotes the order-unit norm induced by the order unit p 2 �. To see that � is
continuous, let .pn/ converge to p in � and .vn/ converge to v in V . Given 1 > " > 0,
kpn � pkp ! 0 implies �"p � pn � p � "p and .1 � "/p � pn � .1C "/p from some n
onwards, which gives

�.1C "/kvnkpn
p � �kvnkpn

pn � vn � kvnkpn
pn � .1C "/kvnkpn

p

and hence kvnkp � .1C "/kvnkpn
. Likewise p � pn

1�"
implies kvnkpn

�
kvnkp
1�"

and therefore

1 � " �
kvnkp

kvnkpn

� 1C ":

Since kvnkp ! kvkp as n!1, we conclude kvnkpn
! kvkp, proving continuity of � . The

above argument also implies that for each a 2 U WD ¹v 2 V W kv � pkp < " < 1º, we have

kvkp

1C "
� kvka �

kvkp

1 � "
.v 2 V /:

Hence � is a compatible tangent norm.
The tangent norm � coincides with the tangent norm b W T�! Œ0;1/ in [32, 12.31,

22.37], which is defined as follows. Fix e 2 �. Then each g 2 G.�/ satisfying g.e/ D e is an
isometry with respect to the order unit norm k � ke and hence one can define

(4.2) b.p; v/ D kh.v/ke ..p; v/ 2 T�/

for any h 2 G.�/ satisfying h.p/ D e. In fact, � is G.�/-invariant, which implies � D b. For
if h 2 G.�/, then we have

�.h.p/; h0.p/.v// D �.h.p/; h.v// D kh.v/kh.p/ D kvkp D �.p; v/

for v 2 Tp� D V , where the third identity follows from the equivalent conditions

��h.p/ � h.v/ � �h.p/ ” �p � v � �p .� > 0/:

By [28, Lemma 1.3, Theorem 1.1], the integrated distance d� of � on � coincides with
Thompson’s metric

d� .x; y/ D max
²

logM
�
x

y

�
; logM

�
y

x

�³
.x; y 2 �/;

where

M

�
a

b

�
WD inf¹ˇ > 0 W ˇa � bº .a; b 2 �/:

It has been shown in [33, (5.3), Theorem II] that the restriction of the Carathéodory distance �
to i� can be expressed as

�.ix; iy/ D sup
²ˇ̌̌̌

log
f .x/

f .y

ˇ̌̌̌
W f 2 V �; f .�/ � .0;1/

³
.x; y 2 �/:

From this one can deduce that d� .x; y/ D �.ix; iy/, as shown in [14, Lemma 3.6.17].
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Example 4.1. Let A be a JB-algebra with identity e, partially ordered by the closed
cone AC D ¹a

2 W a 2 Aº. Let � be the interior of AC. Then e 2 � is an order unit and the
norm of A coincides with the order-unit norm k � ke. Hence � is a normal cone. Equip �
with the tangent norm � defined in (4.1). Each element a 2 � is invertible and one can define
a smooth map � W � ��! � in terms of the Jordan triple product by

�.x; y/ D ¹x; y�1; xº .x; y 2 �/:

It can be shown that .�;�/ is a Loos symmetric space (e.g. [25]) and moreover, each � -isometry
is a �-homomorphism. By Lemma 2.7, a � -symmetry sp W �! � at p 2 � must be unique
since s0p.p/ D �id W Tp�! Tp�.

Finally, we are ready to prove the main result.

Theorem 4.2. Let � be a proper open cone in a real Banach space V , with closure �.
The following conditions are equivalent:

(i) The Siegel domain V ˚ i� is biholomorphic to a bounded symmetric domain.

(ii) � is a normal linearly homogeneous Finsler symmetric cone.

(iii) V is a unital JB-algebra in an equivalent norm and � D ¹a2 W a 2 V º:

Proof. (i), (iii) This has been proved in [8, 20].
(iii)) (ii) This is essentially proved in [8,20], more details can be found in [32, 22.37]. It

suffices to highlight the main arguments. First,� is a normal cone as noted in Example 4.1. Let
e 2 V be the algebra identity. Then e 2 � and each element in� is invertible. The linear auto-
morphism group G.�/ acts transitively on � and the tangent norm b W T�! Œ0;1/ defined
in (4.2) isG.�/-invariant. Equipped with this tangent norm, the inverse map x 2� 7! x�1 2�

is a b-symmetry at e, which is unique, as noted in Example 4.1, and hence � is a symmetric
Banach manifold by linear homogeneity.

(ii)) (iii) Let� be a normal linearly homogeneous Finsler symmetric cone in a compat-
ible G.�/-invariant tangent norm �. For each p 2 �, let sp W �! � be the symmetry at p.
By Example 2.6, .�;�/ is a Loos symmetric space, with the smooth map

� W .x; y/ 2 � �� 7! x � y D sx.y/ 2 �:

Denote by Diff.�/ the diffeomorphism group of � and let

Aut� D ¹f 2 Diff.�/ W f ı sp D sf .p/ ı f for all p 2 �º

be the subgroup of Diff.�/, consisting of �-automorphisms of �.
By [21, Theorem 2.4, Theorem 5.12], Aut� carries the structure of a real Banach Lie

group, with Lie algebra

(4.3) Kill� D ¹X 2 V.�/ W exp tX 2 Aut� for all t 2 Rº;

which is a Banach Lie algebra in some norm j � j and a subalgebra of the Lie algebra V.�/ of
smooth vector fields on �. More details are given in the Appendix.

We note that the linear automorphism group G.�/ is contained in Aut�. Indeed, given
p 2 � and g 2 G.�/, the composite map

g�1 ı sg.p/ ı g W �! �
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is a �-isometry by G.�/-invariance of �, with isolated fixed-point p. Hence by uniqueness of
the symmetry sp, we have g�1 ı sg.p/ ı g D sp and g 2 Aut�. It follows that g.�/ � Kill�
by (1.1) and (4.3).

Fix a point e 2 �, which induces an order-unit norm k � ke on V , equivalent to the norm
k � k of V , by Lemma 3.3.

The evaluation map
X 2 Kill� 7! X.e/ 2 V

is surjective by [6, Proposition 5.9] (cf. [26, Theorem II.2.2]). In fact, the differential of the
orbital map � W g 2 G.�/ 7! g.e/ 2 � at the identity of G.�/ is the evaluation map

(4.4) X 2 g.�/ 7! X.e/ 2 Te� D V

which is also surjective by linear homogeneity of � (see [13]; cf. [35, p. 110]).
Let se W �! � be the symmetry at e. Then se 2 Aut�. Since s2e is the identity map, the

adjoint representation
� D Ad.se/ W Kill�! Kill�

is an involution and the Lie algebra Kill� has an eigenspace decomposition

Kill� D k ˚ p

satisfying

(4.5) Œk; k� � k; Œk;p� � p; Œp;p� � k;

where k is the 1-eigenspace and p the .�1/-eigenspace, both are j � j-closed. Moreover, we have
(cf. [12, Lemma 2.4.5])

k D ¹X 2 Kill� W X.e/ D 0º D ¹X 2 Kill� W exp tX.e/ D e for all t 2 Rº:

Hence the linear map

(4.6) X 2 p 7! X.e/ 2 V

is bijective as k \ p D ¹0º.
Let I 2 L.V / be the identity vector field, which belongs to the Lie algebra Kill� since

exp tI D "tI 2 G.�/ for all t 2 R, where " D log�1.1/ denotes Euler’s number, to avoid con-
fusion with the order unit e 2 �. Hence ŒI; X� 2 Kill� for allX 2 Kill�. We show �I D �I .

We have

.�I /. � / D
d

dt

ˇ̌̌̌
tD0

exp t�I. � / D
d

dt

ˇ̌̌̌
tD0

se.exp tI /se. � / D
d

dt

ˇ̌̌̌
tD0

se."
tse/. � /:

Since the symmetry se reverses the geodesic .t/ D exp tI.e/ D "te, we have

se."
te/ D se..t// D .�t / D "

�te:

By uniqueness of the symmetry, we have "tse."t � / D se. � /, which gives

.�I /. � / D
d

dt

ˇ̌̌̌
tD0

"�tI. � / D �I. � /:
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We show next that each X D f ààx 2 p is a linear vector field. For this, we first note that
X D Z � �Z for some Z 2 g.�/ � Kill�. Indeed, (4.4) implies the existence of Y 2 g.�/

such that Y.e/ D X.e/, which gives

X.e/ D Y.e/ D
1

2
.Y C �Y /.e/C

1

2
.Y � �Y /.e/ D

1

2
.Y � �Y /.e/

since 1
2
.Y C �Y / 2 k. It follows that X D 1

2
.Y � �Y / 2 p, where Z D 1

2
Y 2 g.�/. Since Z

is a linear vector field by (1.1), linearity of X D Z � �Z follows from that of �Z. By the
remarks in Section 2, the latter is linear because

ŒI; �Z� D �Œ�I;Z� D ��ŒI;Z� D 0:

The linear isomorphism X 2 p 7! X.e/ 2 V in (4.6) is a continuous bijection and hence
by the open mapping theorem, its inverse is also continuous and there is a constant � > 0 such
that

�kX.e/k � jX j

for all X 2 p. Let L W V ! p be the inverse of the map in (4.6) so that

L.x/.e/ D x .x 2 V /

and jL.a/j � �kak for all a 2 V .
On V , we can now define a product

(4.7) xy WD L.x/.y/ .x; y 2 V /;

where L.x/ is a linear vector field, identified as an element of L.V /.
We show that V is a Jordan algebra in this product, with identity e. First, we have

ae D L.a/.e/ D a .a 2 V /:

Given a; b 2 V , we have
ab � ba D ŒL.a/; L.b/�.e/ D 0;

where L.a/; L.b/ 2 p implies ŒL.a/; L.b/� 2 k, by (4.5).
Before deriving the Jordan identity, we need to establish some facts. By continuity of the

evaluation map in (4.6), there is a constant � > 0 such that kXek � �jX j for all X 2 p. This
implies kak D kL.a/ek � �jL.a/j and

kabk D kL.a/L.b/ek � �kakkL.b/ek � ��2kakkbk .a; b 2 V /

as well as

(4.8) kabke � ˛kakekbke .a; b 2 V /

for some ˛ > 0, since k � k and k � ke are equivalent.
We begin by showing that V is power associative. One can verify directly the identity

ŒŒL.x/; L.y/�; L.z/�.e/ D L.ŒL.x/; L.y/�z/.e/ .x; y; z 2 V /

where ŒL.x/; L.y/� 2 k implies ŒL.x/; L.y/�.e/ D 0. It follows that

(4.9) ŒŒL.x/; L.y/�; L.z/� D L.ŒL.x/; L.y/�z/
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since both vector fields belong to p. By definition, L.x/ is the left multiplication by x on the
commutative algebra V . By (4.9) and (3.1), ŒL.x/; L.y/� is a derivation on V for all x; y 2 V .
Hence Lemma 3.1 implies

(4.10) ŒŒL.x/; L.x2/�; ŒŒL.x/; L.x2/�; L.x2/�� D 0 .x 2 V /:

Let a 2 V and consider the linear vector field T D ŒL.a/; L.a2/� 2 k, identified as an
element of L.V /. Since exp tT W �! � satisfies exp tT .e/ D e for all t 2 R, each exp tT is
a positive linear map on .V; k � ke/ and kexp tT k D kexp tT .e/k D kek D 1. Let Tc 2 L.Vc/
be the complexification of T 2 L.V /, as defined in Section 3. Then we have

kexp tTck D k.exp tT /ck D kexp tT k D 1 .t 2 R/:

Hence iTc is a hermitian operator in L.Vc/ and it follows from (4.10) that

ŒiTc ; ŒiTc ; L.a
2/c�� D �ŒT; ŒT; L.a

2/��c D 0:

The linear operator

(4.11) � W S 2 L.Vc/ 7! ŒiTc ; S� D iTcS � S.iTc/ 2 L.Vc/

is hermitian, since both the left multiplication S 2 L.Vc/ 7! iTcS 2 L.Vc/ and right multipli-
cation S 2 L.Vc/ 7! S.iTc/ 2 L.Vc/ are hermitian. Hence Lemma 3.4 implies

kŒiTc ; L.a
2/c�k

2
D k�.L.a2/c/k

2
� 4kL.a2/ckk�

2.L.a2/c/k

D 4kL.a2/ckkŒiTc ; ŒiTc ; L.a
2/c��k D 0;

which gives

(4.12) ŒŒL.a/; L.a2/�; L.a2/� D ŒT; L.a2/� D 0:

In particular, we have

ŒL.a/; L.a2/�.a2/ D ŒŒL.a/; L.a2/�; L.a2/�.e/ D 0

since ŒL.a/; L.a2/�.e/ D 0. Further, by Lemma 3.1, we have

L.a/T D L.a/ŒL.a/; L.a2/� D
1

3
ŒL.a/; L.a3/� 2 k

and hence

TL.a/ D L.a/T � ŒL.a/; T � D L.a/T � ŒL.a/; ŒL.a/; L.a2/�� 2 Kill�;

where TL.a/ is a linear vector field, identified as an element of L.V /.
By (3.3), we have L.a/TL.a/.e/ D aŒL.a/; L.a2/�.a/ D 0 and hence

.TL.a//2.e/ D TL.a/TL.a/.e/ D 0

as well as

.TL.a//nC2.e/ D .TL.a//n.TL.a//2.e/ D 0 .n D 1; 2; : : : /:

It follows that

exp tTL.a/.e/ D e C tTL.a/.e/C
t2.TL.a//2.e/

2Š
C � � � D e C tTL.a/.e/
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for all t 2 R, where exp tTL.a/ 2 Aut� implies e ˙ tTL.a/.e/ 2 � for all t > 0. In other
words,

�
1

t
e � TL.a/.e/ �

1

t
e .t > 0/

and therefore ŒL.a/; L.a2/�.a/ D TL.a/.e/ D 0. By (3.2), we have

ŒL.a/; L.a2/�.an/ D 0 .n D 1; 2; : : : /:

That is, anC3 D anC1a2 for n D 1; 2; : : : . It follows that

ŒL.a/; L.am/�.a/ D amC2 � ama2 D 0 .m D 2; 3; : : : /

and again, (3.2) implies

ŒL.a/; L.am/�.an/ D 0 .n;m � 1 D 1; 2; : : : /;

which gives amanC1 D a.aman/ for m; n D 1; 2; : : : . From this we deduce

aman D amCn .m; n D 1; 2; : : : /

by induction, since aman D amCn implies

amanC1 D a.aman/ D aamCn D amCnC1:

This proves power associativity of V and therefore the closed subalgebra J.a; e/ of V gener-
ated by e and any a 2 V is associative.

Since � is geodesically complete and the orbits of the one-parameter groups

t 2 R 7! exp tX .X 2 p/

are the geodesics through e 2 � (cf. [27, Example 3.9]), we must have

� D ¹expX.e/ W X 2 pº:

It follows that each a 2 � can be written as a D expX.e/ for some X 2 p, where X is
a linear vector field, identified as an element of L.V /. For each z 2 V , define

Exp z D e C z C
z2

2Š
C � � � :

Then we have

a D expX.e/ D e CX.e/C
X2.e/

2Š
C � � � D Exp x;

where x D X.e/ 2 V . By power associativity, we have a D .Exp x
2
/2. This proves the first part

of the following inclusions:

(4.13) � � ¹x2 W x 2 V º � �:

To prove the second inclusion in (4.13), let v 2 V . We show v2 2 �. By a remark before
(3.4), there is some �0 > 0 and a0 2 � such that �0v D e � a0 2 J.a0; e/, where J.a0; e/ is
a commutative real Banach algebra in the order-unit norm by (4.8) (cf. [17]).
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For each x 2 � \ J.a0; e/, we show a0x 2 �. Indeed, given a0 D Exp z D expZ.e/
for some z D Z.e/ and Z 2 p, we have x 2 J.a0; e/ � J.z; e/ and associativity of J.z; e/
implies

a0x D x C zx C
z2x

2Š
C � � � D x C zx C

z.zx/

2Š
C � � �

D x CZ.x/C
Z2.x/

2Š
C � � � D expZ.x/ 2 �:

Further, for y 2 � \ J.a0; e/, we show a0y 2 �. Note that the cone � \ J.a0; e/ is
open in J.a0; e/ and as before, we have

J.a0; e/ D � \ J.a0; e/ �� \ J.a0; e/

and e 2 � \ J.a0; e/ is an order-unit in the induced ordering of J.a0; e/ with respect to
the cone � \ J.a0; e/. Repeating the remark before (3.4) for the cone � \ J.a0; e/, one
can find � > 0 and w 2 � \ J.a0; e/ such that �y D e � w, where w D e � �y � e and
0 < f .w/ � 1 for all states f in the state space Se defined in (3.7). The latter implies

f

�
e �

�
1 �

1

n

�
w

�
D 1 �

�
1 �

1

n

�
f .w/ > 0 .n D 1; 2; : : : /

for all f 2 Se and hence e � .1 � 1
n
/w 2 � \ J.a0; e/ by Lemma 3.2. Therefore the preced-

ing argument yields a0.e � .1 � 1
n
/w/ 2 � \ J.a0; e/ and

�a0y D lim
n
a0

�
e �

�
1 �

1

n

�
w

�
2 � \ J.a0; e/:

Let
Sa0
D ¹ 2 J.a0; e/

�
W  .e/ D 1;  is positive on J.a0; e/º

be the state space of J.a0; e/. Let  2 Sa0
be a pure state, that is,  is an extreme point of Sa0

.
We show that  .a20/ D  .a0/

2. Let

b D
a0

2ka0ke
2 � \ J.a0; e/

so that kbke < 1. Then we have 0 < '.b/ < 1 for all ' 2 Sa0
and e � b 2 � \ J.a0; e/ by

Lemma 3.2. One can define two states  b and  e�b in Sa by

 b.x/ D
 .bx/

 .b/
;  e�b.x/ D

 ..e � b/x/

1 �  .b/
for x 2 J.a0; e/:

This gives the convex combination

 D  .b/ b C .1 �  .b// e�b

and therefore  D  b , which gives  .bx/ D  .b/ .x/ for all x 2 J.a0; e/ and in particular
 .a20/ D  .a0/

2.
It follows that ..�0v/2/ D  ..e � a0/2/ D  .e � 2a0 C a20/ D .1 �  .a0//

2 � 0 for
each pure state  2 Sa0

, and hence '.v2/ � 0 for all states ' 2 Sa0
, by the Krein–Milman

theorem. As each state of V restricts to a state of J.a0; e/, we have shown f .v2/ � 0 for all
states f of V and hence v2 2 � by (3.8). This proves the second inclusion in (4.13).
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The preceding arguments also reveal that kvk2e D kv
2ke since  .v2/ D  .v/2 for all

pure states of J.a0; e/ and kvke is the supremum sup¹j .x/jº, taken over all pure states  
in Sa0

. Since v 2 V was arbitrary, we have shown kx2ke D kxk2e for all x 2 V .
In (4.8), we now actually have

kxyke � kxkekyke .x; y 2 V /:

This follows from the fact that the map .x; y/ 2 V 2 7! f .xy/ 2 R is a positive semi-definite
symmetric bilinear form, for each state f 2 Se, and hence the Schwarz inequality gives

jf .xy/j2 � f .x2/f .y2/ � kx2keky
2
ke D kxk

2
ekyk

2
e

and kxyke D sup¹jf .xy/j W f 2 Seº � kxkekyke.
Let a 2 V . For all x; y 2 J.a; e/, the inequality 0 � x2 � x2 C y2 implies

kx2ke � kx
2
C y2ke:

Therefore we have shown that .J.a; e/; k � ke/ is an associative JB-algebra, which can be iden-
tified with the algebra C.S ;R/ of real continuous functions on a compact Hausdorff space S

(see [16, Theorem 3.2.2]). Equipped with the injective tensor norm k � kinj, the complexifica-
tion J.a; e/c D C.S ;R/˝C identifies with the C*-algebra C.S ;C/ of complex continuous
functions on S .

Equip the complexification Vc D V ˝C of .V; k � ke/ with the injective tensor norm
k � kinj. Then, for a 2 V , the remarks at the end of Section 3 imply that the numerical range
V.La2/ of the left multiplication operator La2 W Vc ! Vc is contained in

v.a2/ D ¹f .a2/ W f 2 V �c satisfies kf k D 1 D f .e/º;

where each f restricts to a state of the C*-algebra J.a; e/c D C.S ;C/.
Since a2 2 J.a; e/ \� � C.S ;R/, we have f .a2/ � 0 and in particular

V.La2/ � v.a2/ � R:

Hence the operator La2 is hermitian in L.Vc/ and as in (4.11), the linear operator

(4.14) S 2 L.Vc/ 7! ŒLa2 ; S� D La2S � SLa2 2 L.Vc/

is hermitian.
We are now equipped to prove the Jordan identity. Indeed, we have

ŒLa2 ; ŒLa2 ; La�� D 0:

by (4.12) and as before, applying Lemma 3.4 to the hermitian operator in (4.14) yields

kŒLa2 ; La�k
2
� 4kLakkŒLa2 ; ŒLa2 ; La��k D 0

and therefore ŒLa2 ; La� D 0, proving the Jordan identity in V .
It remains to show that .V; k � ke/ is a JB-algebra and � D ¹x2 W x 2 V º. To show the

former, it suffices to prove

�e � a � e H) 0 � a2 � e .a 2 V /

by [16, Proposition 3.1.6].
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Let �e � a � e. We have already shown a2 2 �. Since e ˙ a 2 � \ J.a; e/ and all
pure states of J.a; e/ � C.S ;R/ are multiplicative, we have

 .e � a2/ D  ..e C a/.e � a// D  .e C a/ .e � a/ � 0

for all pure states  of J.a; e/, which implies '.e � a2/ � 0 for all states ' of J.a; e/, by the
Krein-Milman theorem. Hence e � a2 2 � since each state of V restricts to a state of J.a; e/.
This proves that .V; k � ke/ is a JB-algebra. It follows that ¹x2 W x 2 V º is closed and coincides
with �, by (4.13).

Remark. The proof of Theorem 4.2 reveals that condition (iii) in the theorem is equiv-
alent to� being a normal linearly homogeneous Finsler symmetric cone in the tangent norm �

defined in (4.1). However, (iii) can also be equivalent to � being a normal linearly homoge-
neous Finsler symmetric cone in another G.�/-invariant tangent norm. For instance, the other
tangent norm can be the Riemannian metric given in Example 4.5 below.

Example 4.3. Let H be a real Hilbert space with norm k � k and inner product h�; �i.
The Hilbert space direct sumH ˚R , with inner product��; ��, is a JH-algebra with identity
e D 0˚ 1 and the Jordan product

.a˚ ˛/.b ˚ ˇ/ WD .ˇaC ˛b/˚ .ha; bi C ˛ˇ/:

We have
¹x2 W x 2 H ˚Rº D ¹a˚ ˛ W ˛ � kakº:

Its interior� is linearly homogeneous [12, Lemma 2.3.17] and a Riemannian symmetric space
in the metric

gp.u; v/ D�¹p
�1; u; p�1º; v� .p 2 �; u; v 2 H ˚R/

(see [12, Theorem 2.3.19]), where ¹p�1; u; p�1º denotes the Jordan triple product.
One can define an equivalent norm k � ks on H ˚R by

ka˚ ˛ks D kak C j˛j:

When H ˚R is equipped with this norm, it becomes a JB-algebra and is called a spin factor,
where k � ks is the order-unit norm induced by e. In this setting, � is a linearly homogeneous
Finsler symmetric cone with the tangent norm � in (4.1), which differs from g. We have

�.e; a˚ ˛/ D ka˚ ˛ke D ka˚ ˛ks D kak C j˛j

whereas ge.a˚ ˛; a˚ ˛/
1
2 D

p
kak2 C j˛j2.

The class of JB-algebras include the unital JH-algebras. Indeed, unital JH-algebras have
been classified in [14, Section 3], they are of the form

(4.15) A1 ˚ � � � ˚ An .n 2 N/

where each summandAj is either a finite-dimensional unital JH-algebra or of the formH ˚R,
and the direct sum in (4.15) is equipped with coordinatewise Jordan product and the `2-norm

ka1 ˚ � � � ˚ ank2 WD .ka1k
2
C � � � C kank

2/
1
2 :
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When the direct sum is equipped with the `1-norm

ka1 ˚ � � � ˚ ank1 WD sup¹ka1k; : : : ; kankº;

it becomes a JB-algebra. Finite-dimensional unital JH-algebras are exactly the class of finite-
dimensional formally real Jordan algebras, which have been classified in [18].

Corollary 4.4. Let � be a proper open cone in a real Hilbert space V , with closure �.
The following conditions are equivalent:

(i) � is a normal linearly homogeneous Finsler symmetric cone.

(ii) � is a linearly homogeneous self-dual cone.

(iii) V is a unital JH-algebra in an equivalent norm and � D ¹a2 W a 2 V º:

Proof. (ii)) (iii) This has been proved in [13]. In fact, condition (ii) entails a decom-
position g.�/ D k1 ˚ p1 and the evaluation map X 2 p1 7! X.e/ 2 V induces an algebra
product in V , as in (4.7). One can use the argument in the proof of Theorem 4.2 to derive
the Jordan identity in place of the one given in [13].

(iii)) (ii) This has been proved in [12, Lemma 2.3.17].
(iii)) (i) This follows from Theorem 4.2 since V is a unital JB-algebra in an equivalent

norm by the preceding remark.
(i)) (iii) By Theorem 4.2, V is a unital JB-algebra in an equivalent norm and

� D ¹a2 W a 2 V º:

Since V is a Hilbert space, it is a reflexive JB-algebra and by [14, Corollary 3.3.6], V is an
`1-sum of a finite number of finite-dimensional formally real Jordan algebras or spin factors,
or both. Hence V is a unital JH-algebra in an equivalent norm.

Remark. It follows from the preceding corollary that one can view linearly homoge-
neous Finsler symmetric cones as a generalisation of linearly homogeneous self-dual cones to
the setting of Banach spaces.

Example 4.5. A proper open cone � in a finite-dimensional Euclidean space Rn, with
inner product h�; �i and Euclidean measuredy, can be equipped with a canonicalG.�/-invariant
Riemannian metric [34]

g D
à2 log'
àxiàxj

dxi dxj ;

where ' is the characteristic function of � defined by

'.x/ D

Z
��

exp�hx; yi dy .x 2 �/:

The tangent norm � defined by g is not the same as � in (4.1). It has been shown in [31] and [30]
that a linearly homogeneous cone � in Rn is self-dual if .�; g/ is a symmetric space. We see
that (i)) (ii) in Corollary 4.4 provides an alternative proof of this result, as well as extends it
to infinite dimension.



166 Chu, Siegel domains over Finsler symmetric cones

A. Appendix

In what follows, we provide some details of the fact that the automorphism group Aut�
of a Finsler symmetric cone � in a Banach space V carries the structure of a real Banach Lie
group, with Lie algebra Kill�.

This crucial result follows from [21,22]. To begin, � is an open cone in V and a Banach
manifold with analytic structure given by the identity map. As noted before, .�;�) is a Loos
symmetric space with the smooth map

� W .x; y/ 2 � �� 7! x � y D sx.y/ 2 �:

Further, � is equipped with an affine connection

� W T�˚ T�! T T�

(denoted by B in [21]) which, by definition, is a morphism of vector bundles such that

.�T�; T �/ ı � D idT�˚T�

and
�x W Tx�˚ Tx�! T T� .x 2 �/

is bilinear, where � W T�! � is the tangent bundle of �, and �T� W T T�! T� is that
of T�. The bilinear condition implies that, in the identity chart, � has a (local) representation

�.x; v; w/ D .x; v; w;Hx.v; w// .x 2 �; v;w 2 V /;

where Hx.v; w/ D H.x/.v; w/ and H W �! L2.V; V / is a smooth map into the Banach
space L2.V; V / of continuous bilinear maps V � V ! V .

Indeed, the affine connection � on the Finsler symmetric cone � is given by

Hx.v; w/ D �
1

2
d2�.x; x/.v; 0/.0; w/;

which is geodesically complete, with the corresponding covariant derivative

r W V.�/ � V.�/! V.�/

satisfying
r��.x/ D �

0.x/�.x/ �Hx.�.x/; �.x// .x 2 �/;

where, in the notation of [21], � and � denote smooth vector fields on �. The connection � is
torsionfree and hence Hx.v; w/ D Hx.w; v/.

It has been shown in [22, Theorem 3.15] that the automorphism group Aut .�; �/, con-
sisting of �-affine diffeomorphisms of �, carries the structure of a Banach Lie group, with
Lie algebra Kill .�; �/ D ¹� 2 V.�/ W exp t� 2 Aut.�; �/ for all t 2 Rº, which consists of
complete vector fields � 2 V.�/ satisfying

d2�.x/.v/.w/C d�.x/.Hx.v; w// D dH.x/.�.x//.v; w/CHx.d�.x/.v/; w/(A.1)

CHx.v; d�.x/.w// .v; w 2 V /

(cf. [22, Remark 3.10, Proposition 3.11]).
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It follows that the automorphism group Aut�, consisting of �-automorphisms of �,
is a Banach Lie group since, by [21, Theorem 5.12], and also [27, Theorem 3.6], we have
Aut� D Aut.�; �/ for a Loos symmetric space �.

To conclude, we show that the Lie algebra

Kill� D ¹X 2 V.�/ W exp tX 2 Aut� for all t 2 Rº

of infinitesimal �-automorphisms is the Lie algebra aut� of derivations, which are vector
fields � 2 V.�/ satisfying

(A.2) �.�.x; y// D d�.x; y/.�.x/; �.y// .x; y 2 �/:

This has been proved in [26, p.84] for finite-dimensional connected Loos symmetric spaces.

Lemma. We have Kill.�; �/ D aut�.

Proof. We follow the arguments in [21, Proposition 5.17]. Let � 2 Kill.�; �/. Then we
have exp t� 2 Aut.�; �/ D Aut� for t 2 R. Hence

�.�.x; y// D
d

dt

ˇ̌̌̌
tD0

exp t�.�.x; y// D
d

dt

ˇ̌̌̌
tD0

exp t�.x � y/

D
d

dt

ˇ̌̌̌
tD0

exp t�.x/ � exp t�.y/ D
d

dt

ˇ̌̌̌
tD0

�.exp t�.x/; exp t�.y//

D d�.x; y/

�
d

dt

ˇ̌̌̌
tD0

exp t�.x/;
d

dt

ˇ̌̌̌
tD0

exp t�.y/
�

D d�.x; y/.�.x/; �.y//:

Therefore � 2 aut�.
Conversely, let � 2 aut�. We show that � satisfies (A.1). Differentiating (A.2), we get

d�.�.x; y//d�.x; y/.v; 0/ D d2�.x; y/.�.x/; �.y//.v; 0/C d�.x; y/.d�.x/v; 0/:

Differentiating the above with respect to y in the direction w 2 V gives

d2�.�.x; y//.d�.x; y/.v; 0/; d�.x; y/.0; w//(A.3)

C d�.�.x; y//d2�.x; y/.v; 0/.0; w/

D d3�.x; y/.�.x/; �.y//..v; 0/; .0; w//C d2�.x; y/.0; d�.y/.w//.v; 0/

C d2�.x; y/.d�.x/.v/; 0/.0; w/:

We note that, by [27, Proposition 3.3] (cf. [26, p.74]), the tangent bundle T� is a Loos
symmetric space .T�; T�/, where

T� W T� � T�! T�

is the tangent map of � W � ��! �, and we have

T�.v;w/ D 2v � w .v;w 2 Tp�;p 2 �/:

Finally, putting y D x in (A.3), where �.x; x/ D x, and making use of the preceding
equation, we arrive at

d2�.x/.2v;�w/C d�.x/.�2Hx.v; w//

D �2dH.x/.�.x//.v; w/ � 2Hx.v; d�.x/.w// � 2Hx.d�.x/.v/; w/;

which gives (A.1).
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