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1. Introduction

Since the seminal work of von Neumann [38], amenable groups and semigroups have 
had a profound impact on many areas of mathematics. Amenability of locally compact 
groups has been shown to be equivalent to many fundamental properties in harmonic 
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analysis including the Liouville property which is one of the subjects of the present paper. 
In operator algebras, amenability plays a pivotal role in their classification (cf. [9,14]) as 
well as in the recent progress on the Novikov conjecture (see [17,30]). Indeed, amenable 
groupoids satisfy the Baum–Connes conjecture [37]. Amenability also plays a significant 
role in the recent development of semigroup C*-algebras relating to some aspects of 
number theory [10,25,26].

A locally compact group G is amenable if there is a left invariant mean on L∞(G). 
A topological semigroup G is usually called amenable if there is a left invariant mean 
on the algebra LUC (G) of bounded left uniformly continuous functions on G. These 
two definitions of amenability are equivalent for locally compact groups. The notion of 
amenability has been extended to group actions by Zimmer [40,41]. For the more general 
case of groupoids which, among other things, unify both concepts of groups and group 
actions, it was introduced by Renault [34,1]. Amenable groupoids were defined in terms 
of Reiter’s condition, which stipulates the existence of nets of approximately invariant 
probability measures and was first formulated by Day [12] for discrete semigroups. For 
locally compact groups, Reiter’s condition is equivalent to amenability and therefore 
the definition of an amenable groupoid is a natural extension of the group case. How-
ever, for topological semigroups, the question of whether Reiter’s condition follows from 
amenability as defined previously appears to be open [23, p.321].

The equivalence of amenability and the Liouville property for σ-compact locally com-
pact groups was first conjectured by Furstenberg [16] and proved by Rosenblatt [36], 
Kaimanovich and Vershik [21]. More recently, Kaimanovich introduced the Liouville 
property for groupoids in [20] and conjectured its equivalence to amenability, having 
proved that the former implies the latter. For semigroups, the Liouville property for 
abelian semigroups has been studied in [11,24,32], but its connection to amenability has 
not been the subject of investigation before.

Our main objective in this paper is to clarify the relationships of amenability, Reiter’s 
condition and the Liouville property in the setting of semigroupoids, which subsumes 
and provides a unified treatment to the important cases of groupoids, semigroups and 
transformation semigroups. We introduce and study the Liouville property and Reit-
er’s condition for semigroupoids. We prove that a semigroupoid possesses the Liouville 
property if and only if it satisfies Reiter’s condition (Theorems 4.1, 4.2, 5.3, 5.6). An 
immediate consequence is the equivalence of the Liouville property and Reiter’s con-
dition for semigroup actions (Theorem 6.7) as well as the equivalence of amenability 
and the Liouville property for discrete semigroups (Theorem 6.10) and also, for both 
measured groupoids and topological groupoids (Theorems 6.1, 6.3), the latter proves a 
conjecture of Kaimanovich in [20]. We thank Vadim Kaimanovich for informing us, after 
we have written this paper, that his conjecture for measured groupoids has also been 
proved by Theo Bühler and himself in an unpublished note. Our result includes the case 
of topological groupoids, which requires some refinements of Reiter’s condition.

A Riemannian manifold is said to have the Liouville property if it does not admit 
non-constant bounded harmonic functions. Examples include complete manifolds with 
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non-negative Ricci curvature, by a well-known result of Yau [39]. To introduce the Liou-
ville property for groups, we begin with a connected Lie group G. The Laplace operator 
of G generates a one-parameter convolution semigroup (πt)t>0 of probability measures 
on G such that a function f ∈ L∞(G) is C2 and harmonic if and only if it satisfies the 
convolution equations f = f ∗ πt for all t > 0 (cf. [18] and [3, Proposition V.6]). This is 
equivalent to f = f ∗ πt for some t > 0 if G is of type T [3, p.136] (e.g. G is semisimple 
with finite centre [3, Théorème II.1]). More generally, given a probability measure π on a 
locally compact group G, a Borel function f : G → C is called π-harmonic if it satisfies 
the convolution equation f = f ∗π. The latter condition is an analogue of the mean value 
property which characterises harmonic functions on manifolds. We say that G has the 
Liouville property if there is an absolutely continuous probability measure π on G such 
that all bounded π-harmonic functions are constant. In § 2, we extend the definition 
of Liouville property to semigroupoids, which are algebraic structures that resemble a 
semigroup, except that multiplication is not globally defined.

We begin our discussion of semigroupoids in the next section, followed by an intro-
duction to Reiter’s condition and the Liouville property, in both the measurable and 
topological contexts. To pave our way, we prove some basic results in § 3 concerning 
convolution of systems of measures on semigroupoids. In § 4, we show that the Liouville 
property implies Reiter’s condition for semigroupoids, both in the measurable and topo-
logical setting. This extends the result in [20] for groupoids equipped with a Haar system. 
The converse of the previous result for semigroupoids is proved in § 5. In both results, 
we only make the weaker assumption of a quasi-Haar system for semigroupoids so that 
wider applicability can be achieved. For example, such semigroupoids include discrete 
semigroups, which need not admit a Haar system. The following section (§ 6) is devoted 
to the special cases of groupoids, transformation semigroups and semigroups. Our results 
on semigroupoids apply directly to semigroups equipped with a quasi-invariant measure
(Theorem 6.9). For semigroups without such a measure and not necessarily locally com-
pact, we discuss briefly the case of metrizable semigroups, for which one can show that 
Reiter’s condition implies the Liouville property, which in turn implies amenability. The 
proof of the last implication is different from that for semigroupoids. However, a more 
thorough treatment will be given in another work [7]. We conclude the paper with some 
examples of semigroups with the Liouville property in § 7.

2. Semigroupoids

We initiate the discussion of semigroupoids with semigroups. By a topological semi-
group, we mean a semigroup S endowed with a topology such that the multiplication 
on S is jointly continuous. If moreover, the topology is metrizable, we call S a metric 
semigroup.

To discuss semigroupoids in measurable and topological settings, we need to fix some 
notations for measures and functions on a topological space X. A positive finite Borel 
measure μ on X is called tight if for each ε > 0, there is a compact set K ⊆ X such that 
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μ(X \K) < ε. Every positive finite Borel measure on a complete separable metric space 
is tight.

Let M(X) be the space of complex-valued regular Borel measures on X. For each 
nonzero μ ∈ M(X), the norm of μ is defined by ‖μ‖ = |μ|(X) where |μ| is the total 
variation of μ. The support of |μ| is defined by

supp |μ| =
⋂

{F ⊆ X : F is closed, |μ|(F ) = |μ|(X)}

and the support of μ, denoted by suppμ, is defined to be that of |μ|. A measure μ ∈ M(X)
is called tight if |μ| is tight. Every Borel measure with compact support is a tight measure. 
We denote by Mt(X) the subspace of M(X) consisting of tight measures on X. Let Cb(X)
be the C∗-algebra of bounded complex continuous functions on X. For a metric space X, 
the support suppμ of each tight measure μ is nonempty and separable. Moreover, for 
every Borel set B ⊆ X and ε > 0, there is a compact set K ⊆ B satisfying |μ|(B\K) < ε.

We recall that a topological space Y is a Polish space if it is homeomorphic to a 
complete separable metric space. A subset of Y is called analytic if it is of form f(Z)
for some continuous function f from a Polish space Z to Y . Every Borel set in a Polish 
space is analytic.

In the sequel, by an analytic Borel space, we mean a measurable space (G, B) which is 
isomorphic to an analytic set in a Polish space with the relative Borel structure. The sets 
in the σ-algebra B are called the Borel sets in G. The σ-algebra B is often not written 
explicitly for an analytic Borel space G. We refer to [2] for the basic properties of analytic 
Borel spaces.

Remark 2.1. Since an uncountable Polish space with its Borel structure is isomorphic to 
the unit interval [0, 1] with the usual Borel structure [22, p. 451], we see that the Banach 
space L1(Y, μ) of μ-integrable functions on Y is separable for any Borel measure μ on a 
Polish space Y . The same is true for L1(G, ν), where ν is a Borel measure on an analytic 
Borel space G.

Let S be a topological semigroup. A function f ∈ Cb(S) is called left uniformly 
continuous if the mapping a ∈ S �→ δa ∗ f ∈ Cb(S) is continuous, where δa ∗ f is the 
left translate of f by a, which is the convolution of the point mass δa and f defined 
below. The space of bounded left uniformly continuous functions on S will be denoted 
by LUC (S) which forms a sub-C*-algebra of Cb(S). For a discrete semigroup S, we have 
LUC (S) = �∞(S).

Given π, σ ∈ M(S), we define their convolution π ∗ σ to be the image of product 
measure π × σ under the map (x, y) ∈ S × S �→ xy ∈ S, that is,

(π ∗ σ)(E) =
∫

S×S

χE(xy)d(π × σ)(x, y)

for each Borel set E ⊆ S. For f ∈ Cb(S), we have
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∫
S

fd(π ∗ σ) =
∫
S

∫
S

f(xy)dπ(x)dσ(y).

In the sequel, we denote by πn the n-fold convolution 
n−times︷ ︸︸ ︷

π ∗ · · · ∗ π of π.
Given π ∈ M(S) and a Borel function f : S → C, we define the semigroup convolutions

f ∗ π and π ∗ f by

(f ∗ π)(x) =
∫
S

f(xy)dπ(y) and (π ∗ f)(x) =
∫
S

f(yx)dπ(y)

if the integrals exist. For a point mass δa at a ∈ S, we have (δa ∗ f)(x) = f(ax) and 
(f ∗ δa)(x) = f(xa) as well as∫

S

(δa ∗ f)dπ =
∫
S

fd(δa ∗ π).

Definition 2.2. Let S be a topological semigroup and let π ∈ M(S) be a probability 
measure. A Borel function f : S → C is called π-harmonic if f ∗ π = f .

Definition 2.3. A topological semigroup S is called (left) amenable if there is a left in-
variant mean on LUC (S), that is, there exists a norm-one positive linear functional 
ϕ : LUC (S) → C on the C*-algebra LUC (S) satisfying ϕ(δa ∗ f) = ϕ(f) for all a ∈ S.

For a locally compact group S, this definition of amenability agrees with the usual one 
[29, p.67]. We now turn to semigroupoids, which generalise semigroups and groupoids 
at the same time, in a very natural way. A semigroupoid is a small category. It consists 
of a set G(0) of objects (called units), a set G of morphisms, the surjective source and 
target maps s, t : G → G(0), and a composition map (ζ, η) ∈ G(2) �→ ζη ∈ G on 
G(2) :=

{
(ζ, η) ∈ G2: s(ζ) = t(η)

}
. In the special case where there is only one unit, the 

concept of semigroupoids reduces to semigroups with identity, which are sometimes called 
monoids. As usual, we identify the units with the corresponding identity morphisms in G
(which exist by definition). In this way, we may consider G(0) as a subset of G and by a 
slight abuse of language, we call G a semigroupoid.

For each x ∈ G(0), we write Gx := t−1(x) = {γ ∈ G: t(γ) = x}. One may view the 
target map t : G =

⋃
x∈G(0) Gx → G(0) like a ‘bundle projection’. Actually, we will see 

that the Liouville property for G is defined on the ‘fibres’ Gx.
A semigroupoid G is called Borel if G is an analytic Borel space, G(0) is an analytic 

Borel space (as a subspace of G) such that s, t and the composition map are Borel. 
In this case, the sets Gx and the maps ζ : η ∈ Gs(ζ) �→ ζη ∈ Gt(ζ) are Borel. We 
call G a topological semigroupoid if it is endowed with a topology compatible with the 
semigroupoid structure, that is, the composition map, s and t are continuous. We denote 
by Cc(G) the space of complex continuous functions on G with compact support.
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By a locally compact semigroupoid, we mean a topological semigroupoid which is 
locally compact Hausdorff and second countable. This implies that all our locally compact 
semigroupoids are σ-compact.

Example 2.4. Groupoids, which are by definition small categories in which every mor-
phism is invertible, form a special class of semigroupoids. We refer to [1,34] for more 
information about groupoids.

Another class of examples is given by semigroups, or more generally, semigroup ac-
tions. Let S be a semigroup with identity e acting on a set X from the right. We denote 
the action by (x, s) ∈ X × S �→ x.s ∈ X, where x.e = x. The semigroupoid attached to 
the transformation semigroup X � S is given by G := X � S := X × S (as a set), with 
the source and target maps s : (x, s) ∈ X � S �→ x.s ∈ X, t : (x, s) ∈ X � S �→ x ∈ X, 
and the composition (x, s)(x.s, t) = (x, st). It is clear that the set G(0) = {(x, e): x ∈ X}
of units of X � S can be canonically identified with X. By taking X = {pt}, one can 
also view the semigroup S itself as the semigroupoid {pt}� S.

If X and S are analytic Borel spaces, or topological spaces, such that s, t and the 
composition map are Borel or continuous respectively, then X � S becomes a Borel 
or topological semigroupoid. In particular, this is the case if S is a countable discrete 
semigroup acting on a Borel space or a topological space by Borel or continuous maps 
respectively.

Groupoids and transformation semigroups are the two motivating examples for us. 
We will frequently come back to them.

We will need to consider systems of measures on the fibres Gx of a semigroupoid G. 
For groupoids, these are called kernels by Connes in [8, p.11].

Definition 2.5. Let G be a Borel semigroupoid. A Borel system of measures on G is 
a family λ = (λx)x∈G(0) of σ-finite positive Borel measures λx on Gx such that for 
every non-negative Borel function f on G, the map x ∈ G(0) �→ 〈λy, f〉 :=

∫
G fdλx ∈

[0, ∞] is Borel measurable, where we extend λx naturally to a measure on G such that 
λx(G \ Gx) = 0, and in particular, the map x ∈ G(0) �→ λx(E) is Borel for each Borel set 
E ⊂ G.

Definition 2.6. Let G be a topological semigroupoid. A continuous system of measures
on G is a family λ = (λx)x∈G(0) of (nonzero) σ-finite positive Radon measures λx on Gx

such that for every f ∈ Cc(G), the map x ∈ G(0) �→ 〈λx, f〉 ∈ C is continuous.

Given a Borel semigroupoid G with x ∈ G(0) and γ ∈ G satisfying s(γ) = x, and a 
Borel measure λx on Gx, we write γλx for the pushforward of λx under the Borel map 
γ : η ∈ Gx �→ γη ∈ Gt(γ), which is the Borel measure on Gt(γ) induced by the map γ. By 
definition, we have
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〈γλx, f〉 =
∫
Gx

f(γη)dλx(η)

for each non-negative Borel function f on Gt(γ).
For a locally compact semigroupoid G, the pushforward γλx is defined analogously. 

As usual, we write μ ≺ ν to mean that a measure μ is absolutely continuous with respect 
to ν.

Definition 2.7. Let G be a Borel (resp. topological) semigroupoid. A Borel (resp. contin-
uous) system of measures λ = (λx)x∈G(0) on G is called a (left) Haar system if for all 
γ ∈ G, we have γλs(γ) = λt(γ) and the map (γ, η) ∈ G2 �→

(
d(γλs(γ))/dλt(γ)) (η) ∈ [0, ∞]

is Borel, where d(γλs(γ))/dλt(γ) denotes the Radon–Nikodym derivative. In the preced-
ing definition, the system λ = (λx)x∈G(0) will be called a (left) quasi-Haar system if the 
condition γλs(γ) = λt(γ) is replaced by γλs(γ) ≺ λt(γ).

Definition 2.8. A Borel system of measures λ = (λx)x∈G(0) on a Borel semigroupoid G
is called proper if there exists an increasing sequence of Borel subsets An of G with 
G =

⋃
n An such that for each n ∈ N, the map x ∈ G(0) �→ λx(An) ∈ R is bounded.

Definition 2.9. A measure semigroupoid is a triple (G, λ, μ) consisting of a Borel semi-
groupoid G, a proper quasi-Haar system λ = (λx)x∈G(0) on G and a positive Borel measure 
μ on G(0).

In the topological setting, we shall denote by (G, λ) a locally compact semigroupoid 
G equipped with a quasi-Haar system λ = (λx)x∈G(0) on G.

Remark 2.10. If λ is a left Haar system on a Borel (or locally compact) groupoid, then 
λ is a quasi-Haar system since γλs(γ) = λt(γ). An important example of a measure 
semigroupoid is the measured groupoid (G, λ, μ) studied in [1,20] in which the Borel 
system λ is assumed to be a left Haar system. Likewise, a continuous system λ of measures 
on a locally compact groupoid (G, λ) considered in [1,20] is always a left Haar system. 
Our notion of a quasi-Haar system is a weaker version of a Haar system in the groupoid 
case. However, this weak version is already sufficient for our purpose and has wider 
applicability.

Let us now consider the case of the Borel semigroupoid X � S attached to a Borel 
transformation semigroup X � S.

Definition 2.11. A positive Borel measure λ on a topological semigroup S is called quasi-
invariant if sλ ≺ λ for all s ∈ S, where sλ is the left translate of λ, which is the measure 
induced by the left translation t ∈ S �→ st ∈ S.

If S is a group, this is equivalent to saying that all translates of λ are mutually 
equivalent. Thus our definition extends the classical one (cf. [15, p.58]). Let λ be a 



3298 C.-H. Chu, X. Li / Journal of Functional Analysis 274 (2018) 3291–3324
quasi-invariant positive σ-finite Borel measure on S. Suppose that the map (s, t) ∈
S × S �→ (d(sλ)/dλ) (t) ∈ [0, ∞] is Borel. Then λx := δx × λ is a quasi-Haar system 
on X � S as (x, s)(δx.s × λ) = δx × (sλ). Here is a concrete class of examples: Suppose 
that G is a locally compact group, acting on an analytic Borel space X with a Borel 
action (x, g) ∈ X × G �→ x.g ∈ X. Let λG be the Haar measure on G. If S is a Borel 
subsemigroup of G containing the identity such that λG(S) = 0, then the restriction 
λ of λG to S satisfies sλ ≺ λ for all s ∈ S and (d(sλ)/dλ) (t) = χS(s−1t). Therefore 
λx := δx ×λ gives rise to a quasi-Haar system on X �S. In particular, if X = {pt}, this 
allows us to view the semigroup S ∼= {pt} � S as a measure semigroupoid. Of course, 
another class of examples is given by the case when S is discrete (and countable) and λ
is the counting measure.

2.1. Reiter’s condition

Definition 2.12. Let G be a Borel (resp. topological) semigroupoid, and λ a quasi-Haar 
system on G. A Borel (resp. continuous) system θ = (θx)x∈G(0) of probability measures 
on Gx is called λ-adapted if

θx ≺ λx for every x ∈ G(0), and the map

(γ, η) ∈ G2 �→ d(γθs(γ))
dλt(γ) (η) ∈ [0,∞] is Borel. (1)

Note that absolute continuity in (1) and Definition 2.7 imply that γθs(γ)
n ≺ γλs(γ) ≺

λt(γ) and we may consider the Radon–Nikodym derivative in (1).
Given a measure semigroupoid (G, λ, μ), we define a Borel measure μ � λ on G by

μ � λ(E) =
∫
G

λx(E)dμ(x) ∈ [0,∞]

for each Borel set E in G. For f ∈ L1(G, μ � λ), we write

〈μ � λ, f〉 :=
∫
G

fd(μ � λ) =
∫

G(0)

⎛
⎝∫
Gx

fdλx

⎞
⎠ dμ(x).

Definition 2.13. A measure semigroupoid (G, λ, μ) is said to satisfy Reiter’s condition, or 
called Reiter, if there exists a sequence (θn)n of λ-adapted Borel systems of probability 
measures θn = (θxn)x∈G(0) such that

lim
n→∞

∫
G

∥∥∥θt(γ)
n − γθs(γ)

n

∥∥∥ f(γ)d(μ � λ)(γ) = 0 for all f ∈ L1(G, μ � λ). (2)
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Remark 2.14. We observe that ‖θt(γ)
n − γθ

s(γ)
n ‖ ≤ 2 and by the Lebesgue convergence 

theorem, the following condition implies (2):

lim
n→∞

∥∥∥θt(γ)
n − γθs(γ)

n

∥∥∥ = 0 for μ-a.e. x ∈ G(0) and λx-a.e. γ ∈ Gx. (3)

Given a continuous system of measures θ = (θx)x∈G(0) on a locally compact semi-
groupoid G and a compact subset K ⊆ G(0), we set suppKθ :=

⋃
x∈K supp θx.

Definition 2.15. A locally compact semigroupoid (G, λ) with quasi-Haar system λ is said 
to satisfy Reiter’s condition if there exists a sequence (θn)n of λ-adapted continuous 
systems of probability measures θn = (θxn)x∈G(0) such that

lim
n→∞

∥∥∥θt(γ)
n − γθs(γ)

n

∥∥∥ = 0 for all γ ∈ G. (4)

We say that (G, λ) satisfies the uniform Reiter’s condition if the convergence in (4) is 
uniform on compact subsets of G.

If for every compact subset K of G(0), the support suppK(θn) is compact for each θn
in (4), we say that (G, λ) satisfies the tight Reiter’s condition.

We also call (G, λ) Reiter (respectively, uniform Reiter or tight Reiter) if it satis-
fies Reiter’s condition (respectively, the uniform Reiter’s condition or the tight Reiter’s 
condition).

Remark 2.16. A measured groupoid (G, λ, μ), where λ is a left Haar system, is Reiter in 
our sense if and only if it is amenable (see [1, Chapter 3]). A locally compact groupoid 
(G, λ), where λ is a left Haar system, is uniform Reiter in our sense if and only if G is 
amenable (see [1, Chapter 2]). Moreover, by [35, Theorem 2.14], we know that in the 
case of locally compact groupoids, (G, λ) is Reiter if and only if it is uniform Reiter. We 
will see later that for such groupoids, Reiter’s condition is also equivalent to the tight 
Reiter’s condition.

Let us now consider the case of the semigroupoid X�S attached to a transformation 
semigroup X � S, where S is a countable discrete semigroup. For our quasi-Haar system, 
we always choose λx = δx × λ, where λ is the counting measure. Going through our 
definitions, we see that in the Borel case, (X�S, λ, μ) is Reiter if there exists a sequence 
(θn)n of families θn = (θxn)x∈X of probability measures θxn on S such that for every n ∈ N

and s ∈ S, the map x ∈ X �→ θxn(s) ∈ R is Borel and

lim
n→∞

∫
X

∑
s∈S

‖θxn − sθx.sn ‖ f(x, s)dμ(x) = 0 for all f ∈ L1(X × S, μ× λ).

In the locally compact case, our definition says that (X � S, λ) is Reiter if there exists 
a sequence (θn)n of families θn = (θxn)x∈X of probability measures θxn on S such that for 
every n ∈ N, the map x ∈ X �→ θxn ∈ �1(S) is continuous and
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lim
n→∞

‖θxn − sθx.sn ‖ = 0 for all x ∈ X and s ∈ S.

If the convergence is uniform on compact subsets of X, then (X�S, λ) is uniform Reiter, 
and if suppKθn :=

⋃
x∈K supp θxn ⊆ S is finite for every compact subset K of X, then 

(X � S, λ) is tight Reiter.

2.2. Liouville property

Let (G, λ, μ) be a measure semigroupoid and π = (πx)x∈G(0) a Borel system of proba-
bility measures. By natural extension as before, we often regard the measure πx on Gx

as a measure on G vanishing on G\Gx. Given πx ≺ λx for all x ∈ G(0), we can define, for 
every x ∈ G(0), the fibrewise Markov operator Px : L∞(Gx, λx) → L∞(Gx, λx) by

Px(f)(ζ) =
∫

Gs(ζ)

f(ζη)dπs(ζ)(η) (ζ ∈ Gx).

Extending Definition 2.2, a Borel function f : Gx → C is called Px-harmonic if Px(f) = f . 
Let Hπ,x(G) := {f ∈ L∞(Gx, λx): Px(f) = f} be the space of bounded Px-harmonic 
functions on the fibre Gx.

For a locally compact semigroupid (G, λ) with a λ-adapted continuous system π of 
probability measures, the space Hπ,x(G) is defined analogously.

Definition 2.17. A measure semigroupoid (G, λ, μ) is said to have the Liouville property, 
or called Liouville, if there exists a λ-adapted Borel system of probability measures 
π = (πx)x∈G(0) such that Hπ,x(G) = C1 for μ-a.e. x ∈ G(0), where 1 is the constant 
function on Gx with value 1.

Definition 2.18. A locally compact semigroupoid (G, λ) with quasi-Haar system λ is said 
to have the Liouville property, or called Liouville, if there exists a λ-adapted continuous 
system of probability measures π = (πx)x∈G(0) such that Hπ,x(G) = C1 for all x ∈ G(0).

We say that (G, λ) has the continuous Liouville property, or is continuous Liou-
ville, if the system π above also satisfies the condition that the map (γ, η) ∈ G2 �→(
d(γπs(γ))/dλt(γ)) (η) ∈ R is bounded and continuous.

The semigroupoid (G, λ) is said to have the tight Liouville property or called tight 
Liouville, if it is Liouville with the system π satisfying the condition that for every 
compact subset K of G(0), suppK(π) is compact.

For groupoids, these definitions coincide with the ones given in [20].

Example 2.19. In the case of the semigroupoid X � S attached to a transformation 
semigroup X � S, where S is a discrete semigroup, the fibrewise Markov operator 
Px : �∞(S) → �∞(S) is given by Px(f)(r) =

∑
s∈S f(rs)πx.r(s). In particular, this is 
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just the convolution f ∗ π on the semigroup S for X = {pt}, in which case the Liouville
property states that all bounded π-harmonic functions on S are constant.

3. Convolution of systems of measures

In this section, we derive some basic results needed later for the convolution of two 
systems of measures on semigroupoids. Let G be a Borel semigroupoid and π = (πx)x∈G(0)

a Borel system of probability measures on G. Given a positive Borel measure ρ on Gx

for some x ∈ G(0), we first define the convolution ρ ∗ π of ρ with the system π as the 
following Borel measure on Gx:

ρ ∗ π(E) =
∫
Gx

πs(ζ){η ∈ Gs(ζ) : ζη ∈ E}dρ(ζ)

for each Borel set E in Gx. For f ∈ L1(Gx, ρ ∗ π), we have

〈ρ ∗ π, f〉 :=
∫
Gx

fd(ρ ∗ π) :=
∫
Gx

⎛
⎜⎝ ∫
Gs(ζ)

f(ζη)dπs(ζ)(η)

⎞
⎟⎠ dρ(ζ).

Now for a Borel system ρ = (ρx)x∈G(0) of measures on G, we define (ρ ∗π)x := ρx ∗π and 
write ρ ∗ π = ((ρ ∗ π)x)x∈G(0) for the family of Borel measures (ρ ∗ π)x on Gx.

For a locally compact semigroupoid G and a continuous system π of probability mea-
sures on G, one can define analogously the convolution ρ ∗ π for a Borel measure ρ on 
some Gx, and for a continuous system ρ of measures on G.

Remark 3.1. The above definition of the convolution ρ ∗ π coincides with the one for 
groupoids given by Connes [8, p.11].

In the case of the semigroupoid X � S attached to a transformation semigroup 
X � S, where S is a discrete semigroup, the convolution ρ ∗ π is given by (ρ ∗ π)(t) =∑

r,s∈S
rs=t

πx.r(s)ρ(r).
We collect below some simple facts about convolutions of measures for later use. For 

a Borel semigroupoid G, we denote by Bb(Gx) the algebra of bounded Borel functions on 
a fibre Gx, equipped with the supremum norm ‖ · ‖∞. We recall that the total variation 
norm of a finite Borel measure ρ on Gx is given by ‖ρ‖ = sup{| 

∫
Gx fdρ| : f ∈ Bb(Gx),

‖f‖∞ ≤ 1}.

Lemma 3.2. Let G be a Borel or locally compact semigroupoid and π = (πx)x∈G(0) a Borel 
system of probability measures on G.

a) If ρ is a finite Borel measure on Gx for some x ∈ G(0), then ‖ρ ∗ π‖ ≤ ‖ρ‖.
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b) If ρ is a probability measure on Gx (x ∈ G(0)), then ‖πx − ρ ∗ π‖ ≤
∫
Gx

∥∥πx −
ζπs(ζ)

∥∥dρ(ζ).
Proof.

a) Given f ∈ Bb(Gx), the map fπ : ζ ∈ G �→
∫
Gs(ζ) f(ζη)dπs(ζ)(η) is a bounded Borel 

function, with ‖fπ‖∞ ≤ ‖f‖∞. Hence |〈ρ ∗ π, f〉| = |〈ρ, fπ〉| ≤ ‖ρ‖ · ‖fπ‖∞ ≤ ‖ρ‖ ·
‖f‖∞ and the result follows.

b) Let ε > 0. Pick f ∈ Bb(Gx) with ‖f‖∞ = 1 and |〈πx − ρ ∗ π, f〉| ≥ ‖πx − ρ ∗ π‖ − ε. 
As ρ is a probability measure, we have

‖πx − ρ ∗ π‖ ≤ ε +

∣∣∣∣∣∣∣
∫
Gx

f(η)dπx(η) −
∫
Gx

⎛
⎜⎝ ∫
Gs(ζ)

f(ζη)dπs(ζ)(η)

⎞
⎟⎠ dρ(ζ)

∣∣∣∣∣∣∣
≤ ε +

∫
Gx

∣∣∣∣∣∣∣
∫
Gx

f(η)dπx(η) −
∫

Gs(ζ)

f(ζη)dπs(ζ)(η)

∣∣∣∣∣∣∣ dρ(ζ)
≤ ε +

∫
Gx

∥∥πx − ζπs(ζ)
∥∥ dρ(ζ)

where ζπs(ζ) is a measure on Gt(ζ) = Gx. This completes the proof. �
Lemma 3.3. Let G be a Borel semigroupoid with Borel systems π = (πx)x∈G(0) and ρ =
(ρx)x∈G(0) of probability measures on G. Let λ = (λx)x∈G(0) be a quasi-Haar system on G
in b) and c) below.

a) ρ ∗ π is a Borel system of probability measures on G.
b) If πy ≺ λy for all y ∈ G(0), then for every x ∈ G(0) and every Borel measure σ on 

Gx, we have σ ∗ π ≺ λx.
c) If ρx ≺ λx for all x ∈ G(0), and if both maps (γ, η) ∈ G2 �→

(
d(γπs(γ))/dλt(γ)) (η)

and (γ, η) ∈ G2 �→
(
d(γρs(γ))/dλt(γ)) (η) are Borel, then so is the map (γ, η) ∈ G2 �→(

d(γ(ρ ∗ π)s(γ))/dλt(γ)) (η).

Proof.

a) Given a non-negative Borel function f on G, the non-negative map ζ ∈ G �→〈
ζπs(ζ), f

〉
is Borel. Therefore the map x ∈ G(0) �→

∫
Gx

〈
ζπs(ζ), f

〉
dρx(ζ) is Borel 

since ρ is a Borel system of measures.
b) This follows from 〈σ ∗ π, f〉 =

∫
Gx

(∫
Gx fd(ζπs(ζ))

)
dσ(ζ) for each non-negative Borel 

function f on Gx, and ζπs(ζ) ≺ ζλs(ζ) ≺ λt(ζ) = λx.
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c) Let uγ := d(γπs(γ))/dλt(γ) and vγ := d(γρs(γ))/dλt(γ). Then for each non-negative 
Borel function f on G and γ ∈ G with s(γ) = x, we have

〈γ(ρ ∗ π)x, f〉 =
∫
Gx

⎛
⎝∫

G

f(γζη)dπs(ζ)(η)

⎞
⎠ dρx(ζ) =

∫
G

⎛
⎝∫

G

f(ξη)dπs(ξ)(η)

⎞
⎠ d(γρx)(ξ)

=
∫
G

⎛
⎝∫

G

fd(ξπs(ξ))

⎞
⎠ d(γρx)(ξ) =

∫
G

⎛
⎝∫

G

fuξdλ
t(ξ)

⎞
⎠ vγ(ξ)dλt(γ)(ξ)

=
∫
G

f(ω)

⎛
⎝∫

G

uξ(ω)vγ(ξ)dλt(γ)(ξ)

⎞
⎠ dλt(γ)(ω).

Hence we have 
(
d(γ(ρ ∗ π)s(γ))/dλt(γ)) (ω) =

∫
G uξ(ω)vγ(ξ)dλt(γ)(ξ). It follows that 

the map (γ, ω) ∈ G2 �→
(
d(γ(ρ ∗ π)s(γ))/dλt(γ)) (ω) is Borel. �

Lemma 3.4. Let G be a locally compact semigroupoid with two continuous systems π =
(πx)x∈G(0) and ρ = (ρx)x∈G(0) of probability measures on G. Then

a) ρ ∗ π is a continuous system of probability measures.
b) If π and ρ have the property that for every compact subset K ⊆ G(0), the supports 

suppK(π) and suppK(ρ) are compact, then ρ ∗ π has this property as well.
c) Let λ = (λx)x∈G(0) be a quasi-Haar system on G. If πx ≺ λx and ρx ≺ λx for all 

x ∈ G(0), and if both maps (γ, η) ∈ G2 �→
(
d(γπs(γ))/dλt(γ)) (η) ∈ R and (γ, η) ∈

G2 �→
(
d(γρs(γ))/dλt(γ)) (η) ∈ R are bounded and continuous, then the map (γ, η) ∈

G2 �→
(
d(γ(ρ ∗ π)s(γ))/dλt(γ)) (η) ∈ R is also bounded and continuous.

Proof.

a) Since G is locally compact and second countable, we know that the map x ∈ G(0) �→
〈πx, f〉 ∈ C is continuous for every f ∈ Cb(G) (not only for f ∈ Cc(G)), and likewise 
for ρ. A similar argument as in the proof of [31, Chapter III, Lemma 1.1] shows that 
for every f ∈ Cb(G), the map ζ ∈ G �→

〈
ζπs(ζ), f

〉
∈ C is continuous (and obviously 

bounded, too). Hence, as ρ is a continuous system of measures, we conclude that the 
map x ∈ G(0) �→ 〈(ρ ∗ π)x, f〉 =

∫
Gx

〈
ζπs(ζ), f

〉
dρx(ζ) ∈ C is continuous.

b) Given two subsets A and B of G, we write A ·B for the image of (A ×B) ∩G(2) under 
the composition map G(2) → G. Obviously, A · B is compact if both A and B are 
compact. Now given a compact subset K of G(0), it is obvious that suppK(ρ ∗ π) ⊆
suppK(ρ) · suppK(π).

c) This follows from the same computation as in the proof of Lemma 3.3 c) and a 
similar argument to the proof of [31, Chapter III, Lemma 1.1]. �
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4. Liouville property implies Reiter’s condition

We are now ready to reveal the relationship between Reiter’s condition and the Li-
ouville property for semigroupoids. We do so in the measurable and topological setting. 
In this section, we prove that for semigroupoids equipped with a quasi-Haar system, the 
Liouville property implies Reiter’s condition. This extends two results of Kaimanovich 
(Theorem 4.2 and Theorem 6.1 in [20]) for groupoids with a Haar system. We first 
establish the connection between our setting and the one in [20, § 3].

Let (G, λ, μ) be a measure semigroupoid and π = (πx)x∈G(0) a λ-adapted Borel sys-
tem of probability measures on G. We observe that, for every x ∈ G(0), the fibrewise 
Markov operator Px : L∞(Gx, λx) → L∞(Gx, λx) has a predual operator given by 
θ ∈ L1(Gx, λx) �→ θPx := θ ∗ π ∈ L1(Gx, λx) since

〈θ, Px(f)〉 =
∫
Gx

⎛
⎝∫

G

f(ζη)dπs(ζ)(η)

⎞
⎠ dθ(ζ) = 〈θ ∗ π, f〉 (f ∈ L∞(Gx, λx))

(cf. [20, § 3]). We have the k-th iterate θP k
x = θ ∗ πk.

Theorem 4.1. Let (G, λ, μ) be a measure semigroupoid. If (G, λ, μ) is Liouville. Then it 
is Reiter.

Proof. Let π = (πx)x∈G(0) be a λ-adapted Borel system of probability measures such 
that Hπ,x(G) = C1 for μ-a.e. x ∈ G(0). Moreover, let θ = (θx)x∈G(0) be any λ-adapted 
Borel system of probability measures. For instance, we could take θx = πx. Set θxn :=

1
n+1

∑n
k=0 θ

x ∗ πk. This is, for every n ∈ N, a λ-adapted Borel system of probability 
measures by Lemma 3.3 a), b) and c). We have for every γ ∈ G:

∥∥∥θt(γ)
n − γθs(γ)

n

∥∥∥ =

∥∥∥∥∥ 1
n+1

n∑
k=0

θt(γ) ∗ πk − γ(θs(γ) ∗ πk)

∥∥∥∥∥ =

∥∥∥∥∥ 1
n+1

n∑
k=0

(θt(γ) − γθs(γ)) ∗ πk

∥∥∥∥∥ .
By assumption, we have Hπ,x(G) = C1 for μ-a.e. x ∈ G(0). In the language of [19], 
this means that for μ-a.e. x ∈ G(0), the Poisson boundary of Px is trivial. Hence [19, 
Theorem 2.8] implies that for μ-a.e. x ∈ G(0) and λx-a.e. γ ∈ Gx, we have

lim
n→∞

∥∥∥∥∥ 1
n+1

n∑
k=0

(θt(γ) − γθs(γ)) ∗ πk

∥∥∥∥∥ = lim
n→∞

∥∥∥∥∥ 1
n+1

n∑
k=0

(θt(γ)P k
t(γ) − γθs(γ)P k

t(γ))

∥∥∥∥∥ = 0.

By Remark 2.14, (G, λ, μ) is Reiter. �
In the topological setting, we have the following analogous result.
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Theorem 4.2. Let (G, λ) be a locally compact semigroupoid with quasi-Haar system λ.

1) If (G, λ) is Liouville, then it is Reiter.
2) If (G, λ) is tight Liouville, then it is tight Reiter.
3) If (G, λ) is continuous Liouville, then it is uniform Reiter.

Proof. For 1), let π = (πx)x∈G(0) be a λ-adapted continuous system of probability mea-
sures on G such that Hπ,x(G) = C1 for all x ∈ G(0). Define a new family of measures 
ρ = (ρx)x∈G(0) by setting ρx := 1

2 (πx+(π ∗π)x). By Lemma 3.3 b), c) and Lemma 3.4 a), 
ρ is again a λ-adapted continuous system of probability measures on G. Moreover, let 
θ = (θx)x∈G(0) be any λ-adapted continuous system of probability measures. For instance, 
we could take θx = πx. We define, for each n ∈ N, θn := θ ∗ ρn. By our assumption, 
Hπ,x(G) = C1 for all x ∈ G(0), or in the language of [19], the Poisson boundary of Px is 
trivial for all x ∈ G(0). Hence, combining [19, Theorem 2.6] and [19, Theorem 2.7] as in 
[20, Proof of Theorem 6.1], we obtain for every γ ∈ G:

lim
n→∞

∥∥∥θt(γ)
n − γθs(γ)

n

∥∥∥ = lim
n→∞

∥∥∥(θt(γ) − γθs(γ)) ∗ ρn
∥∥∥

= lim
n→∞

∥∥∥∥∥2−n
n∑

k=0

(
n

k

)
(θt(γ) − γθs(γ)) ∗ πn+k

∥∥∥∥∥ = 0. (5)

This proves 1).
For 2), note that if we choose θ and π with the property that suppK(θ) and suppK(π)

are compact for all compact subsets K ⊆ G(0), then for every n ∈ N, θn has the same 
property due to Lemma 3.4 b).

For 3), we choose θ and π such that G2 → R, (γ, η) �→
(
d(γθs(γ))/dλt(γ)) (η)

and G2 → R, (γ, η) �→
(
d(γπs(γ))/dλt(γ)) (η) are bounded and continuous. Then, by 

Lemma 3.4 c), we know that for every n ∈ N, θn has the same property. Hence for every 

n ∈ N, the map γ ∈ G �→
∥∥∥θt(γ)

n − γθ
s(γ)
n

∥∥∥ ∈ R is continuous. Moreover, these maps form 

a decreasing sequence (in n) by Lemma 3.2 a). Therefore, Dini’s theorem implies that 
the convergence in (5) is uniform on compact subsets of G. �
5. Reiter’s condition implies Liouville property

We are going to prove that Reiter’s condition implies the Liouville property for 
semigroupoids, both in the measurable and topological setting. In the special case of 
groupoids, this proves Kaimanovich’s conjecture and the details will be given in the next 
section. A crucial construction in the proof is to replace, in Reiter’s condition on the 
semigroupoid G, the Borel systems (θn)n∈N of approximately invariant measures by a 
single system π = (πx)x∈G(0) so that the convolution powers (πn

x)x∈G(0) play the role of 
the sequence (θxn)x∈G(0) . In the proof of Proposition 5.1, we follow the strategy adopted 
in [21] for the case of discrete groups. We begin with measure semigroupoids.
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Proposition 5.1. Let (G, λ, μ) be a measure semigroupoid. If (G, λ, μ) is Reiter, then there 
exists a λ-adapted Borel system of probability measures π = (πx)x∈G(0) on G such that 
for μ-a.e. x ∈ G(0) and λx-a.e. γ ∈ Gx, we have limi→∞

∥∥∥πi
t(γ) − γπi

s(γ)

∥∥∥ = 0.

Proof. Since L1(G(0), μ) is separable (see Remark 2.1), there exists a sequence of fi-
nite subsets (Fi)i of L1(G(0), μ)+ such that F1 ⊆ F2 ⊆ . . . and 

⋃∞
i=1 Fi is dense 

in L1(G(0), μ)+. Choose sequences (ti)i and (εi)i in (0, 1) such that 
∑∞

i=1 ti = 1, 
ε1 > ε2 > ε3 > . . . and limi→∞ εi = 0. As λ is proper (Definition 2.8), we can find 
an increasing sequence of Borel subsets Ai of G such that G =

⋃∞
i=1 Ai and

Ci := sup
x∈G(0)

λx(Ai) ∈ (0,∞). (6)

Choose a sequence (ni)i of natural numbers such that n1 < n2 < . . . and (t1 + · · · +
ti−1)ni < εi

Ci
.

Let us now choose inductively λ-adapted Borel systems of probability measures θi =
(θxi )x∈G(0) on G. Let θ1 be any λ-adapted Borel system of probability measures on G. 
Now assume that θ1, . . . , θm−1 have been chosen. Let

Θm−1 :=
{
θk1 ∗ · · · ∗ θkj

: 1 ≤ j ≤ nm − 1, kj ∈ {1, . . . ,m− 1}
}
.

Every ρ ∈ Θm−1 is λ-adapted by Lemma 3.3 c). Let ux := dρx/dλx. Then ∫
Gx u

x(ζ)dλx(ζ) =
∫
Gx dρ

x(ζ) = 1 as ρx is a probability measure. For f ∈ Fm−1 and 
ρ ∈ Θm−1, let ϕf,ρ(ζ) = ut(ζ)f(t(ζ)). Then ϕf,ρ is Borel because ρ is λ-adapted, and we 
have ϕf,ρ ∈ L1(G, μ � λ) since

∫
G(0)

⎛
⎝∫
Gx

ϕf,ρ(ζ)dλx(ζ)

⎞
⎠ dμ(x) =

∫
G(0)

⎛
⎝∫
Gx

ux(ζ)dλx(ζ)

⎞
⎠ f(x)dμ(x)

=
∫

G(0)

f(x)dμ(x) < ∞.

For each ρ ∈ Θm−1, let vγ(η) :=
(
d(γρs(γ))/dλt(γ)) (η). Since γρs(γ) is a probability 

measure, we have

∫
Gx

vγ(η)dλx(η) =
∫
Gx

d(γρs(γ)) = 1. (7)

For f ∈ Fm−1 and ρ ∈ Θm−1, set φf,ρ(η) =
∫
G vγ(η)1Am

(γ)f(t(η))dλt(η)(γ). Again, φf,ρ

is Borel because ρ is λ-adapted, and φf,ρ lies in L1(G, μ � λ) as (6) and (7) imply
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∫
G(0)

⎛
⎝∫
Gx

φf,ρ(η)dλx(η)

⎞
⎠ dμ(x)

=
∫

G(0)

⎛
⎜⎝∫
Gx

⎛
⎜⎝ ∫
Gt(η)

vγ(η)1Am
(γ)f(t(η))dλt(η)(γ)

⎞
⎟⎠ dλx(η)

⎞
⎟⎠ dμ(x)

=
∫

G(0)

⎛
⎝∫
Gx

⎛
⎝∫
Gx

vγ(η)dλx(η)

⎞
⎠ 1Am

(γ)dλx(γ)

⎞
⎠ f(x)dμ(x)

≤ Cm ·
∫

G(0)

f(x)dμ(x) < ∞.

Since (G, λ, μ) is Reiter, we can choose θm such that

∫
G

∥∥∥θt(γ)
m − γθs(γ)

m

∥∥∥ 1Am
(γ)f(t(γ))d(μ � λ)(γ) < εm for all f ∈ Fm−1, (8)

∫
G

∥∥∥θt(ζ)m − ζθs(ζ)m

∥∥∥ϕf,ρ(ζ)d(μ � λ)(ζ) < εm
Cm

for all f ∈ Fm−1 and ρ ∈ Θm−1 (9)

and ∫
G

∥∥∥θt(η)
m − ηθs(η)

m

∥∥∥φf,ρ(η)d(μ � λ)(η) < εm for all f ∈ Fm−1 and ρ ∈ Θm−1. (10)

Now set πx :=
∑∞

i=1 tiθ
x
i for all x ∈ G(0). π = (πx) is again a λ-adapted Borel system 

of probability measures.
Take m ∈ N and f ∈ Fm−1. Set n := nm. Write the n-fold convolution πn

x = (π1)x +
(π2)x where

(π1)x =
∑
k∈N

n

max(k)<m

tk1 · · · tkn
(θk1 ∗ · · · ∗ θkn

)x, (11)

(π2)x = πn
x − (π1)x =

∑
k∈N

n

max(k)≥m

tk1 · · · tkn
(θk1 ∗ · · · ∗ θkn

)x. (12)

Then ‖(π1)x‖ ≤ (t1 + · · · + tm−1)nm < εm
Cm

for all x ∈ G(0) and hence

∫
(0)

⎛
⎝∫

x

∥∥(π1)t(γ) − γ(π1)s(γ)
∥∥ 1Am

(γ)dλx(γ)

⎞
⎠ f(x)dμ(x) (13)
G G
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<

∫
G(0)

⎛
⎝∫
Gx

2 εm
Cm

1Am
(γ)dλx(γ)

⎞
⎠ f(x)dμ(x) ≤ 2εm.

For k ∈ Nn with max(k) ≥ m, θk1 ∗ · · · ∗ θkn
is of the form θ ∗ τ for some θ = θk with 

k ≥ m, or it is of the form ρ ∗ θ ∗ τ for some ρ ∈ Θm−1 and θ = θk with k ≥ m. By (8), 
we have

∫
G(0)

⎛
⎝∫
Gx

∥∥∥θt(γ) − γθs(γ)
∥∥∥ 1Am

(γ)dλx(γ)

⎞
⎠ f(x)dμ(x) < εm. (14)

For every x ∈ G(0), Lemma 3.2 b) implies

‖θx − (ρ ∗ θ)x‖ ≤
∫
Gx

∥∥∥θt(ζ) − ζθs(ζ)
∥∥∥ dρx(ζ). (15)

Therefore we have

∫
G(0)

⎛
⎝∫
Gx

‖θx − (ρ ∗ θ)x‖ 1Am
(γ)dλx(γ)

⎞
⎠ f(x)dμ(x) (16)

≤ Cm

∫
G(0)

‖θx − (ρ ∗ θ)x‖ f(x)dμ(x)

(15)
≤ Cm

∫
G(0)

⎛
⎝∫
Gx

∥∥∥θt(ζ) − ζθs(ζ)
∥∥∥ dρx(ζ)

⎞
⎠ f(x)dμ(x)

= Cm

∫
G(0)

⎛
⎝∫
Gx

∥∥∥θt(ζ) − ζθs(ζ)
∥∥∥ux(ζ)f(x)dλx(ζ)

⎞
⎠ dμ(x)

= Cm

∫
G

∥∥∥θt(ζ) − ζθs(ζ)
∥∥∥ϕf,ρ(ζ)d(μ � λ)(ζ)

(9)
< εm.

For every γ ∈ G, Lemma 3.2 b) implies that

∥∥∥θt(γ) − γ(ρ ∗ θ)s(γ)
∥∥∥ =

∥∥∥θt(γ) − (γρs(γ)) ∗ θ
∥∥∥ ≤

∫
Gt(γ)

∥∥∥θt(γ) − ηθs(η)
∥∥∥ d(γρs(γ))(η). (17)

Using vγ(η) :=
(
d(γρs(γ))/dλt(γ)) (η) and φf,ρ(η) =

∫
G vγ(η)1Am

(γ)f(t(η))dλt(η)(γ), a 
computation analogous to (16) gives
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∫
G(0)

⎛
⎝∫
Gx

∥∥∥θt(γ) − γ(ρ ∗ θ)s(γ)
∥∥∥ 1Am

(γ)dλx(γ)

⎞
⎠ f(x)dμ(x) (18)

(17)
≤

∫
G(0)

⎛
⎝∫
Gx

⎛
⎝∫
Gx

∥∥∥θt(γ) − ηθs(η)
∥∥∥ d(γρs(γ))(η)

⎞
⎠ 1Am

(γ)dλx(γ)

⎞
⎠ f(x)dμ(x)

=
∫
G

∥∥∥θt(η) − ηθs(η)
∥∥∥φf,ρ(η)d(μ � λ)(η)

(10)
< εm.

Combining (16) and (18), we get

∫
G(0)

⎛
⎝∫
Gx

∥∥∥(ρ ∗ θ)t(γ) − γ(ρ ∗ θ)s(γ)
∥∥∥ 1Am

(γ)dλx(γ)

⎞
⎠ f(x)dμ(x) < 2εm

and also for all m′ ≤ m,

∫
G(0)

⎛
⎝∫
Gx

∥∥∥(ρ ∗ θ)t(γ) − γ(ρ ∗ θ)s(γ)
∥∥∥ 1Am′ (γ)dλx(γ)

⎞
⎠ f(x)dμ(x) < 2εm. (19)

With the help of Lemma 3.2 a), we deduce from (14) and (19) that

∫
G(0)

⎛
⎝∫
Gx

∥∥∥(θ ∗ τ)t(γ) − γ(θ ∗ τ)s(γ)
∥∥∥ 1Am′ (γ)dλx(γ)

⎞
⎠ f(x)dμ(x) < εm

and

∫
G(0)

⎛
⎝∫
Gx

∥∥∥(ρ ∗ θ ∗ τ)t(γ) − γ(ρ ∗ θ ∗ τ)s(γ)
∥∥∥ 1Am′ (γ)dλx(γ)

⎞
⎠ f(x)dμ(x) < 2εm.

As every summand in π2 is of the form θ ∗ τ or ρ ∗ θ ∗ τ , we obtain

∫
G(0)

⎛
⎝∫
Gx

∥∥(π2)t(γ) − γ(π2)s(γ)
∥∥ 1Am′ (γ)dλx(γ)

⎞
⎠ f(x)dμ(x) (20)

<
∑
k∈N

n

max(k)≥m

tk1 · · · tkn
· 2εm ≤

( ∞∑
i=1

ti

)n

· 2εm = 2εm.

Finally, combining (13) and (20), using Lemma 3.2 a), we obtain, for m′ ≤ m,
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∫
G(0)

⎛
⎝∫
Gx

∥∥∥πi
t(γ) − γπi

s(γ)

∥∥∥ 1Am′ (γ)dλx(γ)

⎞
⎠ f(x)dμ(x) < 4εm for all i ≥ n = nm.

Since limm→∞ εm = 0, we have, for every m′ ∈ N and f ∈ Fm′−1,

lim
i→∞

∫
G(0)

⎛
⎝∫
Gx

∥∥∥πi
t(γ) − γπi

s(γ)

∥∥∥ 1Am′ (γ)dλx(γ)

⎞
⎠ f(x)dμ(x) = 0 (21)

which gives

lim
i→∞

∫
G(0)

⎛
⎝∫
Gx

∥∥∥πi
t(γ) − γπi

s(γ)

∥∥∥ dλx(γ)

⎞
⎠ f(x)dμ(x) = 0

for all f ∈
⋃

i Fi, and hence for all f ∈ L1(G(0), μ). It follows that for μ-a.e. x ∈ G(0) and 

λx-a.e. γ ∈ Gx, we have limi→∞

∥∥∥πi
t(γ) − γπi

s(γ)

∥∥∥ = 0. Here we have used the fact that 

the sequence 
(∥∥∥πi

t(γ) − γπi
s(γ)

∥∥∥)
i

is decreasing by Lemma 3.2 a). �
Lemma 5.2. Let (G, λ, μ) be a measure semigroupoid. If there exists a λ-adapted Borel 
system of probability measures π = (πx)x∈G(0) such that limi→∞

∥∥∥πi
t(γ) − γπi

s(γ)

∥∥∥ = 0 for 
λx-a.e. γ ∈ Gx and μ-a.e. x ∈ G(0), then we have Hπ,x(G) = C1 for μ-a.e. x ∈ G(0).

Proof. Take x ∈ G(0) such that limi→∞

∥∥∥πi
t(γ) − γπi

s(γ)

∥∥∥ = 0 for λx-a.e. γ ∈ Gx. Let 
f ∈ L∞(Gx, λx) satisfy Px(f) = f . Then f = P i

x(f) and, for λx-a.e. γ ∈ Gx, we have 
f(γ) =

∫
Gx f(γζ)dπi

s(γ)(ζ). Therefore

∣∣∣∣∣∣f(γ) −
∫
Gx

f(ζ)dπi
x(ζ)

∣∣∣∣∣∣ =
∣∣∣〈γπi

s(γ) − πi
t(γ), f

〉∣∣∣ ≤ ‖f‖∞ ·
∥∥∥γπi

s(γ) − πi
t(γ)

∥∥∥ −→
i→∞

0

for λx-a.e. γ ∈ Gx. Hence f is constant λx-a.e. �
From Proposition 5.1 and Lemma 5.2, we have established the following theorem.

Theorem 5.3. Let (G, λ, μ) be a measure semigroupoid. If (G, λ, μ) is Reiter, then it is 
Liouville.

We now discuss topological semigroupoids. In addition to the previous approach to 
the measure semigroupoid case, we need to make use of the uniform and tight Reiter’s 
condition to deduce the existence of one single continuous system π = (πx)x∈G(0) in the 
following key proposition.
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Proposition 5.4. Let (G, λ) be a locally compact semigroupoid with quasi-Haar system. If 
(G, λ) is uniform and tight Reiter, then there exists a λ-adapted continuous system of 
probability measures π = (πx)x∈G(0) such that

lim
i→∞

∥∥∥πi
t(γ) − γπi

s(γ)

∥∥∥ = 0 for all γ ∈ G.

Proof. Since G is σ-compact (see § 2), there exists a sequence of compact subsets (Ci)i
of G such that C0 ⊆ C1 ⊆ C2 ⊆ . . . and G =

⋃∞
i=0 Ci. Choose sequences (ti)i and (εi)i in 

(0, 1) such that 
∑∞

i=1 ti = 1, ε1 > ε2 > ε3 > . . . and limi→∞ εi = 0. Furthermore, choose 
a sequence (ni)i of natural numbers such that n1 < n2 < . . . and (t1 + · · ·+ ti−1)ni < εi.

Let us now inductively choose λ-adapted continuous systems of probability mea-
sures θi = (θxi )x∈G(0) . Let θ1 be such a continuous system of probability measures with ∥∥∥θt(γ)

1 − γθ
s(γ)
1

∥∥∥ < ε1 for all γ ∈ C0. Now assume that θ1, . . . , θm−1 have been chosen. 
Let

Θm−1 :=
{
θk1 ∗ · · · ∗ θkj

: 1 ≤ j ≤ nm − 1, kj ∈ {1, . . . ,m− 1}
}
.

Lemma 3.3 c) implies that every ρ ∈ Θm−1 is λ-adapted. Moreover, for K ⊆ G(0) com-
pact, set suppK(Θm−1) :=

⋃
ρ∈Θm−1

suppK(ρ). Then, by Lemma 3.4 b), suppK(Θm−1)
is compact for every compact subset K ⊆ G(0). Now choose θm such that

∥∥∥θt(γ)
m − γθs(γ)

m

∥∥∥ < εm (22)

for all γ ∈ suppt(Cm−1)(Θm−1) ∪ (Cm−1 · supps(Cm−1)(Θm−1)) ∪ Cm−1. Such θm exist 
since G is uniform and tight Reiter.

Now set πx :=
∑∞

i=1 tiθ
x
i for all x ∈ G(0). π = (πx)x∈G(0) is again a λ-adapted con-

tinuous system of probability measures. Take m ∈ N and γ ∈ Cm−1. Set n := nm. 
Write πn

x = (π1)x + (π2)x where (π1)x and (π2)x are defined as in (11) and (12). Then 
‖(π1)x‖ ≤ (t1 + · · · + tm−1)nm < εm for all x ∈ G(0). Therefore, 

∥∥γ(π1)s(γ)
∥∥ < εm. Thus 

we obtain

∥∥(π1)t(γ) − γ(π1)s(γ)
∥∥ < 2εm. (23)

For k ∈ Nn with max(k) ≥ m, θk1 ∗ · · · ∗ θkn
is of the form θ ∗ τ for some θ = θk with 

k ≥ m, or it is of the form ρ ∗ θ ∗ τ for some ρ ∈ Θm−1 and θ = θk with k ≥ m. By choice 
of θi, we have

∥∥∥θt(γ) − γθs(γ)
∥∥∥ (22)

< εm. (24)

Moreover, it follows that from Lemma 3.2 b) that
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∥∥∥θt(γ) − (ρ ∗ θ)t(γ)
∥∥∥ ≤

∫
supp (ρt(γ))

∥∥∥θt(ζ) − ζθs(ζ)
∥∥∥ dρt(γ)(ζ)

(22)
< εm. (25)

Similarly, Lemma 3.2 b) implies that

∥∥∥θt(γ) − γ(ρ ∗ θ)s(γ)
∥∥∥ =

∥∥∥θt(γ) − (γρs(γ)) ∗ θ
∥∥∥ ≤

∫
G

∥∥∥θt(γ) − ζθs(ζ)
∥∥∥ d(γρs(γ))(ζ)

=
∫

supp (ρs(γ))

∥∥∥θt(γη) − γηθs(γη)
∥∥∥ dρs(γ)(η)

(22)
< εm. (26)

Combining (25) and (26), we get

∥∥∥(ρ ∗ θ)t(γ) − γ(ρ ∗ θ)s(γ)
∥∥∥ < 2εm. (27)

Therefore, because of (24) and (27), Lemma 3.2 a) implies 
∥∥(θ ∗ τ)t(γ) − γ(θ ∗ τ)s(γ)

∥∥ <

εm and 
∥∥(ρ ∗ θ ∗ τ)t(γ) − γ(ρ ∗ θ ∗ τ)s(γ)

∥∥ < 2εm. As every summand in π2 is of the form 
θ ∗ τ or ρ ∗ θ ∗ τ , we obtain

∥∥(π2)t(γ) − γ(π2)s(γ)
∥∥ <

∑
k∈N

n

max(k)≥m

tk1 · · · tkn
· 2εm ≤

( ∞∑
i=1

ti

)n

· 2εm = 2εm. (28)

Finally, combining (23) and (28), we get using Lemma 3.2 a)

∥∥∥πi
t(γ) − γπi

s(γ)

∥∥∥ < 4εm for all i ≥ n.

On the whole, we deduce that for every γ ∈ G,

lim
i→∞

∥∥∥πi
t(γ) − γπi

s(γ)

∥∥∥ = 0. �
Lemma 5.5. Let G be a topological semigroupoid with a quasi-Haar system λ. Suppose 
that there exists a λ-adapted continuous system of probability measures π = (πx)x∈G(0)

such that limi→∞

∥∥∥πi
t(γ) − γπi

s(γ)

∥∥∥ = 0 for all γ ∈ Gx. Then we have Hπ,x(G) = C1 for 
all x ∈ G(0).

Proof. Take x ∈ G(0) and f ∈ L∞(Gx, λx) with Px(f) = f . Then f = P i
x(f) and 

f(x) =
∫
Gx f(ζ)dπi

x(ζ) and also, f(γ) =
∫
Gx f(γζ)dπi

s(γ)(ζ) for all γ ∈ Gx. Therefore 

|f(x) − f(γ)| =
∣∣∣〈πi

t(γ) − γπi
s(γ), f

〉∣∣∣ ≤ ‖f‖∞ ·
∥∥∥πi

t(γ) − γπi
s(γ)

∥∥∥ −→
i→∞

0. This means that 
for all γ ∈ Gx, we have f(γ) = f(x) and hence f is constant. This proves Hπ,x(G) =
C1. �



C.-H. Chu, X. Li / Journal of Functional Analysis 274 (2018) 3291–3324 3313
Finally, Proposition 5.4 and Lemma 5.5 together yield the following result.

Theorem 5.6. Let (G, λ) be a locally compact semigroupoid with quasi-Haar system. If 
(G, λ) is uniform and tight Reiter, then it is Liouville.

6. Special cases

In this section, we discuss three important special cases, namely groupoids, transfor-
mation semigroups and semigroups. We begin with groupoids.

6.1. Groupoids

An important consequence of our results is the equivalence of amenability and the 
Liouville property for groupoids, in both measurable and topological settings. In par-
ticular, we settle a conjecture of Kaimanovich [20, Conjecture 4.6] by showing that 
amenable groupoids admit the Liouville property. To be precise, combining Theorem 4.1
and Theorem 5.3, we obtain the following result for measured groupoids.

Theorem 6.1. Let (G, λ, μ) be a measured groupoid, where λ is a left Haar system. Then 
(G, λ, μ) is Liouville if and only if it is Reiter.

Since amenability and Reiter’s condition are equivalent for groupoids, this theo-
rem establishes the equivalence of the Liouville property and amenability for measured 
groupoids. This result has also been proved by Bühler and Kaimanovich in an unpub-
lished note. However, a similar result for topological groupoids is more subtle, which 
requires a deeper analysis of Reiter’s condition, given below.

Lemma 6.2. Let (G, λ) be a locally compact groupoid, where λ is a left Haar system. The 
following conditions are equivalent:

(i) (G, λ) is Reiter,
(ii) (G, λ) is uniform Reiter,
(iii) (G, λ) is tight Reiter.

Proof. (i) ⇒ (ii) follows from [35, Theorem 2.14]. (iii) ⇒ (i) is obvious. It remains to 
prove (ii) ⇒ (iii).

We show that for every ε > 0 and C ⊆ G compact, there exists a λ-adapted contin-
uous system of probability measures θ = (θx)x∈G(0) on G such that 

∥∥θt(γ) − γθs(γ)
∥∥ <

ε for all γ ∈ C, and in addition, suppK(θ) is compact for every compact subset K ⊆ G.
Given ε > 0 and C ⊆ G compact, since G(0) is locally compact and σ-compact, there 

exist Kn ⊆ G(0) compact with s(C) ∪ t(C) ⊆ K1, Kn ⊆
◦

Kn+1 for all n ∈ N and 
G(0) =

⋃∞
n=1 Kn.



3314 C.-H. Chu, X. Li / Journal of Functional Analysis 274 (2018) 3291–3324
Since (G, λ) is Reiter, G is amenable and hence there exists a topological approximate 
invariant density (gj)∞j=1 in Cc(G), as defined in [35, Definition 2.7]). Normalizing gj ·λx

for some j and for each x ∈ K2, we obtain a λ-adapted continuous system of measures 
ϑ2 = (ϑx

2)x∈G(0) such that

∥∥∥ϑt(γ)
2 − γϑ

s(γ)
2

∥∥∥ < ε for all γ ∈ C (29)

with the additional properties that suppK2
(ϑ2) is compact and ϑx

2 is a probability mea-
sure for all x ∈ K2. Likewise, for all n ≥ 3, one can find λ-adapted continuous systems 
of measures ϑn = (ϑx

n)x∈G(0) such that suppKn
(ϑn) is compact and ϑx

n is a probability 
measure for all x ∈ Kn.

Now define U2 :=
◦
K2 and Un :=

◦
Kn \ Kn−2 for all n ≥ 3. By construction, G(0) =⋃∞

n=2 Un. Since G(0) is locally compact and σ-compact, G(0) is paracompact and one can 
find a partition of unity {hn}n≥2 subordinate to {Un}n≥2. Define θxn := hn(x)ϑx

2 for 
x ∈ Un and θxn := 0 for x /∈ Un. By construction, these θn are λ-adapted continuous 
systems of measures such that supp (θn) := suppG(0)(θn) ⊆ suppKn

(ϑn). In particular, 
supp (θn) is compact.

Set θx :=
∑∞

n=2 θ
x
n which is a finite sum since the cover {Un} is locally finite. As each 

θn is λ-adapted, so is the continuous system θ = (θx)x∈G(0) where ‖θx‖ =
∑

n ‖θxn‖ =∑
n hn(x) = 1.
We claim that θ has the desired properties. Indeed, given γ ∈ C, both t(γ) and s(γ)

lie in K1, hence hn(t(γ)) = hn(s(γ)) = 0 for all n ≥ 3, and so h2(t(γ)) = h2(s(γ)) = 1. 
Thus θt(γ) = θ

t(γ)
2 = ϑ

t(γ)
2 , and also θs(γ) = θ

s(γ)
2 = ϑ

s(γ)
2 . It follows that

∥∥∥θt(γ) − γθs(γ)
∥∥∥ =

∥∥∥ϑt(γ)
2 − γϑ

s(γ)
2

∥∥∥ (29)
< ε.

Finally, given K ⊆ G(0) compact, there exists N ∈ N with K ⊆
⋃N

n=2 Un, so that 
hn|K ≡ 0 for all n ≥ N + 2. Hence suppK(θ) ⊆

⋃N+1
n=2 supp (θn) which is compact. �

Combining Theorem 4.2 and Theorem 5.6 with the previous lemma, we obtain the 
equivalence of the Liouville property and Reiter’s condition in the topological setting. 
This proves the topological analogue of [20, Conjecture 4.6].

Theorem 6.3. Let (G, λ) be a locally compact groupoid, where λ is a left Haar system. 
Then (G, λ) is Liouville if and only if it is Reiter.

Remark 6.4. By convention, all our locally compact groupoids are locally compact and 
second countable. However, the same proofs as above show that Lemma 6.2 and Theo-
rem 6.3 also hold for topological groupoids which are locally compact and σ-compact.
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6.2. Transformation semigroups

We now show the equivalence of the Liouville property and Reiter’s condition for 
transformation semigroups. First, combining Theorem 4.1 and Theorem 5.3, one obtains 
the following result in the measure setting.

Theorem 6.5. Let (X, μ) be an analytic Borel space. Let S be a discrete semigroup acting 
on X by Borel maps. Let (X�S, λ, μ) be the corresponding measure semigroupoid. Then 
(X � S, λ, μ) is Liouville if and only if it is Reiter.

For the topological setting, we prove a lemma first.

Lemma 6.6. Let X be a locally compact and second countable Hausdorff space, and S
a countable discrete semigroup acting on X by continuous maps. Let (X � S, λ) be the 
corresponding locally compact semigroupoid with quasi-Haar system. The following are 
equivalent:

(i) (X � S, λ) is uniform Reiter,
(ii) (X � S, λ) is uniform and tight Reiter,
(iii) For each ε > 0, finite set F ⊆ S and compact set C ⊆ X, there exists a family 

θ = (θx)x∈X of probability measures on S satisfying the following conditions:
(1) the map x ∈ X �→ θx ∈ �1(S) is continuous;
(2) ‖θx − sθx.s‖ < ε for all s ∈ F and x ∈ C;
(3) supp (θ) :=

⋃
x∈X supp (θx) is finite.

Proof. Clearly, we have (iii) ⇒ (ii) ⇒ (i). It remains to prove (i) ⇒ (iii). Let ε > 0 with 
a finite set F ⊆ S and compact set C ⊆ X given in (iii). Since (X � S, λ) is uniform 
Reiter, there is a family of probability measures ϑ = (ϑx)x∈X on S such that the map 
x ∈ X �→ ϑx ∈ �1(S) is continuous and ‖ϑx − δs ∗ ϑx.s‖ < ε

2 for all s ∈ F and x ∈ C. 
Since X is locally compact and σ-compact, there exist compact subsets Kn of X with 
C ∪ C.F ⊆ K1, Kn ⊆

◦
Kn+1 for all n ∈ N and X =

⋃∞
n=1 Kn.

Let us now define probability measures ϑx
2 on S for all x ∈ K2 such that the map 

x ∈ K2 �→ ϑx
2 ∈ �1(S) is continuous. For 1 > ε′ > 0 and x ∈ K2, there exists a 

finite set Ex ⊆ S such that 
∥∥∑

s∈Ex
ϑx(s)δs − ϑx

∥∥ < ε′. As y ∈ X �→ ϑy ∈ �1(S)
is continuous, the map y ∈ X �→

∑
s∈Ex

ϑy(s)δs − ϑy ∈ �1(S) is continuous as well. 
Hence there exists an open neighbourhood Ux of x such that 

∥∥∑
s∈Fx

ϑy(s)δs − ϑy
∥∥ < ε′

for all y ∈ Ux. Since K2 is compact, there exist finitely many x1, . . . , xN in K2 such 
that K2 ⊆

⋃N
i=1 Uxi

. Define E :=
⋃N

i=1 Exi
and for x ∈ K2, set ϑ̃x

2 :=
∑

s∈E ϑx(s). 
Obviously, the map x ∈ K2 �→ ϑ̃x

2 ∈ �1(S) is continuous. For all x ∈ K2, we have ∥∥ϑ̃x
2
∥∥ ≥ ‖ϑx‖−

∥∥ϑ̃x
2 − ϑx

∥∥ > 1 −ε′. Thus we may form ϑx
2 :=

∥∥ϑ̃x
2
∥∥−1·ϑ̃x

2 for all x ∈ K2. By 
construction, ϑx

2 are probability measures on S such that the map x ∈ K2 �→ ϑx
2 ∈ �1(S)

is continuous. Moreover, for all x ∈ K2, we have
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‖ϑx
2 − ϑx‖ ≤

∥∥ϑx
2 − ϑ̃x

2
∥∥+

∥∥ϑ̃x
2 − ϑx

∥∥ =
(∥∥ϑ̃x

2
∥∥−1 − 1

)∥∥ϑ̃x
2
∥∥+

∥∥ϑ̃x
2 − ϑx

∥∥
< (1 − ε′)−1 − 1 + ε′ < ε

4

for sufficiently small ε′. Hence it follows that for all s ∈ E and x ∈ C, we have

‖ϑx
2 − δs ∗ ϑx.s

2 ‖ ≤ ‖ϑx
2 − ϑx‖ + ‖ϑx − δs ∗ ϑx.s‖ + ‖δs ∗ ϑx.s − δs ∗ ϑx.s

2 ‖ (30)

< ε
4 + ε

2 + ε
4 = ε.

Now define U2 :=
◦
K2 and Un :=

◦
Kn \ Kn−2 for all n ≥ 3. By construction, we have 

◦
Kn \

◦
Kn−1 ⊆ Un for all n ≥ 3, and X ⊆

⋃∞
n=2 Kn−1 ⊆

⋃∞
n=2

◦
Kn ⊆

⋃∞
n=2 Un. Since X

is locally compact and σ-compact, we can find a partition of unity {hn}n≥2 subordinate 
to {Un}n≥2. Define θx2 := h2(x)ϑx

2 for x ∈ U2 and θx2 := 0 for x /∈ U2. Then the map 
x ∈ X �→ θx2 ∈ �1(S) is continuous. Now fix t ∈ S and define, for n ≥ 3, θxn := hn(x)δt. 
Set θx :=

∑∞
n=2 θ

x
n.

We claim that θ has the desired properties. For every x ∈ X, ‖θxn‖ = hn(x) implies 
‖θx‖ =

∑
n hn(x) = 1 and θx are probability measures. Moreover, given x ∈ X, there 

exist N ≥ 2 such that x lies in UN . But by construction, UN ⊆ KN implies UN ∩Un = ∅
for all n ≥ N +2. Therefore, θx =

∑N+1
n=2 θxn for all x ∈ UN . This shows continuity of the 

map x ∈ UN �→ θx ∈ �1(S) and x ∈ X �→ θx ∈ �1(S). Furthermore, it is clear that for 
all x ∈ X, we have supp (θx) ⊆ E ∪ {t}. Finally, given s ∈ F and x ∈ C, both x and x.s
lie in K1 and hence hn(x) = hn(x.s) = 0 for all n ≥ 3, and h2(x) = h2(x.s) = 1. Thus 
θx = θx2 = ϑx

2 and θx.s = θx.s2 = ϑx.s
2 . We conclude that

‖θx − δs ∗ θx.s‖ = ‖ϑx
2 − δs ∗ ϑx.s

2 ‖
(30)
< ε. �

We observe from the definition that the transformation semigroupoid (X � S, λ) in 
the above lemma is Liouville if and only if it is continuous Liouville, and now, using 
Theorem 4.2 and Theorem 5.6, we can conclude with the following result.

Theorem 6.7. Let X be a locally compact and second countable Hausdorff space, and S
a countable discrete semigroup acting on X by continuous maps. Let (X � S, λ) be the 
corresponding locally compact semigroupoid with quasi-Haar system. Then (X � S, λ) is 
Liouville if and only if it is uniform Reiter.

6.3. Locally compact semigroups

Let S be a second countable locally compact semigroup equipped with a positive 
quasi-invariant Borel measure λ such that the map (s, t) ∈ S × S �→ (d(sλ)/dλ) (t)
is Borel. As explained in Remark 2.10, by identifying S with {pt} � S, we may view 
(S, λ) as a locally compact semigroupoid with a quasi-Haar system. In this case, (S, λ) is 
Reiter, in the sense of Definition 2.15, if there exists a sequence (θn) of Borel probability 
measures on S with θn ≺ λ for all n ∈ N, and limn→∞ ‖θn − sθn‖ = 0 for all s ∈ S.
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Remark 6.8. In the above setting, (S, λ) is Reiter if and only if there exists a left invari-
ant mean on L∞(S, λ) since the proof in [25, § 4.2] carries over. Therefore there is no 
difference between Reiter’s condition and amenability for (S, λ).

To describe the Liouville property for (S, λ) according to Definition 2.18, let π be 
a probability measure on S with π ≺ λ. In this case, the fibrewise Markov operators 
reduce to a single one P : L∞(S, λ) → L∞(S, λ) with P (f)(s) =

∫
S
f(st)dπ(t), and 

Hπ(S) := {f ∈ L∞(S, λ): P (f) = f} is the space of π-harmonic functions in L∞(S, λ). 
The locally compact semigroup (S, λ) is Liouville if there exists a probability measure π
on S with π ≺ λ such that Hπ(S) = C1.

Theorem 6.9. In the situation described above, (S, λ) is Liouville if and only if it is 
Reiter.

Proof. The key observation is that, by definition, (S, λ) is Liouville if and only if ({pt}�
S, δ × λ, δ) is Liouville as a measure semigroupoid (where δ is the point mass). By 
Theorem 4.1, we know that (S, λ) is Reiter if it is Liouville. For the converse, let (S, λ)
be Reiter. This means that (S, λ) is Reiter as a locally compact semigroupoid with 
quasi-Haar system. Again by definition, this implies that ({pt}�S, δ× λ, δ) is Reiter as 
a measure semigroupoid. Hence Theorem 5.3 implies that ({pt}�S, δ×λ, δ) is Liouville 
as a measure semigroupoid. Hence the locally compact semigroup (S, λ) is Liouville. �

The question remains which semigroups S admit a quasi-invariant measure λ with a 
Borel map (s, t) ∈ S × S �→ (d(sλ)/dλ) (t). This is for instance the case if S is a locally 
compact subsemigroup of a second countable locally compact group G, that is, S is a 
subsemigroup of G as well as a locally compact subspace. If the Haar measure λG on 
G satisfies λG(S) = 0, then the restriction λ of λG to S is a measure with the desired 
properties.

Of course, another class of examples is given by countable discrete semigroups S with 
identity and counting measure λ. For these semigroups, we have the following result 
from Remark 6.8 and Theorem 6.9. In the next subsection, we discuss the case of metric 
semigroups, which need not be locally compact nor support a quasi-invariant measure.

Theorem 6.10. Let S be a countable discrete semigroup with identity. The following con-
ditions are equivalent.

(i) S is Liouville, that is, there exists a probability measure π on S such that every 
bounded π-harmonic function is constant;

(ii) S is Reiter, that is, there exists a sequence (θn)n of probability measures on S such 
that limn→∞ ‖θn − sθn‖ = 0 for all s ∈ S;

(iii) S is amenable.
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In the last section, we give some examples of discrete semigroups with the Liou-
ville property for all non-degenerate probability measures, i.e., with the property that 
every bounded π-harmonic function is constant for every non-degenerate probability 
measure π.

6.4. Metric semigroups

Following the previous results for semigroups equipped with a quasi-invariant measure, 
it is natural to enquire about semigroups without such a measure. We present the case of 
metric semigroups in this subsection, but refer to [7] for further discussion of topological 
semigroups.

Given a probability measure π on a metric semigroup S, we denote by Hπ(S) the 
closed subspace of LUC (S) consisting of π-harmonic functions on S. We say that S has 
the Liouville property if there is a tight probability measure π on S such that Hπ(S) = C1
where 1 denotes the constant function on S with value 1.

A metric semigroup S is said to satisfy Reiter’s condition if for every ε > 0 and 
compact set K ⊆ S, there is a probability measure θ on S with compact support such 
that ‖θ − δs ∗ θ‖ < ε for all s ∈ K.

For a countable discrete semigroup S, the notion of the Liouville property and Reiter’s 
condition just introduced agrees with the one previously defined.

Given a σ-compact metric semigroup S satisfying Reiter’s condition, a construction 
analogous to that in the proof of Proposition 5.4 yields a tight probability measure π on 
S such that

lim
n→∞

‖δs ∗ πn − πn‖ = 0 (31)

for all s ∈ S. In fact, this is also true for topological semigroups and a detailed proof 
will be given in [7]. Consequently, we have the following result.

Theorem 6.11. Let S be a σ-compact metric semigroup with identity e satisfying Reiter’s 
condition. Then S enjoys the Liouville property.

Proof. By the previous observation, there is a tight probability measure π on S satisfying 
(31) for all s ∈ S. Hence for each π-harmonic function f ∈ LUC (S), we have

|f(x) − f(e)| = |
∫
S

(f(xy) − f(y))dπn(y)| = |
∫
S

(δx ∗ f − f)dπn|

= |
∫
S

fd(δx ∗ πn − πn)| ≤ ‖f‖∞‖δx ∗ πn − πn‖ → 0 as n → ∞

and it follows that f is constant. This completes the proof. �
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We conclude this section by showing that a metric semigroup S with the Liouville 
property, but not necessarily σ-compact, must be amenable. This will follow readily from 
the fact that the space Hπ(S) of bounded π-harmonic functions on S is the range of a 
contractive projection on LUC (S), which commutes with left translations. To show this, 
we need the following two lemmas which are straightforward extension of similar results 
in [6] for groups.

Let ρ denote the topology of pointwise convergence in LUC (S) and let τ be the 
topology of uniform convergence on compact sets in S.

Lemma 6.12. Let S be a metric semigroup and let f ∈ LUC (S). Denote by Kf the 
ρ-closure co ρ{f ∗ δs : s ∈ S} of the convex hull of {f ∗ δs : s ∈ S}. Then the topologies ρ
and τ coincide on Kf which is compact in these topologies.

Lemma 6.13. Let f ∈ LUC (S) and π ∈ M(S) be a probability measure. Then f ∗π ∈ Kf .

Proposition 6.14. Let S be a metric semigroup and let π ∈ Mt(S) be a probability mea-
sure. Then there exists a contractive projection P : LUC (S) → LUC (S) with range equal 
to Hπ(S). Moreover, P commutes with left translations on S.

Proof. The arguments are similar to those given in [4] and [6] for groups, but we include 
the proof for completeness. Let LUC (S) be equipped with the topology ρ of pointwise 
convergence and let the Cartesian product LUC (S)LUC(S) be equipped with the product 
topology. Define a linear map L : LUC (S) → LUC (S) by L(f) = f ∗ π (f ∈ LUC (S)).

Consider L as an element in LUC (S)LUC(S), and so are the n-th iterates Ln =
n−times︷ ︸︸ ︷

L ◦ · · · ◦ L. By Lemma 6.13, Ln ∈
∏

f∈LUC(S) Kf ⊆ LUC (S)LUC(S) for all n. It fol-
lows that the closed convex hull K := co {Ln : n = 1, 2, . . .} ⊆

∏
f Kf is compact in the 

product topology by Lemma 6.12.
Define an affine map T : K → K by T (Λ)(f) = Λ(f) ∗π (Λ ∈ K, f ∈ LUC (S)). Then T

is continuous. Indeed, given a net (Λα)α in K converging to Λ ∈ K, then Λα(f) −→ Λ(f)
pointwise on S for each f ∈ LUC (S). By Lemma 6.13, Λ(f), Λα(f) ∈ Kf and hence 
Lemma 6.12 implies that (Λα(f))α converges to Λ(f) uniformly on compact sets in S. 
It follows that (Λα(f) ∗ π)α converges pointwise to Λ(f) ∗ π. This proves that (T (Λα))α
converges to T (Λ) in the product topology.

By the Markov–Kakutani fixed-point theorem, T admits a fixed point P ∈ K which 
gives

P (f) = P (f) ∗ π (f ∈ LUC (S)).

It is easy to see that P 2 = P and P (LUC (S)) = Hπ(S). The last assertion follows from 
the fact that left translations on S commute with the operator L. �
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Theorem 6.15. Let S be a metric semigroup with the Liouville property. Then S is 
amenable.

Proof. Let π be a tight probability measure on S such that Hπ(S) = C1. Let P :
LUC (S) → LUC (S) be the contractive projection constructed in Proposition 6.14. Since 
P (LUC (S)) = Hπ(S), we have P (f) = ϕ(f)1 (f ∈ LUC (S)) for a unique functional 
ϕ : LUC (S) → C. Evidently, ϕ is a left invariant mean. �

The above approach using the contractive projection P gives an alternative proof of 
the implication (i) ⇒ (iii) in Theorem 6.10.

7. Examples

A measure on a semigroup is called non-degenerate if its support generates the 
semigroup. It is known that if a locally compact abelian semigroup S supports a non-
degenerate probability measure π, then Hπ(S) = C1 (cf. [24,33]). We now present a class 
of discrete non-abelian semigroups with the Liouville property for all non-degenerate 
probability measures.

Definition 7.1. Let S be a discrete semigroup with identity e. A central series of S is a 
finite chain

{e} = S0 � S1 � . . . � Sn = S,

of subsemigroups in S such that

(i) Sm is right reversible for all 0 ≤ m ≤ n, that is, for all x, y in Sm, we have Smx ∩
Smy = ∅;

(ii) For every 1 ≤ m ≤ n, a ∈ Sm and s ∈ S, there exist x, y in Sm−1 with xas = ysa.

We call n the length of the above central series.

Semigroups admitting central series are a natural generalisation of nilpotent groups. 
We should note, however, that the concept of nilpotent semigroups is not defined in terms 
of the existence of central series (cf. [27]). Evidently, every abelian semigroup admits a 
central series of length 1.

Example 7.2. The Heisenberg semigroup

S =
{(

1 x z
0 1 y
0 0 1

)
∈ GL3(R): x, y, z ≥ 0

}

admits a central series of length 2.
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To see this, set

S0 =
{(

1 0 0
0 1 0
0 0 1

)}
, S1 =

{(
1 0 z
0 1 0
0 0 1

)
: z ≥ 0

}
and S2 = S.

Condition (i) is obviously satisfied for S0 and S1 (S1 is abelian), and it holds for S2 = S

as well because of(
1 0 ζ+xη
0 1 0
0 0 1

)(
1 ξ 0
0 1 η
0 0 1

)(
1 x z
0 1 y
0 0 1

)
=
(

1 0 z+ξy
0 1 0
0 0 1

)(
1 x 0
0 1 y
0 0 1

)(
1 ξ ζ
0 1 η
0 0 1

)

for all x, y, z and ξ, η, ζ.
Condition (ii) is true for m = 1 since S1 is abelian. For m = 2, condition (ii) holds 

because we have for all x, y, z and ξ, η, ζ:

(
1 0 xη
0 1 0
0 0 1

)(
1 ξ ζ
0 1 η
0 0 1

)(
1 x z
0 1 y
0 0 1

)
=
(

1 0 ξy
0 1 0
0 0 1

)(
1 x z
0 1 y
0 0 1

)(
1 ξ ζ
0 1 η
0 0 1

)
.

Actually, exactly the same computations show that for every subring R of R, the semi-
group

S =
{(

1 x z
0 1 y
0 0 1

)
∈ GL3(R): x, y, z ∈ R ∩ [0,∞)

}

admits a central series of length 2.

We show that semigroups with central series have the Liouville property for all non-
degenerate probability measures. This generalizes the corresponding result for nilpotent 
groups [13,28] (see also [5]). First, we sketch a proof of the following lemma, using similar 
arguments in [5].

Lemma 7.3. Let S be a discrete semigroup with identity e and π a non-degenerate proba-
bility measure on S. Then for each f ∈ Hπ(S), we have f(ax) = f(x) for all x ∈ S and 
a in the centre of S.

Proof. Considering the real and imaginary parts separately, we may assume that f is 
real-valued. Fix a in the centre of S. Set g(x) = f(x) −f(ax), where g ∈ �∞(S). Let α :=
supx∈S g(x). Then g ∈ Hπ(S). Choose a sequence (xn)n in S with α = limn→∞ g(xn). 
Define gn ∈ �∞(S) by gn(x) := g(xnx). Then gn ∈ Hπ(S) and limn→∞ gn(e) = α, where 
gn(x) = g(xnx) ≤ α for all x ∈ S. We also know that ‖gn‖∞ ≤ ‖g‖∞.

Let h be a w*-limit point of gn in �∞(S). Since gn ∈ Hπ(S) and the map ϕ ∈ �∞(S) �→
ϕ ∗ π ∈ �∞(S) is w*-continuous, we have h = h ∗ π in �∞(S) and therefore h ∈ Hπ(S). 
As w*-convergence in �∞(S) implies pointwise convergence, gn(x) ≤ α implies h(x) ≤ α

for all x ∈ S. Since limn→∞ gn(e) = α, we have h(e) = α.
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We show h(a) = α. Since S =
⋃∞

n=1(suppπ)n =
⋃∞

n=1 supp πn, one can choose n ∈ N

such that πn(a) > 0. If h(a) < α, then

α = h(e) = h ∗ πn(e) =
∑
y∈S

h(y)πn(y) = h(a)πn(a) +
∑
y �=a

h(y)πn(y)

< απn(a) +
∑
y �=a

απn(y) = α

which is a contradiction. Hence we must have h(a) = α. Similarly, h(ap) = α for all 
p ∈ N.

Now if α > 0, then we can choose m ∈ N with ‖f‖∞ ≤ 1
4mα, and n ∈ N with 

gn(ap) > 1
2α for all 1 ≤ p ≤ m. This gives

1
2mα <

m∑
p=1

gn(ap) =
m∑

p=1
f(xna

p) − f(axna
p) =

m∑
p=1

f(xna
p) − f(xna

p+1)

= f(xna) − f(xna
p+1) ≤ 2 · 1

4mα = 1
2mα

which is impossible. Therefore α ≤ 0 and we have g(x) ≤ 0 for all x ∈ S, that is, 
f(x) ≤ f(ax) for x ∈ S. Repeating the previous argument for the function f(ax) − f(x), 
we get f(ax) ≤ f(x) and hence f(x) = f(ax) for all x ∈ S. �
Theorem 7.4. Let S be a discrete semigroup with identity and a central series. Then for 
every non-degenerate probability measure π on S, we have Hπ(S) = C1.

Proof. We proceed inductively on the length n of the central series of S. The case n = 0
is trivial. For the inductive step, assume the assertion is true for length n and let

{e} = S0 � S1 � . . . � Sn ⊆ Sn+1 = S

be a central series of length n +1. Since S has an identity in S1 which is right reversible, 
we can define an equivalence relation ∼ on S by setting x ∼ y if there exist a, b ∈ S1
satisfying ax = by. The set S/∼ of equivalence classes ẋ is a semigroup structure with 
product ẋ · ẏ := (xy)˙, which is well-defined because S1 is in the centre of S. Observe 
that

{ė} = S1/∼ � S2/∼ � . . . � Sn/∼ ⊆ Sn+1/∼ = S/∼

is a central series of length at most n for S/∼.
Now let π be a probability measure on S such that supp π generates S as a semigroup. 

Let q : S → S/∼ be the quotient map. Define a probability measure π̇ on S/∼ by setting 
π̇(ẋ) :=

∑
x∈q−1(ẋ) π(x). Then supp π̇ generates S/∼ as a semigroup. By the inductive 

hypothesis, we have Hπ̇(S/∼) = C1.
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Let f ∈ Hπ(S). Define ḟ : S/∼ → C by ḟ(ẋ) := f(x). This is well-defined. Indeed, 
if x ∼ y, then there exist a, b ∈ S1 with ax = by. As S1 is contained in the centre of S, 
Lemma 7.3 yields f(x) = f(ax) = f(by) = f(y). One verifies readily that ḟ ∗ π̇ = ḟ . 
Therefore ḟ , and hence f , must be constant. �
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