
J. Math. Anal. Appl. 347 (2008) 573–582
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Spectrum of a homogeneous graph

C. Chen, C.-H. Chu ∗

School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 April 2008
Available online 24 June 2008
Submitted by J.D.M. Wright

Keywords:
Spectrum
Laplacian
Homogeneous graph
Convolution operator
Group representation
Harnack inequality

We describe the spectrum of the Laplacian for a homogeneous graph acted on by a
discrete group. This follows from a more general result which describes the spectrum of a
convolution operator on a homogeneous space of a locally compact group. We also prove
a version of Harnack inequality for a Schrödinger operator on an invariant homogeneous
graph.
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1. Introduction

In a weighted graph (V , E), finite or infinite, let dv and w : V × V → [0,∞) denote respectively the degree of a vertex
v ∈ V and the weight w(v, u) = w(u, v), satisfying dv = ∑

u w(v, u) < ∞. The Laplacian L, acting on real or complex
functions f on V , is defined by

L f (v) = f (v) −
∑

u
(v,u)∈E

f (u)w(v, u)√
dvdu

(v ∈ V ).

An important problem in spectral geometry is the estimation of the spectrum σ(L) of L. It is known, for instance, that
1 − √

1 − h2 is a lower bound for the positive eigenvalues where h is the Cheeger constant of the graph [5,10,12,14,16].
In this paper, we give a full description of the spectrum σ(L) for a homogeneous graph under some weight condition.
We call (V , E) a homogeneous graph (cf. [5]), if the vertex set V is a homogeneous space of a discrete group G with

a graph condition, by which we mean G acts transitively on V by a right action (v, g) ∈ V × G �→ vg ∈ V so that V is
represented as a right coset space G/H of G by a finite subgroup H and the edge set E is described by a finite subset
K = K −1 ⊂ G in that (v, u) ∈ E if and only if u = va for some a ∈ K . Henceforth we denote a homogeneous graph by
(V , K ), with the edge generating set K having finite cardinality |K |. We note that (V , K ) is a Cayley graph if H reduces
to the identity of G , in which case we write (G, K ) for the graph. Although one can consider a more general notion of
a homogeneous graph (G/H, K ) in which the isotropy subgroup H can be infinite, we only consider this case in the last
section of the paper.
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The Laplacian for a weighted homogeneous graph (V , K ) can be written as

L f (v) = f (v) − 1

|K |
∑
a∈K

f (va)w(v, va) = 1

|K |
∑
a∈K

(
f (v) − f (va)

)
w(v, va) (v ∈ V ).

We describe the spectrum of L completely in terms of irreducible representations of G when the weight w is given
by a measure μ on G which is symmetric and constant on each set aHb, that is, w(Ha, Hb) = μ(a−1b) = μ(b−1a) and
μ(acb) = μ(ab) for all c ∈ H . A weight w is given by such a measure μ if w(v, va) = w(u, ua) for u, v ∈ V and a ∈ K , in
which case μ is a measure supported by K . For instance, for unweighted graphs, we have w(v, va) = 1.

In fact, we prove a more general result for the L2-spectrum of a convolution operator on the homogeneous space of a
locally compact group G by a compact subgroup H , which is of independent interest and includes the above Laplacian as
a special case. We note that the connection between a finite homogeneous graph Laplacian and group representations has
been discussed in [5, p. 117] and [6]. Our result for convolution operators involves group C∗-algebras and applies to infinite
graphs as well.

A homogeneous graph (V , K ) is called invariant in [7] if G acts on V as automorphisms of V and aK = Ka for all a ∈ K .
We characterize the invariance of (V , K ) in terms of group structures and show that all positive L-harmonic functions on
a connected invariant graph are constant. A Harnack inequality has been proved in [7] for the Laplacian L of an invariant
unweighted homogeneous graph. We extend this Harnack inequality for a Schrödinger operator L + ϕ on an invariant
homogeneous graph.

2. Convolution operators on homogeneous spaces

Let G be a locally compact group with identity e and a right invariant Haar measure λ. Let G act transitively on a locally
compact Hausdorff space V by a (continuous) right action

(v, g) ∈ V × G �→ vg ∈ V

such that V is represented as a right coset space G/H of G by a compact subgroup H of G and the action identifies with
the natural action of G on G/H by right multiplication. In this case, V = G/H admits a G-invariant measure ν satisfying
ν = λ ◦ q−1 where q : G → G/H denotes the quotient map throughout (cf. [11, p. 58]).

For 1 � p � ∞, let L p(G/H) be the complex Lebesgue space of p-integrable functions on G/H with respect to ν , and
write L p(G) for H = {e}, also �p(G) for a discrete group G . We note that L1(G) has an involution

f ∗(x) = f
(
x−1

)
�

(
x−1) (x ∈ G)

where � is the modular function of G .
Let M(G) be the Banach algebra of complex Borel measures on G , with the total variation norm, in which the product of

two measures μ,μ′ ∈ M(G) is given by convolution:∫
G

f d(μ ∗ μ′) =
∫
G

∫
G

f (xy)dμ(x)dμ′(y)

for each continuous function f on G vanishing at infinity. The convolution h ∗ μ for h ∈ L p(G) is defined by h ∗ μ(x) =∫
G h(xy−1)dμ(y).

A measure μ ∈ M(G) is called absolutely continuous if its total variation |μ| is absolutely continuous with respect to the
Haar measure λ, in which case μ has a density f ∈ L1(G) so that μ = f · λ. We call μ symmetric if dμ(x) = dμ(x−1). The
unit mass at a point a ∈ G is denoted by δa .

Given μ ∈ M(G), we define the convolution operator Lμ : L p(G/H) → L p(G/H) by

(Lμ f )(Hx) =
∫
G

f
(

Hxy−1)dμ(y)
(

f ∈ L p(G/H)
)
.

This operator is well defined by G-invariance of the measure ν and we have ‖Lμ‖ � ‖μ‖. We note that Lμ is a self-adjoint
operator on the Hilbert space L2(G/H) if μ is symmetric.

Our first task is to describe the spectrum of Lμ : L2(G/H) → L2(G/H) for an absolutely continuous symmetric measure μ.
For this, we develop a device to identify Lμ as an element in a quotient of the group C∗-algebra C∗(G) which then enables
us to use spectral theory of C∗-algebras to conclude the result.

We recall that the group C∗-algebra C∗(G) of G is the completion of L1(G) with respect to the norm

‖ f ‖c = sup
π

{∥∥π( f )
∥∥}

where the supremum is taken over all ∗-representations π : L1(G) → B(Hπ ), the latter denotes the algebra of all bounded
operators on the Hilbert space Hπ . If G is discrete, then C∗(G) contains an identity.
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Let ρ : C∗(G) → B(L2(G)) be the right regular representation given by

ρ( f )h = h ∗ f
(

f ∈ L1(G), h ∈ L2(G)
)

which is an extension of the right regular representation a ∈ G �→ ρ(a) ∈ B(L2(G)) of G , where ρ(a)h = h ∗ δa . The reduced
group C∗-algebra C∗

r (G) is the norm closure ρ(L1(G)) = ρ(C∗(G)).
We have two natural well-defined continuous linear maps j : L2(G/H) → L2(G) and Q : L2(G) → L2(G/H) given by

j( f ) = f ◦ q, Q g(Hx) =
∫
H

g(ξx)dξ
(

f ∈ L2(G/H), g ∈ L2(G)
)

where dξ is the normalized Haar measure on the compact group H (cf. [3]).
There is a natural continuous linear map Φ : B(L2(G)) → B(L2(G/H)) given by the following diagram:

L2(G)
L

L2(G)

Q

L2(G/H)

j

Φ(L)
L2(G/H)

that is,

Φ(L) = Q ◦ L ◦ j (1)

for each L ∈ B(L2(G)). We define a unitary representation τ : G → B(L2(G/H)) by right translation:

τ (a) f (Hx) = f
(

Hxa−1) (
a, x ∈ G, f ∈ L2(G/H)

)
.

We can extend τ to a representation ρH : C∗(G) → B(L2(G/H)) in the usual way (cf. [13, p. 229]).

Lemma 2.1. Let ρ : C∗(G) → B(L2(G)) be the right regular representation and let Φ : B(L2(G)) → B(L2(G/H)) be the map defined
in (1). Then the diagram

C∗(G)
ρH

ρ

B(L2(G/H))

B(L2(G))

Φ

is commutative.

Proof. For f ∈ L1(G) and g ∈ L2(G/H), we have

Φ(ρ f )(g) = Q (ρ f ) j(g) = Q
(
ρ f (g ◦ q)

) = Q
(
(g ◦ q) ∗ f

)
and

Q
(
(g ◦ q) ∗ f

)
(Hx) =

∫
H

(g ◦ q) ∗ f (ξx)dξ =
∫
H

∫
G

(g ◦ q)
(
ξxy−1) f (y)dλ(y)dξ =

∫
H

∫
G

g
(

Hxy−1) f (y)dλ(y)dξ

=
∫
G

g
(

Hxy−1) f (y)dλ(y) = g ∗ f (Hx) = ρH ( f )(g)(Hx).

Hence Φ(ρ f ) = ρH ( f ). �
Lemma 2.2. Let μ ∈ M(G) be absolutely continuous with μ = f · λ and f ∈ L1(G). Then ρH ( f ) = Lμ ∈ B(L2(G/H)).

Proof. We have

ρH ( f )h =
∫
G

(h ∗ δx) f (x)dλ(x) ∈ L2(G/H)
(
h ∈ L2(G/H)

)

and

ρH ( f )h(H y) =
∫

(h ∗ δx)(H y) f (x)dλ(x) =
∫

h
(

H yx−1) f (x)dλ(x) = (h ∗ f )(H y) = Lμ(h)(H y). �

G G
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Let Ĝ be the dual space of G , consisting of (equivalence classes of) continuous irreducible unitary representations of G .
If G is abelian, then Ĝ is the character group of G .

The spectrum of a C∗-algebra A is defined to be the space Â of (equivalence classes) of irreducible representations
π : A → B(Hπ ) of A [9, 3.1.5]. The spectrum Ĉ∗(G) identifies with Ĝ [9, 13.93] where each π ∈ Ĝ is identified as the
irreducible representation of C∗(G) satisfying

π( f ) =
∫
G

f (x)π(x)dλ(x)
(

f ∈ L1(G) ⊂ C∗(G)
)
.

The spectrum Ĉ∗
r (G) identifies with the following closed subset of Ĝ , the reduced dual of G:

Ĝr = {π ∈ Ĝ: kerπ ⊃ kerρ}
(cf. [9, 18.3]). We note that Ĝr = Ĝ if G is amenable.

We define the Fourier transform μ̂ of a measure μ ∈ M(G) by

μ̂(π) =
∫
G

π
(
x−1)dμ(x) (π ∈ Ĝ)

which is an operator in B(Hπ ), with spectrum denoted by σ(μ̂(π)).
The spectrum σ(a) of a self-adjoint element a in a C∗-algebra A with identity is given by

σ(a) =
⋃
π∈ Â

σ
(
π(a)

)

where σ(π(a)) is the spectrum of π(a) in B(Hπ ) (cf. [9, 3.3.5]).
If A is without identity, we adjoin an identity to A as usual to obtain A1 = A ⊕ C, then we have the identification

Â1 = Â ∪ {ω} where ω is the one-dimensional irreducible representation of A1 annihilating A (cf. [9, 3.2.4]). The quasi-
spectrum σ ′(a) of a self-adjoint element a ∈ A is the spectrum of a in A1 and we have

σ ′(a) = σA1 (a) =
⋃

π∈ Â1

σ
(
π(a)

) =
⋃
π∈ Â

σ
(
π(a)

) ∪ {0}.

Theorem 2.3. Let μ ∈ M(G) be symmetric and absolutely continuous and let σ(Lμ) be the spectrum of the convolution operator
Lμ : L2(G/H) → L2(G/H). Then we have

σ(Lμ) ∪ {0} =
⋃{

σ
(
μ̂(π)

)
: π ∈ Ĝr, kerπ ⊃ kerρH

} ∪ {0}.
In particular, σ(Lμ) ∪ {0} = ⋃{σ(μ̂(π)) : π ∈ Ĝr} ∪ {0} if H = {e}. If G is discrete, then {0} can be removed from both sides of the
above equations.

Proof. Let μ = f · λ with f ∈ L1(G). By Lemma 2.2, we have Lμ = ρH ( f ) ∈ ρH (C∗(G)) ∼= C∗(G)/kerρH . We consider the
quasi-spectrum σ ′(ρH ( f )) of ρH ( f ) in ρH (C∗(G)) which may not have an identity.

Let σ ′(Lμ) be the quasi-spectrum of the self-adjoint operator Lμ in B(L2(G/H)). Then we have

σ(Lμ) ∪ {0} = σ ′(Lμ) = σ ′(ρH ( f )
) = σ ′( f + kerρH )

=
⋃{

σ
(
π( f + kerρH )

)
: π ∈ ̂C∗(G)/kerρH

} ∪ {0}
=

⋃{
σ

(
π( f )

)
: π ∈ Ĉ∗(G), kerπ ⊃ kerρH

} ∪ {0}
=

⋃{
σ

(
π( f )

)
: π ∈ Ĝ, kerπ ⊃ kerρH

} ∪ {0}
=

⋃{
σ

(
π( f )

)
: π ∈ Ĝr, kerπ ⊃ kerρH

} ∪ {0}
where, by Lemma 2.1, kerρH ⊃ kerρ which gives the last equality, and

π( f ) =
∫
G

π(x) f (x)dλ(x) =
∫
G

π(x)dμ(x) = μ̂(π)

by symmetry of μ. This proves the first assertion.
If G is discrete, then C∗(G) has an identity and one can dispense with the quasi-spectrum and remove {0}. �
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Remark 2.4. If G is abelian, the above result can be deduced directly from the Plancherel theorem instead, without the
assumption of compactness of H and absolute continuity of μ.

Corollary 2.5. If H is a normal subgroup of G in Theorem 2.3, then

σ(Lμ) ∪ {0} =
⋃{

σ
(
μ̂(π)

)
: π ∈ Ĝr, π(H) = π{e}} ∪ {0}.

Proof. By composing with the quotient map q : G → G/H , the dual space Ĝ/H identifies with {π ∈ Ĝ: π(H) = π{e}}, and
also ρH = ρG/H ◦ q where ρG/H is the right regular representation of the group G/H . It follows that the reduced dual Ĝ/Hr
identifies with {π ∈ Ĝr: π(H) = π{e}}. �

We now consider homogeneous graphs. Let (V , K ) be a homogeneous graph with V = G/H and let μ be a positive
symmetric measure on G , supported by K , satisfying

μ(xcy) = μ(xy) (x, y ∈ G, c ∈ H).

We can define a weight w on V × V by

w(Hx, H y) = μ
(
x−1 y

)
.

In this case and in the sequel, w(v, va) = μ(a) and the Laplacian has the form

(L f )(v) = 1

|K |
∑
a∈K

(
f (v) − f (va)

)
μ(a) = f ∗

(
δe − μ

|K |
)

(v) (2)

which is a convolution operator Lμ′ : L2(G/H) → L2(G/H) with μ′ = δe − μ/|K |, where μ/|K | is a probability measure. For
unweighted graphs, we have μ(a) = 1 for all a ∈ K .

We note that L : �2(V ) → �2(V ) is a positive operator since the inner product

〈L f , f 〉 = 1

2|K |
∑
v∈V

∑
a∈K

(
f (v) − f (va)

)2
μ(a)

(
f ∈ �2(V )

)
is nonnegative. Hence we always have σ(L) ⊂ [0,2] as ‖L‖ � ‖δe − μ

|K | ‖ � 2.

Since μ = ∑
a∈K μ(a)δa and δ̂a(π) = π(a), we have the following description of the spectrum σ(L).

Corollary 2.6. Let (V , K ) be a homogeneous graph with V = G/H and weight w given by a measure μ as above. The spectrum of the
Laplacian in (2) is given by

σ(L) = 1 −
⋃{

σ

(∑
a∈K

μ(a)|K |−1π(a)

)
: π ∈ Ĝr, kerπ ⊃ kerρH

}
.

Remark 2.7. In [6], a Laplacian acting on vector valued functions f : G/H → X has been considered and the resulting
spectrum is called the vibrational spectrum. For the vector space X of n ×n matrices, the spectrum of a convolution operator
acting on X-valued functions on a group G has been described in [3], which yields the vibrational spectrum of a Cayley
graph (G, K ) in this case.

Example 2.8. Let V = Z2/nZ × mZ with a finite generating set K = −K ⊂ Z2. The character group Ẑ2 is the product T × T

of two copies of the circle group T. Each π ∈ Ẑ2 identifies with (π(1,0),π(0,1)) ∈ T × T, and π(nZ × mZ) = {1} if and
only if π = (e2π ik/n, e2π i�/m) for (k, �) ∈ {0, . . . ,n − 1} × {0, . . . ,m − 1}. For such π , we have

π(a,b) = e2π i(ka/n+�b/m)
(
(a,b) ∈ K

)
.

Hence

σ(L) =
{

1 −
( ∑

(a,b)∈K

μ(a,b)

|K | cos 2π(ka/n + �b/m)

)
: (k, �) ∈ Zn × Zm

}
.

Example 2.9. Let G be the discrete Heisenberg group⎧⎨
⎩

⎛
⎝1 m p

0 1 n

⎞
⎠ : m,n, p ∈ Z

⎫⎬
⎭

0 0 1
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which is amenable. The characters of G are known (cf. [1,11,15]). Let R/Z be the real numbers mod Z and denote an element
of G by (m,n, p). As in [11, Corollary 6.5] or [15], Ĝ contains, among others, the one-dimensional unitary representations

{χα,β : α,β ∈ R/Z}
where

χα,β(m,n, p) = e2π i(αm+βn).

Consider the Cayley graph (G, K ) with K = {(±m,0,0), (0,±n,0)} and m,n �= 0. Let μ be the following measure on G
supported by K :

μ = 1

2
δ(m,0,0) + 1

2
δ(−m,0,0) + 3

2
δ(0,n,0) + 3

2
δ(0,−n,0).

We have

σ(L) = 1 −
⋃
π∈Ĝ

σ

(
1

4

∑
a∈K

μ(a)π(a)

)
⊃ 1 −

⋃{
1

4

∑
a∈K

μ(a)χα,β(a): α,β ∈ R/Z

}

=
{

1 −
(

1

4
cos(2παm) + 3

4
cos(2πβn)

)
: α,β ∈ R/Z

}
= [0,2].

It follows that σ(L) = [0,2].

3. Harnack inequality

In this section, we prove a version of Harnack inequality for an invariant homogeneous graph. We do not assume that
the isotropy group H is finite in a homogeneous graph (G/H, K ), but we let G act as graph automorphisms of G/H , that is,
two vertices Hx and H y are adjacent if and only if Hxg and H yg are adjacent for all g ∈ G . A homogeneous graph (V , K ) is
called invariant in [7] if the edge generating set K satisfies aK = Ka for each a ∈ K . This condition imposes some structure
on the group G acting on V . It turns out that a connected Cayley graph (G, K ) is invariant if and only if G is an [IN0]-group
as defined in [4]. A locally compact group G is called an [IN0]-group if G = ⋃∞

n=1 Cn for some compact neighborhood C
of the identity satisfying gC = C g for each g ∈ G . We first show the relationship between graph invariance and group
structures.

Proposition 3.1. Let V = G/H be a homogeneous space of a discrete group G. The following conditions are equivalent.

(i) (V , K ) is a connected invariant homogeneous graph for some finite set K ⊂ G.
(ii) G = ⋃∞

n=0 H K n with K 0 = {e} for some finite set K = K −1 satisfying aK = Ka and H g K = H K g for a ∈ K and g ∈ G.

In particular, (G, K ) is a connected invariant Cayley graph for some finite set K ⊂ G if and only if G is an [IN0]-group.

Proof. (i) ⇒ (ii). Denote by v ∼ u the adjacency of two points in V . We first show G = ⋃∞
n=0 H K n . Let g ∈ G and

g /∈ H . Then H g �= H . Since V is connected, we have H g ∼ H g1 ∼ · · · ∼ H gn ∼ H for some g1, . . . , gn ∈ G , and hence
H g = (H g1)a1 = (H g2)a2a1 = · · · = (H gn)an · · ·a1 = Han+1an · · ·a1 where a1, . . . ,an+1 ∈ K . So g ∈ H K n+1. This proves
G = H ∪ H K ∪ H K 2 ∪ · · · .

Next, let a ∈ K and g ∈ G . Then H ∼ Ha which implies H g ∼ Hag since G acts on V as automorphisms of V . Hence
Hag = H ga1 for some a1 ∈ K , and we have H K g ⊂ H g K . Similarly, H g K ⊂ H K g using H g ∼ H ga implies H ∼ H gag−1.

(ii) ⇒ (i). Define adjacency ∼ in V by K . Given v ∼ u in V with u = va for some a ∈ K , we have, for each g ∈ G , that
ug = vag = vga′ for some a′ ∈ K , that is, ug ∼ vg . Hence (V , K ) is a homogeneous graph which is clearly invariant and
connected.

Finally, if (G, K ) is an invariant connected Cayley graph, then C = K ∪ {e} is an invariant neighborhood of the identity
by (ii) and G = ⋃∞

n=1 Cn is an [IN0]-group.
Conversely, if G is an [IN0]-group with G = ⋃∞

n=1 Cn , then (G, K ) is a connected invariant graph with K = C ∪ C−1. �
The product O (n) × R of the orthogonal group O (n) and the additive group R is an [IN0]-group [4]. Evidently, a homo-

geneous graph (G/H, K ) is invariant if G is abelian or K is a subgroup of G . We refer to [5] for more examples of invariant
homogeneous graphs.

A Harnack inequality for eigenfunctions of the Laplacian on a finite unweighted invariant homogeneous graph has been
shown in [7]. This inequality can be proved similarly for the Laplacian in (2) for weighted graphs. We will extend the
idea in [7] to deduce a version of Harnack inequality for a Schrödinger operator L + ϕ . We first prove that the positive
L-harmonic functions, that is, the positive 0-eigenfunctions of L, are constant.
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Let (V , K ) be an invariant homogeneous graph with V = G/H and the quotient map q : G → G/H . Let C = K ∪ {e} which
is an invariant neighborhood of e ∈ G . The discrete subgroup

G0 =
∞⋃

n=1

Cn ⊂ G

is an [IN0]-group. The measure μ/|K | in the Laplacian L has support K ⊂ G0 and restricts to a probability measure μ0
on G0. A real function h on G0 is called μ0-harmonic if h = h ∗ μ0. Given an L-harmonic function f : V → R, the equation
L f = 0 gives

f (Hx) =
(

f ∗ μ

|K |
)

(Hx) =
∫
G

f
(

Hxy−1) dμ

|K | (y) =
∫
G0

f
(

Hxy−1)dμ0(y)

and hence f ◦ q restricts to a μ0-harmonic function on G0.
A function ϕ : G0 → (0,∞) is called exponential if ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ G0.

Proposition 3.2. Let (V , K ) be a connected invariant homogeneous graph with the Laplacian L in (2). Then all positive L-harmonic
functions on V are constant.

Proof. Let f be a positive function on V = G/H satisfying L f = 0. By the above remark, the quotient map q : G → G/H
lifts f to a positive μ0-harmonic function f ◦ q on G0. Since G0 is an [IN0]-group and the support of μ0 generates G0,
it follows from [4, Theorem 9] that f ◦ q|G0 is an integral

f ◦ q(x) =
∫
E

h(x)dP (h) (x ∈ G0)

of (constant multiples of) exponential functions with respect to a probability measure P on E , where each h ∈ E is a
constant multiple αϕ of an exponential function ϕ on G0 satisfying∫

G0

ϕ
(
x−1)dμ0(x) = 1.

We show ϕ = 1 for all such ϕ . Indeed, if ϕ(a) �= 1 for some a ∈ K , then ϕ(a) + ϕ(a−1) = ϕ(a) + ϕ(a)−1 > 2 and 1 =∫
G0

ϕ(x−1)dμ0(x) = ∑
b∈K ϕ(b)μ(b)/|K | implies

|K | = ϕ(a)μ(a) + ϕ(a)−1μ(a) +
∑

b∈K\{a,a−1}
ϕ(b)μ(b) > 2μ(a) +

∑
b∈K\{a,a−1}

ϕ(b)μ(b) �
∑
b∈K

μ(b) =
∑
b∈K

w(v, vb) = |K |

which is impossible. Hence ϕ = 1 on C = K ∪ {e} and therefore, on
⋃∞

n=1 Cn = G0.
It follows that f ◦ q is constant on G0. Since G = ⋃∞

n=1 HCn by connectedness of the graph and Proposition 3.1, we have
f (Hx) = f (H) for all x ∈ G . �

Let (V , K ) be a weighted invariant homogeneous graph in which the weight is given by a symmetric measure μ satisfy-
ing

μ(a) = μ
(
bab−1) > 0 (a,b ∈ K ). (3)

Let wa = μ(a)/|K | for a ∈ K so that the Laplacian in (2) is written

L f (v) =
∑
a∈K

(
f (v) − f (va)

)
wa.

Chung and Yau [7] have proved a Harnack inequality for eigenfunctions of L on unweighted (V , K ) where μ(a) = 1 for
all a ∈ K . By Proposition 3.2, the positive eigenfunctions of L corresponding to the eigenvalue λ = 0 are constant. By
[2, Corollary 3.14], the �p-eigenfunctions of L for λ = 0 and 1 � p < ∞ are also constant. Extending the idea in [7], we
consider below eigenfunctions corresponding to eigenvalues λ > 0 for a Schrödinger operator L + ϕ which is a positive
operator on the Hilbert space �2(V ) if ϕ � 0, but may be unbounded if V is infinite.

We note that if K is a subgroup of G in an invariant homogeneous graph (V , K ), then V = ⋃
v∈V {v} ∪ v K is a disjoint

union of connected components. The vertex set S of a union of these components satisfies S K ⊂ S .
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Theorem 3.3. Let (V , K ) be an invariant homogeneous graph. Let ϕ � 0 be a function on V and let f be a real function on V satisfying

L f + ϕ f = λ f (λ > 0).

Then on any finite subgraph with vertex set S satisfying S K ⊂ S, we have

∑
a∈K

wa
[

f (v) − f (va)
]2 + αλ f 2(v) �

(
α2λ

α − 2
+ 4

(α − 2)λ
sup

S
ϕ

)
sup

S
f 2

for v ∈ S and α > 2. In particular, the inequality holds for all v ∈ V if V is finite, with S = V .

Proof. We extend the arguments in [7] and include the details for later reference. Define

ρ(v) =
∑
a∈K

wa
[

f (v) − f (va)
]2

(v ∈ S)

and let L act on the functions ρ and f 2. First consider

Lρ(v) =
∑
b∈K

wb

∑
a∈K

wa
{[

f (v) − f (va)
]2 − [

f (vb) − f (vba)
]2}

= −
∑
b∈K

wb

∑
a∈K

wa
[

f (v) − f (va) − f (vb) + f (vba)
]2

+ 2
∑
b∈K

wb

∑
a∈K

wa
[

f (v) − f (va) − f (vb) + f (vba)
][

f (v) − f (va)
]
.

Let X denote the second term above. We have

X = 2
∑
b∈K

wb

∑
a∈K

wa
[

f (v) − f (va) − f (vb) + f (vba)
][

f (v) − f (va)
]

= 2
∑
a∈K

wa

(∑
b∈K

wb
[

f (v) − f (va) − f (vb) + f (vab)
])[

f (v) − f (va)
]

+ 2
∑
a∈K

wa

(∑
b∈K

wb
[

f (vba) − f (vab)
])[

f (v) − f (va)
]

= 2λ
∑
a∈K

wa
[

f (v) − f (va)
]2 + 2

∑
a∈K

wa
[
ϕ(va) f (va) − ϕ(v) f (v)

][
f (v) − f (va)

]
where

∑
b∈K

wb
[

f (v) − f (vb)
] = λ f (v) − ϕ(v) f (v),

∑
b∈K

wb
[

f (va) − f (vab)
] = λ f (va) − ϕ(va) f (va)

and
∑

b∈K wb[ f (vba) − f (vab)] = 0 follows from the symmetry of μ and (3).
It follows that

Lρ(v) � X = 2λ
∑
a∈K

wa
[

f (v) − f (va)
]2 + 2

∑
a∈K

wa
[
ϕ(va) f (va) − ϕ(v) f (v)

][
f (v) − f (va)

]
� 2λ

∑
a∈K

wa
[

f (v) − f (va)
]2 + 2

∑
a∈K

wa
[
ϕ(va) f (va) f (v) + ϕ(v) f (v) f (va)

]
.

Next we consider

L f 2(v) =
∑
a∈K

wa
[

f 2(v) − f 2(va)
] = 2

∑
a∈K

wa f (v)
[

f (v) − f (va)
] −

∑
a∈K

wa
[

f (v) − f (va)
]2

= 2
(
λ − ϕ(v)

)
f 2(v) −

∑
wa

[
f (v) − f (va)

]2
.

a∈K
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Putting the last two inequalities above together, we arrive at

L
(
ρ(v) + αλ f 2(v)

)
� 2αλ

(
λ − ϕ(v)

)
f 2(v) − (α − 2)λ

∑
a∈K

wa
[

f (v) − f (va)
]2

+ 2 f (v)
∑
a∈K

waϕ(va) f (va) + 2ϕ(v) f (v)
∑
a∈K

wa f (va).

We can find s ∈ S such that

ρ(s) + αλ f 2(s) = sup
{
ρ(v) + αλ f 2(v): v ∈ S

}
.

Since S K ⊂ S, we have

0 �L
(
ρ(s) + αλ f 2(s)

)
� 2αλ

(
λ − ϕ(s)

)
f 2(s) − (α − 2)λ

∑
a∈K

wa
[

f (s) − f (sa)
]2 + 2 f (s)

∑
a∈K

waϕ(sa) f (sa) + 2ϕ(s) f (s)
∑
a∈K

wa f (sa). (4)

This implies

∑
a∈K

wa
[

f (s) − f (sa)
]2 � 1

(α − 2)λ

(
2αλ

(
λ − ϕ(s)

)
f 2(s) + 2 f (s)

∑
a∈K

waϕ(sa) f (sa) + 2ϕ(s) f (s)
∑
a∈K

wa f (sa)

)
.

Hence for every v ∈ S , we have∑
a∈K

wa
[

f (v) − f (va)
]2 + αλ f 2(v)

� 1

(α − 2)λ

(
2αλ

(
λ − ϕ(s)

)
f 2(s) + 2 f (s)

∑
a∈K

waϕ(sa) f (sa) + 2ϕ(s) f (s)
∑
a∈K

wa f (sa) + αλ(α − 2)λ f 2(s)

)

� 1

(α − 2)λ

(
α2λ2 f 2(s) + 2 f (s)

∑
a∈K

waϕ(sa) f (sa) + 2ϕ(s) f (s)
∑
a∈K

wa f (sa)

)

� 1

(α − 2)λ

(
α2λ2 f 2(s) +

∑
a∈K

waϕ(sa)
(

f 2(s) + f 2(sa)
) +

∑
a∈K

waϕ(s)
(

f 2(s) + f 2(sa)
))

� α2λ

α − 2
sup

S
f 2 + 4

(α − 2)λ
sup

S
ϕ sup

S
f 2. �

Remark 3.4. For ϕ = 0 and wa = 1
|K | in Theorem 3.3, the inequality is identical with the Harnack inequality for finite V

in [7].

Finally we derive a similar Harnack inequality for Dirichlet eigenfunctions on a finite convex subgraph of an invariant
homogeneous graph (V , K ), extending the result in [8]. The boundary δS of a subgraph of (V , K ) with vertex set S is defined
by δS = {v ∈ V \ S: v ∼ some u ∈ S} where ∼ denotes adjacency. A subgraph of (V , K ) with vertex set S is called convex
[8] if, for any subset Y ⊂ δS , its neighborhood N(Y ) = {v ∈ V : v ∼ some u ∈ Y } satisfies the boundary expansion property:∣∣N(Y ) \ (S ∪ δS)

∣∣ = ∣∣{v /∈ S ∪ δS: v ∼ some u ∈ Y }∣∣ � |Y |.
An eigenfunction f on S ∪δS of a Schrödinger operator L+ϕ is said to satisfy the Dirichlet boundary condition if f (v) = 0

for v ∈ δS .

Theorem 3.5. Let (V , K ) be an invariant homogeneous graph and let S be the vertex set of a finite convex subgraph of (V , K ). Let
ϕ � 0 and let f be a real function on S ∪ δS satisfying

L f (v) + ϕ(v) f (v) = λ f (v) (λ > 0) (5)

for v ∈ S and f (v) = 0 for v ∈ δS. Then we have the inequality

wa
[

f (v) − f (va)
]2 + αλ f 2(v) �

(
α2λ

α − 2
+ 4

(α − 2)λ
sup

S
ϕ

)
sup

S
f 2

for v ∈ S, a ∈ K and α > 2, |K |/λk where k = inf{wa: a ∈ K }.
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Proof. As in the proof of [8, Theorem 1], convexity of S enables one to extend the function f to all vertices of V adjacent
to S ∪ δS so that Eq. (5) also holds on δS , and as in the proof of Theorem 3.3, one can apply similar arguments to the
function

ρa(v) = wa
[

f (v) − f (va)
]2 + αλ f 2(v) (v ∈ S ∪ δS, a ∈ K )

and find some s ∈ S and b ∈ K satisfying

ρb(s) = sup
{
ρa(v): v ∈ S, a ∈ K

}
.

We have ρb(s) � ρb(sa) for each a ∈ K , given α > |K |/λk. It follows that L(ρb(s)) � 0 as in (4) in the proof of Theorem 3.3.
From this, one obtains the required inequality as before. �
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