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1. Introduction

Since the seminal work of von Neumann [38], amenable groups and semigroups have
had a profound impact on many areas of mathematics. Amenability of locally compact
groups has been shown to be equivalent to many fundamental properties in harmonic
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analysis including the Liouville property which is one of the subjects of the present paper.
In operator algebras, amenability plays a pivotal role in their classification (cf. [9,14]) as
well as in the recent progress on the Novikov conjecture (see [17,30]). Indeed, amenable
groupoids satisfy the Baum—Connes conjecture [37]. Amenability also plays a significant
role in the recent development of semigroup C*-algebras relating to some aspects of
number theory [10,25,26].

A locally compact group G is amenable if there is a left invariant mean on L*°(G).
A topological semigroup G is usually called amenable if there is a left invariant mean
on the algebra LUC(G) of bounded left uniformly continuous functions on G. These
two definitions of amenability are equivalent for locally compact groups. The notion of
amenability has been extended to group actions by Zimmer [40,41]. For the more general
case of groupoids which, among other things, unify both concepts of groups and group
actions, it was introduced by Renault [34,1]. Amenable groupoids were defined in terms
of Reiter’s condition, which stipulates the existence of nets of approximately invariant
probability measures and was first formulated by Day [12] for discrete semigroups. For
locally compact groups, Reiter’s condition is equivalent to amenability and therefore
the definition of an amenable groupoid is a natural extension of the group case. How-
ever, for topological semigroups, the question of whether Reiter’s condition follows from
amenability as defined previously appears to be open [23, p.321].

The equivalence of amenability and the Liouville property for o-compact locally com-
pact groups was first conjectured by Furstenberg [16] and proved by Rosenblatt [36],
Kaimanovich and Vershik [21]. More recently, Kaimanovich introduced the Liouville
property for groupoids in [20] and conjectured its equivalence to amenability, having
proved that the former implies the latter. For semigroups, the Liouville property for
abelian semigroups has been studied in [11,24,32], but its connection to amenability has
not been the subject of investigation before.

Our main objective in this paper is to clarify the relationships of amenability, Reiter’s
condition and the Liouville property in the setting of semigroupoids, which subsumes
and provides a unified treatment to the important cases of groupoids, semigroups and
transformation semigroups. We introduce and study the Liouville property and Reit-
er’s condition for semigroupoids. We prove that a semigroupoid possesses the Liouville
property if and only if it satisfies Reiter’s condition (Theorems 4.1, 4.2, 5.3, 5.6). An
immediate consequence is the equivalence of the Liouville property and Reiter’s con-
dition for semigroup actions (Theorem 6.7) as well as the equivalence of amenability
and the Liouville property for discrete semigroups (Theorem 6.10) and also, for both
measured groupoids and topological groupoids (Theorems 6.1, 6.3), the latter proves a
conjecture of Kaimanovich in [20]. We thank Vadim Kaimanovich for informing us, after
we have written this paper, that his conjecture for measured groupoids has also been
proved by Theo Biihler and himself in an unpublished note. Our result includes the case
of topological groupoids, which requires some refinements of Reiter’s condition.

A Riemannian manifold is said to have the Liouville property if it does not admit
non-constant bounded harmonic functions. Examples include complete manifolds with
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non-negative Ricci curvature, by a well-known result of Yau [39]. To introduce the Liou-
ville property for groups, we begin with a connected Lie group G. The Laplace operator
of G generates a one-parameter convolution semigroup (7)o of probability measures
on G such that a function f € L>°(G) is C? and harmonic if and only if it satisfies the
convolution equations f = f xm for all ¢ > 0 (cf. [18] and [3, Proposition V.6]). This is
equivalent to f = f *m for some t > 0 if G is of type T [3, p.136] (e.g. G is semisimple
with finite centre [3, Théoréme II.1]). More generally, given a probability measure 7 on a
locally compact group G, a Borel function f : G — C is called w-harmonic if it satisfies
the convolution equation f = f+*m. The latter condition is an analogue of the mean value
property which characterises harmonic functions on manifolds. We say that G has the
Liouville property if there is an absolutely continuous probability measure m on G such
that all bounded 7-harmonic functions are constant. In § 2, we extend the definition
of Liouville property to semigroupoids, which are algebraic structures that resemble a
semigroup, except that multiplication is not globally defined.

We begin our discussion of semigroupoids in the next section, followed by an intro-
duction to Reiter’s condition and the Liouville property, in both the measurable and
topological contexts. To pave our way, we prove some basic results in § 3 concerning
convolution of systems of measures on semigroupoids. In § 4, we show that the Liouville
property implies Reiter’s condition for semigroupoids, both in the measurable and topo-
logical setting. This extends the result in [20] for groupoids equipped with a Haar system.
The converse of the previous result for semigroupoids is proved in § 5. In both results,
we only make the weaker assumption of a quasi-Haar system for semigroupoids so that
wider applicability can be achieved. For example, such semigroupoids include discrete
semigroups, which need not admit a Haar system. The following section (§ 6) is devoted
to the special cases of groupoids, transformation semigroups and semigroups. Our results
on semigroupoids apply directly to semigroups equipped with a quasi-invariant measure
(Theorem 6.9). For semigroups without such a measure and not necessarily locally com-
pact, we discuss briefly the case of metrizable semigroups, for which one can show that
Reiter’s condition implies the Liouville property, which in turn implies amenability. The
proof of the last implication is different from that for semigroupoids. However, a more
thorough treatment will be given in another work [7]. We conclude the paper with some
examples of semigroups with the Liouville property in § 7.

2. Semigroupoids

We initiate the discussion of semigroupoids with semigroups. By a topological semi-
group, we mean a semigroup S endowed with a topology such that the multiplication
on S is jointly continuous. If moreover, the topology is metrizable, we call S a metric
semigroup.

To discuss semigroupoids in measurable and topological settings, we need to fix some
notations for measures and functions on a topological space X. A positive finite Borel
measure y on X is called tight if for each € > 0, there is a compact set K C X such that
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w(X \ K) < e. Every positive finite Borel measure on a complete separable metric space
is tight.

Let M(X) be the space of complex-valued regular Borel measures on X. For each
nonzero 4 € M(X), the norm of p is defined by ||u|| = |p|(X) where |u| is the total
variation of p. The support of |u| is defined by

supp |u| = ﬂ{F CX:F is closed, |u|(F)=|p/[(X)}

and the support of u, denoted by supp p, is defined to be that of |u|. A measure p € M(X)
is called tight if || is tight. Every Borel measure with compact support is a tight measure.
We denote by M;(X) the subspace of M (X) consisting of tight measures on X. Let Cj,(X)
be the C*-algebra of bounded complex continuous functions on X. For a metric space X,
the support supp p of each tight measure p is nonempty and separable. Moreover, for
every Borel set B C X and € > 0, there is a compact set K C B satisfying |u|(B\K) < e.

We recall that a topological space Y is a Polish space if it is homeomorphic to a
complete separable metric space. A subset of Y is called analytic if it is of form f(Z)
for some continuous function f from a Polish space Z to Y. Every Borel set in a Polish
space is analytic.

In the sequel, by an analytic Borel space, we mean a measurable space (G, B) which is
isomorphic to an analytic set in a Polish space with the relative Borel structure. The sets
in the o-algebra B are called the Borel sets in G. The o-algebra B is often not written
explicitly for an analytic Borel space G. We refer to [2] for the basic properties of analytic
Borel spaces.

Remark 2.1. Since an uncountable Polish space with its Borel structure is isomorphic to
the unit interval [0, 1] with the usual Borel structure [22, p. 451], we see that the Banach
space L'(Y, ) of p-integrable functions on Y is separable for any Borel measure p on a
Polish space Y. The same is true for L!(G, v), where v is a Borel measure on an analytic
Borel space G.

Let S be a topological semigroup. A function f € Cy(S) is called left uniformly
continuous if the mapping a € S +— &, * f € Cp(S) is continuous, where J, * f is the
left translate of f by a, which is the convolution of the point mass §, and f defined
below. The space of bounded left uniformly continuous functions on S will be denoted
by LUC(S) which forms a sub-C*-algebra of Cj,(S). For a discrete semigroup S, we have
LUC(S) = £>(S).

Given m,0 € M(S), we define their convolution 7 * o to be the image of product
measure m X o under the map (z,y) € S x S+ xy € S, that is,

(7% 0)(E) = / xe(@y)d(r X o)z, )
SxS

for each Borel set E C S. For f € Cy(S), we have
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[ titnsa)= [ [ Hapiniaiasty).
S S S

n—times
In the sequel, we denote by 7™ the n-fold convolution 7 % - - - x 7 of 7.
Given 7 € M(S) and a Borel function f : S — C, we define the semigroup convolutions
f*mand 7« f by

(f xm)(x /fxydw and (7x f)(z /fyxdw

if the integrals exist. For a point mass d, at a € S, we have (d, * f)(x) = f(az) and

(f x0q)(z) = f(za) as well as

/(5a « f)dr = /fd(éa 7).

S S

Definition 2.2. Let S be a topological semigroup and let # € M(S) be a probability
measure. A Borel function f : S — C is called w-harmonic if f xm = f.

Definition 2.3. A topological semigroup S is called (left) amenable if there is a left in-
variant mean on LUC(S), that is, there exists a norm-one positive linear functional
¢ : LUC(S) — C on the C*-algebra LUC(S) satisfying ¢(d, * f) = ¢(f) for all a € S.

For a locally compact group S, this definition of amenability agrees with the usual one
[29, p.67]. We now turn to semigroupoids, which generalise semigroups and groupoids
at the same time, in a very natural way. A semigroupoid is a small category. It consists
of a set G(O) of objects (called units), a set G of morphisms, the surjective source and
target maps s, t : G — G, and a composition map (¢,) € G® — (n € G on
G® = {(¢,n) € G% s(¢) = t(n)}. In the special case where there is only one unit, the
concept of semigroupoids reduces to semigroups with identity, which are sometimes called
monoids. As usual, we identify the units with the corresponding identity morphisms in G
(which exist by definition). In this way, we may consider G(°) as a subset of G and by a
slight abuse of language, we call G a semigroupoid.

For each 2 € GO, we write G* := t~!(x) = {y € G: t(y) = 2}. One may view the
target map t : G = Uzeg<0> G* — GO like a ‘bundle projection’. Actually, we will see
that the Liouville property for G is defined on the ‘fibres” G*.

A semigroupoid G is called Borel if G is an analytic Borel space, G(9) is an analytic
Borel space (as a subspace of G) such that s, t and the composition map are Borel.
In this case, the sets G* and the maps ¢ : 1 € G359 — (n € GH9 are Borel. We
call G a topological semigroupoid if it is endowed with a topology compatible with the
semigroupoid structure, that is, the composition map, s and t are continuous. We denote
by C.(G) the space of complex continuous functions on G with compact support.
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By a locally compact semigroupoid, we mean a topological semigroupoid which is
locally compact Hausdorff and second countable. This implies that all our locally compact
semigroupoids are o-compact.

Example 2.4. Groupoids, which are by definition small categories in which every mor-
phism is invertible, form a special class of semigroupoids. We refer to [1,34] for more
information about groupoids.

Another class of examples is given by semigroups, or more generally, semigroup ac-
tions. Let S be a semigroup with identity e acting on a set X from the right. We denote
the action by (x,s) € X x S — x.s € X, where x.e = z. The semigroupoid attached to
the transformation semigroup X « S is given by G := X x S := X x S (as a set), with
the source and target maps s: (z,5) € X x S—zse X, t: (z,5) e X xS —z e X,
and the composition (z, s)(z.s,t) = (z, st). It is clear that the set GO = {(x,e): z € X}
of units of X xS can be canonically identified with X. By taking X = {pt}, one can
also view the semigroup S itself as the semigroupoid {pt} x S.

If X and S are analytic Borel spaces, or topological spaces, such that s, t and the
composition map are Borel or continuous respectively, then X x S becomes a Borel
or topological semigroupoid. In particular, this is the case if S is a countable discrete
semigroup acting on a Borel space or a topological space by Borel or continuous maps
respectively.

Groupoids and transformation semigroups are the two motivating examples for us.
We will frequently come back to them.

We will need to consider systems of measures on the fibres G* of a semigroupoid G.
For groupoids, these are called kernels by Connes in [8, p.11].

Definition 2.5. Let G be a Borel semigroupoid. A Borel system of measures on G is
a family A = (A\"), g of o-finite positive Borel measures A* on G* such that for
every non-negative Borel function f on G, the map z € GO — (XY, f) := fg fdx* €
[0, 0] is Borel measurable, where we extend A* naturally to a measure on G such that
(G \ G%) = 0, and in particular, the map = € G(*) s \*(E) is Borel for each Borel set
EcCg.

Definition 2.6. Let G be a topological semigroupoid. A continuous system of measures
on G is a family A = (A\"),cg© of (nonzero) o-finite positive Radon measures A* on G*
such that for every f € C.(G), the map z € G(®) — (X%, f) € C is continuous.

Given a Borel semigroupoid G with z € G(© and v € G satisfying s(y) = z, and a
Borel measure A* on G*, we write YA for the pushforward of A* under the Borel map
v :n € G® — yn € G4 which is the Borel measure on G*) induced by the map +. By
definition, we have
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g(l'

for each non-negative Borel function f on G,

For a locally compact semigroupoid G, the pushforward yA” is defined analogously.
As usual, we write y < v to mean that a measure p is absolutely continuous with respect
to v.

Definition 2.7. Let G be a Borel (resp. topological) semigroupoid. A Borel (resp. contin-
uous) system of measures A = (A”),cg0 on G is called a (left) Haar system if for all
v € G, we have yA%(") = At and the map (v,7) € G2 = (d(yA3"))/dAtD)) (n) € [0, o]
is Borel, where d(yA3("))/dAt*(") denotes the Radon-Nikodym derivative. In the preced-
ing definition, the system A = (A%),cg) will be called a (left) quasi-Haar system if the
condition YA = AtV s replaced by yAS(Y) < AtV

Definition 2.8. A Borel system of measures A = (A*),cgw on a Borel semigroupoid G
is called proper if there exists an increasing sequence of Borel subsets A, of G with
G =,, Ay such that for each n € N, the map = € G(¥) = A\?(4,,) € R is bounded.

Definition 2.9. A measure semigroupoid is a triple (G, A, 1) consisting of a Borel semi-
groupoid G, a proper quasi-Haar system A = (A¥),cg) on G and a positive Borel measure
pon GO

In the topological setting, we shall denote by (G, \) a locally compact semigroupoid
G equipped with a quasi-Haar system A = (A*),cgw on G.

Remark 2.10. If )\ is a left Haar system on a Borel (or locally compact) groupoid, then
X is a quasi-Haar system since yA5(") = Xt} An important example of a measure
semigroupoid is the measured groupoid (G, ) studied in [1,20] in which the Borel
system A is assumed to be a left Haar system. Likewise, a continuous system \ of measures
on a locally compact groupoid (G, \) considered in [1,20] is always a left Haar system.
Our notion of a quasi-Haar system is a weaker version of a Haar system in the groupoid
case. However, this weak version is already sufficient for our purpose and has wider
applicability.

Let us now consider the case of the Borel semigroupoid X x S attached to a Borel
transformation semigroup X « S.

Definition 2.11. A positive Borel measure A on a topological semigroup S is called quasi-
invariant if sA < X for all s € S, where s is the left translate of A, which is the measure
induced by the left translation t € S +— st € S.

If S is a group, this is equivalent to saying that all translates of A are mutually
equivalent. Thus our definition extends the classical one (cf. [15, p.58]). Let A be a
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quasi-invariant positive o-finite Borel measure on S. Suppose that the map (s,t) €
S xS+ (d(s\)/d\)(t) € [0,00] is Borel. Then A* := d, X A is a quasi-Haar system
on X xS as (z,8)(dz.s X \) = d, X (sA). Here is a concrete class of examples: Suppose
that G is a locally compact group, acting on an analytic Borel space X with a Borel
action (z,g) € X x G — x.g € X. Let A\g be the Haar measure on G. If S is a Borel
subsemigroup of G containing the identity such that Ag(S) # 0, then the restriction
A of A\g to S satisfies sA < A for all s € S and (d(s\)/d)) (t) = xs(s71t). Therefore
AT := §, X A gives rise to a quasi-Haar system on X x S. In particular, if X = {pt}, this
allows us to view the semigroup S = {pt} x S as a measure semigroupoid. Of course,
another class of examples is given by the case when S is discrete (and countable) and A
is the counting measure.

2.1. Reiter’s condition

Definition 2.12. Let G be a Borel (resp. topological) semigroupoid, and A a quasi-Haar
system on G. A Borel (resp. continuous) system 6 = (0),cgw of probability measures
on G* is called \-adapted if

6* < \? for every z € G, and the map

d(6°")

N (n) € [0,00] is Borel. (1)

(v,m) € G*

Note that absolute continuity in (1) and Definition 2.7 imply that 79,51(7) < A <
A7) and we may consider the Radon-Nikodym derivative in (1).
Given a measure semigroupoid (G, A, 1), we define a Borel measure px A on G by

jx ME) = / X*(E)dp(z) € [0, 00]
g

for each Borel set E in G. For f € L'(G, % \), we write

o) i= [ gaeny = [ | [ rax | duco)
g

g \g=

Definition 2.13. A measure semigroupoid (G, A, i) is said to satisfy Reiter’s condition, or
called Reiter, if there exists a sequence (6,,), of A-adapted Borel systems of probability
measures 0,, = (0 ),cg such that

n—oo

lim / 050 =02 | Fdex M) = 0 for all f € LHGux ). (@)
g
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Remark 2.14. We observe that ||9f1(7) - 792(7)” < 2 and by the Lebesgue convergence
theorem, the following condition implies (2):

lim H@ff’” — WHZ(V)H =0 for pra.c. z € G and X-a.e. v € G. (3)
n—r oo

Given a continuous system of measures § = (0”),cg© on a locally compact semi-
groupoid G and a compact subset K C G(9), we set supp 8 := Use i supp 6%.

Definition 2.15. A locally compact semigroupoid (G, \) with quasi-Haar system A is said
to satisfy Reiter’s condition if there exists a sequence (6,,), of A-adapted continuous
systems of probability measures 6,, = (65),cg such that

lim Hg;(v) — 463

n—oo

=0forall y €g. (4)

We say that (G, \) satisfies the uniform Reiter’s condition if the convergence in (4) is
uniform on compact subsets of G.

If for every compact subset K of G(°), the support suppg (6,) is compact for each 6,
in (4), we say that (G, \) satisfies the tight Reiter’s condition.

We also call (G, \) Reiter (respectively, uniform Reiter or tight Reiter) if it satis-
fies Reiter’s condition (respectively, the uniform Reiter’s condition or the tight Reiter’s
condition).

Remark 2.16. A measured groupoid (G, \, i), where X is a left Haar system, is Reiter in
our sense if and only if it is amenable (see [1, Chapter 3]). A locally compact groupoid
(G, ), where ) is a left Haar system, is uniform Reiter in our sense if and only if G is
amenable (see [1, Chapter 2]). Moreover, by [35, Theorem 2.14], we know that in the
case of locally compact groupoids, (G, A) is Reiter if and only if it is uniform Reiter. We
will see later that for such groupoids, Reiter’s condition is also equivalent to the tight
Reiter’s condition.

Let us now consider the case of the semigroupoid X x S attached to a transformation
semigroup X v\ S, where S is a countable discrete semigroup. For our quasi-Haar system,
we always choose A* = §, x A, where \ is the counting measure. Going through our
definitions, we see that in the Borel case, (X xS, A, 1) is Reiter if there exists a sequence
(0n)n, of families 0,, = (67),ex of probability measures 7 on S such that for every n € N
and s € S, the map x € X — 62(s) € R is Borel and

lim /Z 0% — s0Z°|| f(x,s)du(x) =0 forall f € LY (X x S,ux \).
X

n—00
ses

In the locally compact case, our definition says that (X x S, A) is Reiter if there exists
a sequence (0,,), of families 6,, = (6%),cx of probability measures 8% on S such that for
every n € N, the map x € X — 6% € (1(S) is continuous and
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lim |07 —s0:°| =0 forallz € X and s € S.
n—oo

If the convergence is uniform on compact subsets of X, then (X x5, \) is uniform Reiter,
and if suppg0y, 1= U, cx supp 0y, C S is finite for every compact subset K of X, then
(X xS, ) is tight Reiter.

2.2. Liouville property

Let (G, A, 1) be a measure semigroupoid and 7 = (7;),cg) a Borel system of proba-
bility measures. By natural extension as before, we often regard the measure 7, on G*
as a measure on G vanishing on G\G*. Given m, < A% for all z € Q(O), we can define, for
every x € G| the fibrewise Markov operator Py, : L>®(G®, A\*) — L>(G*, \*) by

Po()(¢) = / FCndmyo () (C€GY).

gs(©)

Extending Definition 2.2, a Borel function f : G* — Cis called P,-harmonicif P,(f) = f.
Let H:,(G) = {f € L>(G",\"): P,(f) = f} be the space of bounded P,-harmonic
functions on the fibre G*.

For a locally compact semigroupid (G, \) with a A-adapted continuous system 7 of
probability measures, the space Hy ;(G) is defined analogously.

Definition 2.17. A measure semigroupoid (G, A, 1) is said to have the Liouville property,
or called Liouville, if there exists a A-adapted Borel system of probability measures
T = (T2)zego such that Hr ,(G) = C1 for p-a.e. z € G where 1 is the constant
function on G* with value 1.

Definition 2.18. A locally compact semigroupoid (G, A) with quasi-Haar system A is said
to have the Liouville property, or called Liouville, if there exists a A-adapted continuous
system of probability measures m = (7;),cg such that Hy ,(G) = C1 for all z € ().

We say that (G, ) has the continuous Liouville property, or is continuous Liou-
ville, if the system 7 above also satisfies the condition that the map (y,n) € G% —
(d(yms())/dA* ™)) () € R is bounded and continuous.

The semigroupoid (G, ) is said to have the tight Liouville property or called tight
Liouville, if it is Liouville with the system 7 satisfying the condition that for every
compact subset K of GO, suppy () is compact.

For groupoids, these definitions coincide with the ones given in [20].
Example 2.19. In the case of the semigroupoid X x S attached to a transformation

semigroup X v S, where S is a discrete semigroup, the fibrewise Markov operator
Py 2 £2°(S) — £2°(S) is given by P.(f)(r) = > ,cq f(rs)mz.(s). In particular, this is
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just the convolution f # m on the semigroup S for X = {pt}, in which case the Liouville
property states that all bounded m-harmonic functions on S are constant.

3. Convolution of systems of measures

In this section, we derive some basic results needed later for the convolution of two
systems of measures on semigroupoids. Let G be a Borel semigroupoid and 7 = (7)) ,eg
a Borel system of probability measures on G. Given a positive Borel measure p on G*
for some = € G we first define the convolution p * 7 of p with the system 7 as the
following Borel measure on G*:

px(E) = / roo € 59 < ¢y € E}dp(0)
g:E

for each Borel set E in G*. For f € L'(G*, p* m), we have

pemd) = [sdprm= [ | [ femdnaom | do(c)
J

gz s(¢)

Now for a Borel system p = (pg),cg© of measures on G, we define (p* ), := py * 7 and
write px T = ((p * 7)) pego for the family of Borel measures (p * 1), on G*.

For a locally compact semigroupoid G and a continuous system 7 of probability mea-
sures on G, one can define analogously the convolution p * 7 for a Borel measure p on
some G*, and for a continuous system p of measures on G.

Remark 3.1. The above definition of the convolution p % 7 coincides with the one for
groupoids given by Connes [8, p.11].

In the case of the semigroupoid X x S attached to a transformation semigroup
X S, where S is a discrete semigroup, the convolution p * 7 is given by (p x m)(t) =
Zr,geS Ta.r(8)p(r).

\7}\75 tcollect below some simple facts about convolutions of measures for later use. For
a Borel semigroupoid G, we denote by B,(G*) the algebra of bounded Borel functions on
a fibre G®, equipped with the supremum norm || - ||o.. We recall that the total variation
norm of a finite Borel measure p on G* is given by |[pl| = sup{| [5. fdp| : f € By(G"),
1 flloo < 1}

Lemma 3.2. Let G be a Borel or locally compact semigroupoid and m = (73) zeg @ Borel
system of probability measures on G.

a) If p is a finite Borel measure on G* for some x € GO, then ||p || < ||p|-
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b) If p is a probability measure on G* (x € G©)) then |m, —p* 7| < Jgo ||z —

(o) ||dp(€).

Proof.

a) Given f € By(G*), the map fr : ( € G — fgs(o f(¢n)dmscy(n) is a bounded Borel

function, with || fz| . < [|fll.- Hence [(pxm, )] = o, f=)] < ol - 1 fxlloo < N0l -
| f|l. and the result follows.

b) Let € > 0. Pick f € By(G*) with ||f||,, =1 and [(my, — px 7, f)| > [|mp — px 7| — €.
As p is a probability measure, we have

e — el < e+ / F(n)dma () — / / F(Cn)dmyer () | dp(€)

gz s(Q)

§s+/ /f(n)dm(n)— / f(Cndmscy(n)| dp(C)

gz c Ggs(©)

<et / 72 — Crago|| do(<)

ga:
where (7g(¢) is a measure on Gt = G*. This completes the proof. O

Lemma 3.3. Let G be a Borel semigroupoid with Borel systems m = (73),cgo and p =

(pz)zeg of probability measures on G. Let X = (A\*),cgw0) be a quasi-Haar system on G
in b) and c) below.

a) px*7 is a Borel system of probability measures on G.

b) If my < XY for ally € GO then for every x € G and every Borel measure o on
G, we have o xm < \".

) If py = A% for all z € GO, and if both maps (v,n) € G* = (d(yms(y))/dA D)) (n)
and (v,n) € G* = (d(vps(,))/dN*) (1) are Borel, then so is the map (7,1) € G
(d(y(p * 7)s(y)) /AN ) ().

Proof.

a) Given a non-negative Borel function f on G, the non-negative map ( € G —

((Ts(¢), [) is Borel. Therefore the map z € GO — fgw ((Ts(¢), [) dpx(C) is Borel
since p is a Borel system of measures.

b) This follows from (o * 7, f) = [5. (fgz fd(CTI'S(C))) do () for each non-negative Borel
function f on G%, and (ms(c) < (AS(©) < AHO) = )=,
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c) Let uy := d(yms(y))/dA*) and vy, = d(yps(,))/dA*). Then for each non-negative
Borel function f on G and v € G with s(v) = z, we have

i *m)a. f) = / / F(Cndaey (1) | dpa(C) = / / F(En)dmye (n) | dvos)(€)
g

g g \g

= [ | [ riteraen | drp© = [ [ rucar ) o, @axg

g g g g

= [ 10| [ue@p @i | ixow),
g g

Hence we have (d(y(p * )s(y))/dA D)) (w) = [5 ue(w)vy(£)dA (). Tt follows that
the map (v,w) € G2 (d(v(p * T)s(y))/dA*V) (w) is Borel. O

Lemma 3.4. Let G be a locally compact semigroupoid with two continuous systems m =
(T2)weg and p = (pz)zeg of probability measures on G. Then

a) p* T is a continuous system of probability measures.

b) If m and p have the property that for every compact subset K C GO the supports
suppg () and suppg (p) are compact, then p x 7 has this property as well.

c) Let X = (A"),ego be a quasi-Haar system on G. If m, < A* and p, < A" for all
z € GO and if both maps (y,n) € G* — (d(wrs(v))/d)\t('”) (n) € R and (y,n) €
G2 = (d(vps(y))/dN*)) (n) € R are bounded and continuous, then the map (v,n) €
G? — (d(y(p * w)s(v))/d/\t('y)) (n) € R is also bounded and continuous.

Proof.

a) Since G is locally compact and second countable, we know that the map z € G(©) —
(7z, f) € C is continuous for every f € Cp(G) (not only for f € C.(G)), and likewise
for p. A similar argument as in the proof of [31, Chapter III, Lemma 1.1] shows that
for every f € Cy(G), the map ¢ € G — ((ms(c), f) € C is continuous (and obviously
bounded, too). Hence, as p is a continuous system of measures, we conclude that the
map z € GO = ((p* )a, £) = [5. ((Ts(c)s [) dp2(C) € C is continuous.

b) Given two subsets A and B of G, we write A- B for the image of (A x B)NG®?) under
the composition map G — G. Obviously, A - B is compact if both A and B are
compact. Now given a compact subset K of G(°), it is obvious that supp (p * 7) C
supp (p) - suppg ().

c) This follows from the same computation as in the proof of Lemma 3.3 ¢) and a
similar argument to the proof of [31, Chapter III, Lemma 1.1]. O
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4. Liouville property implies Reiter’s condition

We are now ready to reveal the relationship between Reiter’s condition and the Li-
ouville property for semigroupoids. We do so in the measurable and topological setting.
In this section, we prove that for semigroupoids equipped with a quasi-Haar system, the
Liouville property implies Reiter’s condition. This extends two results of Kaimanovich
(Theorem 4.2 and Theorem 6.1 in [20]) for groupoids with a Haar system. We first
establish the connection between our setting and the one in [20, § 3].

Let (G, A, 1) be a measure semigroupoid and m = (7;),cg a A-adapted Borel sys-
tem of probability measures on G. We observe that, for every z € G(©| the fibrewise
Markov operator P, : L®(G*, A\;) — L*®(G* \;) has a predual operator given by
0 LY(G* \,) — 0P, :==0xme LY (G \,) since

0.2.0) = [ | [ fcmidngom | 00 = 0ms) (7@ )
g

gz

(cf. [20, § 3]). We have the k-th iterate 0PF = 0 x 7*.

Theorem 4.1. Let (G, A\, 1) be a measure semigroupoid. If (G, \, p) is Liouville. Then it
is Reiter.

Proof. Let m = (m;),cg0 be a A-adapted Borel system of probability measures such
that H, .(G) = C1 for p-a.e. z € G(O. Moreover, let 6§ = (67),cgw be any A\-adapted
Borel system of probability measures. For instance, we could take 8% = m;. Set 07 :=
n%_l Soho0” x 7%, This is, for every n € N, a A-adapted Borel system of probability
measures by Lemma 3.3 a), b) and ¢). We have for every v € G:

Hg;(v) — 7gfl(v)H =

%H Z ot w1k _ 7(98(7) % Wk)
k=0

%ﬂ Z(gt(v) —705)) 5 1k
k=0

By assumption, we have H, ,(G) = C1 for p-a.e. + € G In the language of [19],
this means that for p-a.e. z € G the Poisson boundary of P, is trivial. Hence [19,
Theorem 2.8] implies that for p-a.e. z € G and A\*-a.e. v € G*, we have

= lim =0.

n—oo

lim
n— oo

#1 Z(gt(v) AT
k=0

k k
w2 (O P — 6P
k=0

By Remark 2.14, (G, A\, i) is Reiter. O

In the topological setting, we have the following analogous result.
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Theorem 4.2. Let (G, \) be a locally compact semigroupoid with quasi-Haar system X.

1) If (G, A) is Liouwville, then it is Reiter.
) If (G, \) is tight Liouville, then it is tight Reiter.
3) If (G, \) is continuous Liouville, then it is uniform Reiter.

DO

Proof. For 1), let 7 = (7;),cg be a A-adapted continuous system of probability mea-
sures on G such that H; ,(G) = C1 for all z € G Define a new family of measures
p = (pz)zeg© by setting p, := (7, + (m*7),). By Lemma 3.3 b), ¢) and Lemma 3.4 a),
p is again a A-adapted continuous system of probability measures on G. Moreover, let
0 = (60%),cg be any A-adapted continuous system of probability measures. For instance,
we could take 8% = m,. We define, for each n € N, 6,, := 0 x p™. By our assumption,
H, .(G) =C1 for all z € G or in the language of [19], the Poisson boundary of P, is
trivial for all z € G(®). Hence, combining [19, Theorem 2.6] and [19, Theorem 2.7] as in
[20, Proof of Theorem 6.1], we obtain for every v € G:

lim
n—oo

pEO) _ 792(”H — lim H(th A5 4

n—oo
" /n
9—n Z (k) (08 — 43 e gtk
k=0

= lim
n—oo

=0.  (5)

This proves 1).

For 2), note that if we choose 6 and 7 with the property that suppy (0) and suppg ()
are compact for all compact subsets K C GO then for every n € N, 6,, has the same
property due to Lemma 3.4 b).

For 3), we choose § and 7 such that G2 — R, (v,n) — (d(v0s))/dAtD)) (1)
and G2 =R, (v,n) (d('yﬂ's(v))/d/\t(”’)) (n) are bounded and continuous. Then, by
Lemma 3.4 ¢), we know that for every n € N, 6,, has the same property. Hence for every
n € N, the map v € G — HG:L(W) — 792(7)

a decreasing sequence (in n) by Lemma 3.2 a). Therefore, Dini’s theorem implies that

H € R is continuous. Moreover, these maps form

the convergence in (5) is uniform on compact subsets of G. O
5. Reiter’s condition implies Liouville property

We are going to prove that Reiter’s condition implies the Liouville property for
semigroupoids, both in the measurable and topological setting. In the special case of
groupoids, this proves Kaimanovich’s conjecture and the details will be given in the next
section. A crucial construction in the proof is to replace, in Reiter’s condition on the
semigroupoid G, the Borel systems (0, )nen of approximately invariant measures by a
single system m = (7;),cg so that the convolution powers (7),cgw play the role of
the sequence (0%),cg . In the proof of Proposition 5.1, we follow the strategy adopted
in [21] for the case of discrete groups. We begin with measure semigroupoids.
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Proposition 5.1. Let (G, A\, ) be a measure semigroupoid. If (G, A, ) is Reiter, then there
ezists a A\-adapted Borel system of probability measures m = (73),ego on G such that

for p-a.e. x € GO and \*-a.e. v € G, we have lim;_, o sz(w — 77@(7) H =0.

Proof. Since L'(G(®, ) is separable (see Remark 2.1), there exists a sequence of fi-
nite subsets (F;); of Ll(g(o),u)+ such that 71 € F» C ... and Ufil F; is dense
in L'(G®, u);. Choose sequences (t;); and (g;); in (0,1) such that Y50 ¢ = 1,
€1 > €9 > €3 > ... and lim; ,o&; = 0. As X is proper (Definition 2.8), we can find
an increasing sequence of Borel subsets A; of G such that G = UZO; A; and

C; == sup X*(4;) € (0,00). (6)
z€G )
Choose a sequence (n;); of natural numbers such that n; < ns < ... and (¢; +--- +

ti_l)ni < %

Let us now choose inductively A\-adapted Borel systems of probability measures 6; =
(07)reg on G. Let 01 be any A-adapted Borel system of probability measures on G.
Now assume that 01, ...,60,,_1 have been chosen. Let

Ot = {0k %+ %0, 1 <j<n,—1k€{l,....,m—1}}.
Every p € Op—1 is Madapted by Lemma 3.3 c¢). Let u® := dp*/d\*. Then
Jgo u¥(QdN* () = [4. dp™(() = 1 as p” is a probability measure. For f € F,,—1 and

pE @m 1, let 05 ,(C) = ut O £(£(¢)). Then ¢, is Borel because p is A-adapted, and we
have ¢f, € L' (G, u* \) since

[ [ertar© | duw = [ | [w@ar© | f@ut)

g0 \ge g0 \ge
— [ 1@intz) < .
0]

For each p € ©,,_1, let vy (n) := (d(yp*")/dA*D) (n). Since vp*?) is a probability

measure, we have
/ n)dX*(n / d(yps) (7)

gm

For f € F—1 and p € ©,,_1, set ¢y ,(n fg vy (n)1a,, ( (7)f(t(n))d\t (). Again, bf.p
is Borel because p is A-adapted, and ¢f7p lies in L' (G, u* A) as (6) and (7) imply
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/ / ¢f,p<n>dv<n>) e

g \g»

= [ ]| [ woraosemacoe | o | e

g \g= \gtm

- / / / vﬂn)d)(”(n)) 1Am(v)dAx(v)) f(@)du(z)

gy \g= \ge
<Cpn- / f@)du(x) < oo.
G

Since (G, A, ) is Reiter, we can choose 6, such that

ot =265 | L4, D FEOD A= NG < for all f € For, (8)
g

/ |05 = 039 | 01,0 ()l * N(Q) < & for all f € Fopy and p€ Oy (9)
g

and

/ Hefy’) - ne:y?)H 7.0 (Md(x N)(1) < em for all f € Fpu_y and p € Oy, (10)
g

Now set 7, := Y oo, ;07 for all z € GO 7 = (7, is again a A\-adapted Borel system
of probability measures.
Take m € N and f € Fp,—1. Set n := n,,. Write the n-fold convolution 77 = (1), +

(m2), where

(m1)e = Z iy o th, Oy % %0k, )7, (11)
kEN™
max(k)<m
(r2)e =7 = (M)e = D try o oth, Ok, %o % Oh,)". (12)
keN™
max(k)>m

Then ||(m1)a|| < (t1 + -+ + tm—1)™™ < &= for all z € G(©) and hence

[ [ 1@ = 1@l 1, (v)dA”(v)) f@dne)  (13)

gl \g=
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<[ g 2614, (v)dww) F@)du(z) < 25

g \ge

For k € N with max(k) > m, 6, % --- * 0 _ is of the form 6 % T for some § = 6}, with
k > m, or it is of the form p * 6 * 7 for some p € O,,_1 and § = 0, with k > m. By (8),

we have

/ (é gt(’v)_,ygS(’Y)Hl A”L(V)dmy)) f(@)dp(x) < em. (14)
G ©

For every € GO, Lemma 3.2 b) implies

o= syl < [ o9 = o9 dprcc) (15)
J

Therefore we have

/ Q/ 167 — (p% )7 14, (v)dV(v)) f(@)dp(z) (16)

G

< C, / 167 = (p % 0)7 | £(x)dp(x)
g

e C g0 O dz@) f(@)dp(z)
/ / | | @ Z

= Cpn 0% — ¢o% | u™(¢) f(x)dA" () | dpu(x)
J (fle-ertamemeio)

Con [ |64 = ¢8| o101l 5 /() <
G

For every v € G, Lemma 3.2 b) implies that

[0 = (o 0| = [0 = (o) 56| < / |00 = 9= | 32 (). (17)
gt

Using vy(n) := (d(yp*)/dA* D)) (n) and ¢,(n) = [5vo(n)1a,, (7)f((0)dA D (y), a
computation analogous to (16) gives
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/ C/ |64~ 5o % 0| 14, www) F()dp(z) (18)

g \g»

< (é/ Q/ HGt”)—7795(")Hd(ws(”)(n)> 1Am<v>dv<v>) (@)dp(a)

G

-/

g

(10)
00— 0* || 6y, ()< N () < 2

Combining (16) and (18), we get

/ (4/ [0+ )4 — (o8

g \g=

14, (v)dV(v)) f(x)dp(z) < 2em,

and also for all m’ < m,

/ (4/ (004 (07| 1, mde) F@)an(z) < 25 (19)

g \ge

With the help of Lemma 3.2 a), we deduce from (14) and (19) that

/ (é/ H(H * T)t('Y) — (0 7)5(7) H la,, (v)d)\x(’y)) flz)du(z) <em

g \g=

and

/ Q/ (o070 — 5w 07 14, wwm) F@)du(z) < 2.

g \g=

As every summand in 7o is of the form 0 x 7 or p *x 0 x 7, we obtain

/ (é | (72)e(y) — Y (72)s(1) || 14, (W)d)\z(v)) f(z)du(x) (20)
g \gv
<D gyt 28, < (it) 2 = 2.
k%ll(\y; i=1

Finally, combining (13) and (20), using Lemma 3.2 a), we obtain, for m’ < m,
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/ / iy i || 10,0 0N | Fl@)dinte) < den for all i > m =,
gl \ge

Since lim,;, o € = 0, we have, for every m’ € N and f € F,r_1,

tw [ (/]

g \g=

Ty — || 14, ()N () | f(@)dutr) = 0 (21)
which gives

lim / / Hﬂim—wéde/\x(v) f(z)dp(z) =0

i—00

gy \g=

for all f € |J; Fi, and hence for all f € LY(G) ). Tt follows that for y-a.e. z € G(©) and

A-a.e. v € G% we have lim;_, ‘

w,i(,y) — ’Wé(’”” = 0. Here we have used the fact that

the sequence (

‘Wé(,y) - ’Yﬂ';-(,y) H) _is decreasing by Lemma 3.2 a). O

Lemma 5.2. Let (G, A\, p) be a measure semigroupoid. If there exists a A-adapted Borel
) ~ Pmé(v)H =0 for
N-a.e. v € G® and p-a.e. x € GO, then we have Hy »(G) = C1 for p-a.e. x € G0,

system of probability measures T = (7;),cgo such that lim;_, o ’

Proof. Take z € G(© such that lim;_ Hﬁé("’) ffywé(v)H = 0 for \*-a.e. v € G*. Let
f € L*>(G*%,\*) satisfy P,(f) = f. Then f = Pi(f) and, for \*-a.e. v € G*, we have
fv)= fgm f(v()dﬂé(y)(g). Therefore

— 0

1—00

100 = [ 10 0)| = (v = mays £)] < Wl - 7y = e
-

for A¥-a.e. v € G*. Hence f is constant A\*-a.e. 0O
From Proposition 5.1 and Lemma 5.2, we have established the following theorem.

Theorem 5.3. Let (G, A\, i) be a measure semigroupoid. If (G, A, u) is Reiter, then it is
Liouville.

We now discuss topological semigroupoids. In addition to the previous approach to
the measure semigroupoid case, we need to make use of the uniform and tight Reiter’s
condition to deduce the existence of one single continuous system 7 = (7;),cg in the
following key proposition.
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Proposition 5.4. Let (G, \) be a locally compact semigroupoid with quasi-Haar system. If
(G, \) is uniform and tight Reiter, then there exists a A-adapted continuous system of
probability measures ™ = (73) ,ego) such that

zlggo Hﬂim - VW;WH =0forall y€g.
Proof. Since G is o-compact (see § 2), there exists a sequence of compact subsets (C;);
of G such that Cp C C; C Cy C ... and G = ;2 C;. Choose sequences (t;); and (g;); in
(0,1) such that ;2 t; =1,e1 > e >3 > ... and lim;_,» &; = 0. Furthermore, choose
a sequence (n;); of natural numbers such that n; <ng < ... and (¢1+---+t,-1)" < ;.
Let us now inductively choose A-adapted continuous systems of probability mea-
sures 0; = (07),cg- Let 6; be such a continuous system of probability measures with
t
ﬂ@l(ﬂ _ 79?(7)‘
et

< g1 for all v € Cy. Now assume that 64,...,60,,_1 have been chosen.

Opm_1:= {9k1*~-~*0kj: 1<53<n,, -1, k}jE{l,...,m—l}}.

Lemma 3.3 ¢) implies that every p € ©,,_1 is A-adapted. Moreover, for K C G com-
pact, set suppg (Om-1) := U, cq,,_, SUPPx(p). Then, by Lemma 3.4 b), suppx (Om-1)
is compact for every compact subset K C G(9). Now choose 6,, such that

for all v € suppy(c,, ,)(Om-1) U (Crn—1 - suppg(c,, ,)(Om-1)) U Cp—1. Such 0y, exist
since G is uniform and tight Reiter.
Now set 7, := Y oo, ;07 for all z € GO 7 = (7,),cg is again a A-adapted con-

9t — ygs) H < Em (22)

tinuous system of probability measures. Take m € N and v € Cp,—1. Set n := ngy,.
Write 777 = (71)g + (m2), where (1), and (m2), are defined as in (11) and (12). Then
[(71) 2]l < (t1 + -+ tm_1)™™ < &, for all 2 € GO). Therefore,
we obtain

Y(T1)s(y) || < €m- Thus

[(T1)et) = V(s || < 28m- (23)

For k € N™ with max(k) > m, 6k, * --- % 6, is of the form 6 7 for some 6 = 6, with
k > m, or it is of the form p 0 * 7 for some p € ©,,_1 and § = 0y with kK > m. By choice
of 0;, we have

22

Moreover, it follows that from Lemma 3.2 b) that
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Het('y) —(p+ 0)t('y)H < / Hot(c) _ CQS(C)H dpt(¢) @2 . (25)

supp (pt(1))

Similarly, Lemma 3.2 b) implies that

Hgt(v) —y(p* 9)5(7)” _ Hgtm ~ (3" QH < / Hgt(v) _ Cgs(@” d(vp*)(C)
G

22
/ Hgt(w) — s H dps () (<) Em- (26)

supp (p5(7))

Combining (25) and (26), we get
H(p £ )t — 5 (px 0)5 H < 2. (27)

Therefore, because of (24) and (27), Lemma 3.2 a) implies ||(6 % 7)*) — (6 = 7)) || <
€m and H(p %0 % 7)) —~(px 5 1)0N) H < 2€p,. As every summand in 7y is of the form
0 x T or p* 60T, we obtain

H(7r2)t(7) — ’Y(ﬂ'g)s(w)H < Z tiey bk, - 26m < (Z ti> <26 = 2em.  (28)
i=1

keN™
max(k)>m

Finally, combining (23) and (28), we get using Lemma 3.2 a)

|

On the whole, we deduce that for every v € G,

7r'i('y) - 'Wé(»y)H < 4e,, for all 1 > n.

i—»00
Lemma 5.5. Let G be a topological semigroupoid with a quasi-Haar system . Suppose
that there exists a A\-adapted continuous system of probability measures ™ = (7z) e
such that lim;_, o H?Ti(,y) - Vﬂé(v)H =0 for all v € G*. Then we have Hy ,(G) = C1 for
all z € GO,

Proof. Take z € G and f ¢ L‘X’(Q“’ A%) with P, (f) = f. Then f = P(f) and

x) = [g. f(Qdry(¢) and also, f(v) = [g. f(v()dml ., (¢) for all v € G*. Therefore
|f(z) = f(v)| = ‘<7rt( ) — ymt 5(7) >‘ < | fll Hﬂt(v) — ’WTS'(,Y) = 0. This means that
for all v € G*, we have f(y) = f( ) and hence f is constant. This proves H ,(G) =
C1. o
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Finally, Proposition 5.4 and Lemma 5.5 together yield the following result.

Theorem 5.6. Let (G, \) be a locally compact semigroupoid with quasi-Haar system. If
(G, \) is uniform and tight Reiter, then it is Liouville.

6. Special cases

In this section, we discuss three important special cases, namely groupoids, transfor-
mation semigroups and semigroups. We begin with groupoids.

6.1. Groupoids

An important consequence of our results is the equivalence of amenability and the
Liouville property for groupoids, in both measurable and topological settings. In par-
ticular, we settle a conjecture of Kaimanovich [20, Conjecture 4.6] by showing that
amenable groupoids admit the Liouville property. To be precise, combining Theorem 4.1
and Theorem 5.3, we obtain the following result for measured groupoids.

Theorem 6.1. Let (G, A, 1) be a measured groupoid, where X is a left Haar system. Then
(G, \, ) is Liouville if and only if it is Reiter.

Since amenability and Reiter’s condition are equivalent for groupoids, this theo-
rem establishes the equivalence of the Liouville property and amenability for measured
groupoids. This result has also been proved by Biihler and Kaimanovich in an unpub-
lished note. However, a similar result for topological groupoids is more subtle, which
requires a deeper analysis of Reiter’s condition, given below.

Lemma 6.2. Let (G, \) be a locally compact groupoid, where X is a left Haar system. The
following conditions are equivalent:

(i) (G, A) is Reiter,
(ii) (G, A) is uniform Reiter,
(iii) (G, \) is tight Reiter.

Proof. (i) = (ii) follows from [35, Theorem 2.14]. (iii) = (i) is obvious. It remains to
prove (ii) = (iii).

We show that for every e > 0 and C C G compact, there exists a A\-adapted contin-
uous system of probability measures § = (0*),cgw on G such that HGt("f) — 795(7)” <
e for all v € C, and in addition, suppg (#) is compact for every compact subset K C G.

Given € > 0 and C' C G compact, since G(9 is locally compact and o-compact, there
exist K, C G© compact with s(C) U t(C) C K, K,, C K,;H for all n € N and
GO = UZO:1 K.
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Since (G, A) is Reiter, G is amenable and hence there exists a topological approzimate
invariant density (g;)3<, in Cc(G), as defined in [35, Definition 2.7]). Normalizing g; - A*
for some j and for each x € K5, we obtain a A-adapted continuous system of measures
¥y = (U3),eg such that

) s
Hﬁ;("’ S H <efor allyeC (29)

with the additional properties that suppg, (2) is compact and 93 is a probability mea-
sure for all x € K. Likewise, for all n > 3, one can find A-adapted continuous systems
of measures ¥,, = (¥5,),cgw such that suppg (¥,) is compact and 9}, is a probability
measure for all z € K,,.

Now define Uy := [82 and U,, := Ién \ K,,—2 for all n > 3. By construction, GO =
Ufio:z U,. Since G is locally compact and o-compact, G(¥) is paracompact and one can
find a partition of unity {h,},>2 subordinate to {U,}n>2. Define 6% := hy(z)93 for
x € U, and 6% := 0 for ¢ U,. By construction, these 6,, are A-adapted continuous
systems of measures such that supp (0,) := suppg (0,) € suppg, (9,). In particular,
supp (6,,) is compact.

Set 6% := ">, 0% which is a finite sum since the cover {U,, } is locally finite. As each

n=2"'n

6, is A-adapted, so is the continuous system § = (0),cgw where [|0%] = >, [|0%] =
>, hal@) =

We claim that 6 has the desired properties. Indeed, given v € C, both t() and s(v)
lie in K7, hence hy,(t(7)) = hn(s(y)) = 0 for all n > 3, and so ha(t(y)) = ha(s(y)) = 1.
Thus 68 = 057 = 950 and also 650 = g5 = 957 Tt follows that

(29)

Hgt(v) - 7(,smH - nggm || e,

Finally, given K C G compact, there exists N 6 N with K C U U,, so that
hn|k =0 for all n > N + 2. Hence suppy(0) C U 5 ! supp (6,,) which is compact. O

Combining Theorem 4.2 and Theorem 5.6 with the previous lemma, we obtain the
equivalence of the Liouville property and Reiter’s condition in the topological setting.
This proves the topological analogue of [20, Conjecture 4.6].

Theorem 6.3. Let (G, \) be a locally compact groupoid, where X is a left Haar system.
Then (G, \) is Liouville if and only if it is Reiter.

Remark 6.4. By convention, all our locally compact groupoids are locally compact and
second countable. However, the same proofs as above show that Lemma 6.2 and Theo-
rem 6.3 also hold for topological groupoids which are locally compact and o-compact.
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6.2. Transformation semigroups

We now show the equivalence of the Liouville property and Reiter’s condition for
transformation semigroups. First, combining Theorem 4.1 and Theorem 5.3, one obtains
the following result in the measure setting.

Theorem 6.5. Let (X, ) be an analytic Borel space. Let S be a discrete semigroup acting
on X by Borel maps. Let (X xS, A\, u) be the corresponding measure semigroupoid. Then
(X xS, \ ) is Liouville if and only if it is Reiter.

For the topological setting, we prove a lemma first.

Lemma 6.6. Let X be a locally compact and second countable Hausdorff space, and S
a countable discrete semigroup acting on X by continuous maps. Let (X x S, A) be the
corresponding locally compact semigroupoid with quasi-Haar system. The following are

equivalent:

(i) (X % S, A) is uniform Reiter,
(if) (X = S, \) is uniform and tight Reiter,
(iii) For each € > 0, finite set F C S and compact set C C X, there exists a family
0 = (6%)zex of probability measures on S satisfying the following conditions:
(1) the map x € X — 6% € £1(9) is continuous;
(2) |0 — s0%5|| < e forall s € F and x € C;
(3) supp (0) := U, x supp (6%) is finite.

Proof. Clearly, we have (iii) = (ii) = (i). It remains to prove (i) = (iii). Let £ > 0 with
a finite set FF C S and compact set C' C X given in (iii). Since (X x S, ) is uniform
Reiter, there is a family of probability measures ¢ = (9%),cx on S such that the map
z € X — 97 € (1(S) is continuous and [|97 — §; 97| < £ for all s € F and z € C.
Since X is locally compact and o-compact, there exist compact subsets K, of X with
CUCFC Ky, Ky CKpyyforallneNand X =2, K

Let us now define probability measures 95 on S for all x € K3 such that the map
r € Ky — 9% € (1(9) is continuous. For 1 > ¢ > 0 and = € Ks, there exists a
finite set E; C S such that steE T(s)ds — V|| < €. Asy € X — ¥ € £1(9)
is continuous, the map y € X — Y _p 9¥(s)ds — 0¥ € £'(S) is continuous as well.
wop, 09(s)3s — Y]] < &
for all y € U,. Since K5 is compact, there exist finitely many z1,...,zx in K5 such
that Ky C Ufil Ug,. Define E := vazl E,, and for z € Ky, set 0% = Y s V7(s).
Obviously, the map z € Ky — 9% € ¢1(S) is continuous. For all z € Ks, we have
||1§§|| > ||191H7H1§§ — 97| > 1—¢’. Thus we may form 93 := H1§§||711§§ forall x € Ky. By
construction, 9% are probability measures on S such that the map r € Ky — 9% € £1(9)

Hence there exists an open neighbourhood U, of = such that ||Z

is continuous. Moreover, for all x € K5, we have
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195 = 0 < |[95 = 5 + 195 — 0| = (193] = 1) |95 + 195 - o°|
<(l-e)yt-1+4¢<c
for sufficiently small €’. Hence it follows that for all s € F and x € C, we have

105 = 05 % 05| < (|05 = 7| + |97 = &+ 97°[| + (|05 % %% — b5 x93 (30)

€ € e _
<Z+§+Z_€‘

Now define Uy := I%g and U, = Ién \ K,,_o for all n > 3. By construction, we have
Ién \K:,l CU,foralln>3 and X C U ", K1 C U, [én C U2, U,. Since X
is locally compact and o-compact, we can find a partition of unity {h, },>2 subordinate
to {Up}n>2. Define 63 := ho(x)93 for € Uy and 65 := 0 for ¢ Us. Then the map
z € X — 6% € (1(S) is continuous. Now fix t € S and define, for n > 3, 0% := h,(z)d;.
Set 6% := "> , 0~.

We claim that 6 has the desired properties. For every x € X, ||0%|| = h,(x) implies
16]] = >_,, hn(x) = 1 and 6% are probability measures. Moreover, given x € X, there
exist NV > 2 such that x lies in Uy. But by construction, Uy C Ky implies Uy NU,, = )
for all n > N + 2. Therefore, 6% = 22321 07 for all z € Uy. This shows continuity of the
map r € Uy +— 6% € £1(S) and z € X > 6% € (!(S). Furthermore, it is clear that for
all x € X, we have supp (0*) C E U {t}. Finally, given s € F and z € C, both x and z.s
lie in K and hence h,(x) = hy(z.s) = 0 for all n > 3, and ha(z) = he(z.s) = 1. Thus
0% =05 = v¥5 and 6%° = 05° = 95-°. We conclude that

(30)
167 = 8% 67| = [[95 — 5, % 95°] < e O

We observe from the definition that the transformation semigroupoid (X x S, ) in
the above lemma is Liouville if and only if it is continuous Liouville, and now, using
Theorem 4.2 and Theorem 5.6, we can conclude with the following result.

Theorem 6.7. Let X be a locally compact and second countable Hausdorff space, and S
a countable discrete semigroup acting on X by continuous maps. Let (X x S, \) be the
corresponding locally compact semigroupoid with quasi-Haar system. Then (X x S, \) is
Liowville if and only if it is uniform Reiter.

6.3. Locally compact semigroups

Let S be a second countable locally compact semigroup equipped with a positive
quasi-invariant Borel measure A such that the map (s,t) € S x S — (d(s\)/d\) (t)
is Borel. As explained in Remark 2.10, by identifying S with {pt} x S, we may view
(S, \) as a locally compact semigroupoid with a quasi-Haar system. In this case, (S, A) is
Reiter, in the sense of Definition 2.15, if there exists a sequence (6,,) of Borel probability
measures on S with 6, < A for all n € N, and lim,,_, ||0, — s0,,]| =0 for all s € S.
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Remark 6.8. In the above setting, (S, A) is Reiter if and only if there exists a left invari-
ant mean on L (S, \) since the proof in [25, § 4.2] carries over. Therefore there is no
difference between Reiter’s condition and amenability for (S, A).

To describe the Liouville property for (S, ) according to Definition 2.18, let = be
a probability measure on S with 7 < A. In this case, the ﬁbrewise Markov operators
reduce to a single one P : L*(S,\) — L*(S,\) with P(f = [q f(st)dm(t), and
H,(S) :={f € L>*(S,\): P(f) = f} is the space of w-harmonlc functlons in L°(S, ).
The locally compact semigroup (S, ) is Liouville if there exists a probability measure 7
on S with m < A such that H.(S) = C1.

Theorem 6.9. In the situation described above, (S,\) is Liouville if and only if it is
Reiter.

Proof. The key observation is that, by definition, (S, \) is Liouville if and only if ({pt} x
S,0 x A\, 9) is Liouville as a measure semigroupoid (where 0 is the point mass). By
Theorem 4.1, we know that (S, \) is Reiter if it is Liouville. For the converse, let (S, \)
be Reiter. This means that (S, A) is Reiter as a locally compact semigroupoid with
quasi-Haar system. Again by definition, this implies that ({pt} x S,d x X, d) is Reiter as
a measure semigroupoid. Hence Theorem 5.3 implies that ({pt} x S,d x A, d) is Liouville
as a measure semigroupoid. Hence the locally compact semigroup (.5, A) is Liouville. O

The question remains which semigroups S admit a quasi-invariant measure A with a
Borel map (s,t) € S x S+ (d(sA)/dA) (t). This is for instance the case if S is a locally
compact subsemigroup of a second countable locally compact group G, that is, S is a
subsemigroup of GG as well as a locally compact subspace. If the Haar measure Ag on
G satisfies Ag(S) # 0, then the restriction A of Ag to S is a measure with the desired
properties.

Of course, another class of examples is given by countable discrete semigroups S with
identity and counting measure A. For these semigroups, we have the following result
from Remark 6.8 and Theorem 6.9. In the next subsection, we discuss the case of metric
semigroups, which need not be locally compact nor support a quasi-invariant measure.

Theorem 6.10. Let S be a countable discrete semigroup with identity. The following con-
ditions are equivalent.

(i) S is Liouville, that is, there exists a probability measure m on S such that every
bounded m-harmonic function is constant;
(ii) S is Reiter, that is, there exists a sequence (0,,), of probability measures on S such
that limy, o [|0n — $0,|| = 0 for all s € S;
(iii) S is amenable.
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In the last section, we give some examples of discrete semigroups with the Liou-
ville property for all non-degenerate probability measures, i.e., with the property that
every bounded w-harmonic function is constant for every non-degenerate probability
measure 7.

6.4. Metric semigroups

Following the previous results for semigroups equipped with a quasi-invariant measure,
it is natural to enquire about semigroups without such a measure. We present the case of
metric semigroups in this subsection, but refer to [7] for further discussion of topological
semigroups.

Given a probability measure 7 on a metric semigroup S, we denote by H(S) the
closed subspace of LUC(S) consisting of m-harmonic functions on S. We say that S has
the Liouville property if there is a tight probability measure 7 on S such that H,(S) = C1
where 1 denotes the constant function on S with value 1.

A metric semigroup S is said to satisfy Reiter’s condition if for every € > 0 and
compact set K C S, there is a probability measure § on S with compact support such
that [|§ — 05 0| < e for all s € K.

For a countable discrete semigroup .5, the notion of the Liouville property and Reiter’s
condition just introduced agrees with the one previously defined.

Given a o-compact metric semigroup S satisfying Reiter’s condition, a construction
analogous to that in the proof of Proposition 5.4 yields a tight probability measure 7 on
S such that

: n__nj —
nl;rr;o||6s*w 7 =0 (31)

for all s € S. In fact, this is also true for topological semigroups and a detailed proof
will be given in [7]. Consequently, we have the following result.

Theorem 6.11. Let S be a o-compact metric semigroup with identity e satisfying Reiter’s
condition. Then S enjoys the Liouville property.

Proof. By the previous observation, there is a tight probability measure 7 on .S satisfying
(31) for all s € S. Hence for each m-harmonic function f € LUC(S), we have

5@) = £ = | [ (Flaw) — Fo)ar"w)| = | [ (6o f = pran”
S S

:|/fd(5z*7r”—7r”)|§||f||00||5m*77”—7r"||—>0 as n — 0o
s

and it follows that f is constant. This completes the proof. O
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We conclude this section by showing that a metric semigroup S with the Liouville
property, but not necessarily o-compact, must be amenable. This will follow readily from
the fact that the space H,(S) of bounded w-harmonic functions on S is the range of a
contractive projection on LUC(S), which commutes with left translations. To show this,
we need the following two lemmas which are straightforward extension of similar results
in [6] for groups.

Let p denote the topology of pointwise convergence in LUC(S) and let 7 be the
topology of uniform convergence on compact sets in S.

Lemma 6.12. Let S be a metric semigroup and let f € LUC(S). Denote by K the
p-closure T0P{f xd5 : s € S} of the convex hull of {f x5 : s € S}. Then the topologies p
and T coincide on Ky which is compact in these topologies.

Lemma 6.13. Let f € LUC(S) and m € M(S) be a probability measure. Then fxm € Ky.

Proposition 6.14. Let S be a metric semigroup and let m € M(S) be a probability mea-
sure. Then there exists a contractive projection P : LUC(S) — LUC(S) with range equal
to H;(S). Moreover, P commutes with left translations on S.

Proof. The arguments are similar to those given in [4] and [6] for groups, but we include
the proof for completeness. Let LUC(S) be equipped with the topology p of pointwise
convergence and let the Cartesian product LUC(S )LUC(S ) be equipped with the product
topology. Define a linear map L : LUC(S) — LUC(S) by L(f) = f == (f € LUC(S)).
Consider L as an element in LUC(S)*YC(%) and so are the n-th iterates L" =

n—times

Lo---oL. By Lemma 6.13, L" € [[;cppes) Kr € LUC(S)HVYS) for all n. 1t fol-
lows that the closed convex hull K :=co{L" :n=1,2,...} C [, Ky is compact in the
product topology by Lemma 6.12.

Define an affinemap T : K — K by T(A)(f) = A(f)xm (A € K, f € LUC(S)). Then T
is continuous. Indeed, given a net (Ay)q in K converging to A € K, then A, (f) — A(f)
pointwise on S for each f € LUC(S). By Lemma 6.13, A(f), Ao (f) € Ky and hence
Lemma 6.12 implies that (Ay(f))a converges to A(f) uniformly on compact sets in S.
It follows that (A, (f) *7)a converges pointwise to A(f) * w. This proves that (T(Aq))a
converges to T'(A) in the product topology.

By the Markov—Kakutani fixed-point theorem, T" admits a fixed point P € K which
gives

P(f)=P(f)xm  (f € LUCS)).

It is easy to see that P? = P and P(LUC(S)) = H.(S). The last assertion follows from
the fact that left translations on S commute with the operator L. O
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Theorem 6.15. Let S be a metric semigroup with the Liouville property. Then S is
amenable.

Proof. Let 7 be a tight probability measure on S such that H(S) = C1. Let P :
LUC(S) — LUC(S) be the contractive projection constructed in Proposition 6.14. Since
P(LUC(S)) = Hr(S), we have P(f) = ¢(f)1 (f € LUC(S)) for a unique functional
¢ : LUC(S) — C. Evidently, ¢ is a left invariant mean. 0O

The above approach using the contractive projection P gives an alternative proof of
the implication (i) = (iii) in Theorem 6.10.

7. Examples

A measure on a semigroup is called non-degenerate if its support generates the
semigroup. It is known that if a locally compact abelian semigroup S supports a non-
degenerate probability measure 7, then H.(S) = C1 (cf. [24,33]). We now present a class
of discrete non-abelian semigroups with the Liouville property for all non-degenerate
probability measures.

Definition 7.1. Let S be a discrete semigroup with identity e. A central series of S is a
finite chain

{6}250g51g§5n25,
of subsemigroups in S such that
(i) Sy is right reversible for all 0 < m < n, that is, for all z,y in S,,, we have S,z N
Smy # 0;

(ii) For every 1 <m < mn, a € S,, and s € S, there exist z,y in S,,—1 with zas = ysa.
We call n the length of the above central series.

Semigroups admitting central series are a natural generalisation of nilpotent groups.
We should note, however, that the concept of nilpotent semigroups is not defined in terms
of the existence of central series (cf. [27]). Evidently, every abelian semigroup admits a

central series of length 1.

Example 7.2. The Heisenberg semigroup

lxz
S—{(ou;) GGLg(R)il’,y,ZZO}
001

admits a central series of length 2.
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To see this, set

100 10z
So={<01o>},51={<010):z>0} and Sy = S.
001 001

Condition (i) is obviously satisfied for Sy and Sy (S is abelian), and it holds for Sy = S
as well because of

10 ¢(+zn 1¢€0 lxzz 10 z24+€y 1z0 1¢¢
01 0 01mn 01y | =(01 0 01y 01mn
00 1 001 001 00 1 001 001

for all z,y,z and &, 1, .
Condition (ii) is true for m = 1 since S} is abelian. For m = 2, condition (ii) holds
because we have for all x,y, z and &, 7, (:

10 xn 1¢¢ lx 2z 10 &y lx 2z 1¢¢
010 01ln 0Oly | =1010 01y 01n |.
00 1 001 001 00 1 001 001

Actually, exactly the same computations show that for every subring R of R, the semi-
group

lz =z
S = {(0 1 y) € GL3(R): z,y,z € RN [O,oo)}
001
admits a central series of length 2.

We show that semigroups with central series have the Liouville property for all non-
degenerate probability measures. This generalizes the corresponding result for nilpotent
groups [13,28] (see also [5]). First, we sketch a proof of the following lemma, using similar
arguments in [5].

Lemma 7.3. Let S be a discrete semigroup with identity e and m a non-degenerate proba-
bility measure on S. Then for each f € H.(S), we have f(ax) = f(x) for all z € S and
a in the centre of S.

Proof. Considering the real and imaginary parts separately, we may assume that f is
real-valued. Fix a in the centre of S. Set g(x) = f(x) — f(ax), where g € £>°(S). Let o :=
sup,cg 9(x). Then g € H(S). Choose a sequence (), in S with o = lim,, o g(y).
Define g,, € £>°(S) by gn(z) := g(x,x). Then g, € H(S) and lim,_, gn(€) = o, where
gn(z) = g(znpx) < afor all z € S. We also know that || g, < |9/l -

Let h be a w*-limit point of g, in £>°(.5). Since g, € H,(S) and the map ¢ € £>°(S) —
p* 7 € £2°(95) is w¥-continuous, we have h = h * 7 in £°°(S) and therefore h € H(S).
As w*-convergence in £>°(S) implies pointwise convergence, g,(x) < « implies h(z) < «
for all z € S. Since lim,, o gn(e) = «, we have h(e) = a.
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We show h(a) = a. Since S = J,~, (suppm)™ = |J,—_, supp 7", one can choose n € N
such that 7™ (a) > 0. If h(a) < «, then

a=hie)=hxx"(e) =Y h(y)m"(y) = h(a)w"(a) + Y _ h(y)7"(y)
yes y#a
< ar"(a)+ Z ar™(y) = «

which is a contradiction. Hence we must have h(a) = «. Similarly, h(a?) = « for all
peN.

Now if o > 0, then we can choose m € N with [|f[., < ima, and n € N with
gn(aP) > %a for all 1 < p < m. This gives

%ma < ign<ap> = if(xnap) - f(axnap) = i f(xna/p) - f(xnap+1)
p=1 p=1 p=1

= f(zna) — f(znd®™) <2 ima = Ima

which is impossible. Therefore o < 0 and we have g(x) < 0 for all z € S, that is,
f(z) < f(azx) for € S. Repeating the previous argument for the function f(ax)— f(z),
we get f(ax) < f(z) and hence f(z) = f(azx) forallz € S. O

Theorem 7.4. Let S be a discrete semigroup with identity and a central series. Then for
every non-degenerate probability measure m on S, we have H.(S) = C1.

Proof. We proceed inductively on the length n of the central series of S. The case n = 0
is trivial. For the inductive step, assume the assertion is true for length n and let

{6}250g51gg5ng5n+125

be a central series of length n+ 1. Since S has an identity in S; which is right reversible,
we can define an equivalence relation ~ on S by setting x ~ y if there exist a,b € 51
satisfying axz = by. The set S/. of equivalence classes & is a semigroup structure with
product & - ¢ := (zy)’, which is well-defined because S; is in the centre of S. Observe
that

{e} =51/0 ©82/n © - C Sn/n C Snp1/n=5/n

is a central series of length at most n for S/..

Now let 7 be a probability measure on S such that supp 7 generates S as a semigroup.
Let ¢ : S — S/~ be the quotient map. Define a probability measure 7 on S/, by setting
(&) := >, eq-1(4) T(x). Then supp 7 generates S/ as a semigroup. By the inductive
hypothesis, we have H;(S/~.) = C1.
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Let f € Hr(S). Define f : S/ — C by f(i) := f(z). This is well-defined. Indeed,
if x ~ y, then there exist a,b € S1 with ax = by. As S; is contained in the centre of S,
Lemma 7.3 yields f(z) = f(az) = f(by) = f(y). One verifies readily that f* & = f.
Therefore f , and hence f, must be constant. O
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