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1. Introduction

In a weighted graph (V, E), finite or infinite, let d, and w:V x V — [0, c0) denote respectively the degree of a vertex
v €V and the weight w(v,u) = w(u, v), satisfying d, = )", w(v,u) < oo. The Laplacian L, acting on real or complex
functions f on V, is defined by

fawywv,u)
Lfw)=f(v)— Z T (veV).
(v,u)eE

An important problem in spectral geometry is the estimation of the spectrum o (£) of L. It is known, for instance, that
1—+/1—h2 is a lower bound for the positive eigenvalues where h is the Cheeger constant of the graph [5,10,12,14,16].

In this paper, we give a full description of the spectrum o (£) for a homogeneous graph under some weight condition.

We call (V, E) a homogeneous graph (cf. [5]), if the vertex set V is a homogeneous space of a discrete group G with
a graph condition, by which we mean G acts transitively on V by a right action (v,g) € V x G+ vg e V so that V is
represented as a right coset space G/H of G by a finite subgroup H and the edge set E is described by a finite subset
K =K' CG in that (v,u) € E if and only if u = va for some a € K. Henceforth we denote a homogeneous graph by
(V, K), with the edge generating set K having finite cardinality |K|. We note that (V, K) is a Cayley graph if H reduces
to the identity of G, in which case we write (G, K) for the graph. Although one can consider a more general notion of
a homogeneous graph (G/H, K) in which the isotropy subgroup H can be infinite, we only consider this case in the last
section of the paper.
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The Laplacian for a weighted homogeneous graph (V, K) can be written as
1

1
LFWV)=fw)— Tl > fvayw(v, va) = T4

ack

Z(f(v) — fva)w(v,va) (veV).

ack

We describe the spectrum of £ completely in terms of irreducible representations of G when the weight w is given
by a measure ; on G which is symmetric and constant on each set aHb, that is, w(Ha, Hb) = pu(a~'b) = (b~ 'a) and
j(ach) = p(ab) for all c € H. A weight w is given by such a measure pu if w(v,va) = w(u,ua) for u,veV and a € K, in
which case p is a measure supported by K. For instance, for unweighted graphs, we have w(v, va) = 1.

In fact, we prove a more general result for the L%-spectrum of a convolution operator on the homogeneous space of a
locally compact group G by a compact subgroup H, which is of independent interest and includes the above Laplacian as
a special case. We note that the connection between a finite homogeneous graph Laplacian and group representations has
been discussed in [5, p. 117] and [6]. Our result for convolution operators involves group C*-algebras and applies to infinite
graphs as well.

A homogeneous graph (V, K) is called invariant in [7] if G acts on V as automorphisms of V and aK = Ka for all a € K.
We characterize the invariance of (V, K) in terms of group structures and show that all positive £-harmonic functions on
a connected invariant graph are constant. A Harnack inequality has been proved in [7] for the Laplacian £ of an invariant
unweighted homogeneous graph. We extend this Harnack inequality for a Schrédinger operator £ + ¢ on an invariant
homogeneous graph.

2. Convolution operators on homogeneous spaces

Let G be a locally compact group with identity e and a right invariant Haar measure A. Let G act transitively on a locally
compact Hausdorff space V by a (continuous) right action

(v,8)eVxGr>vgeV

such that V is represented as a right coset space G/H of G by a compact subgroup H of G and the action identifies with
the natural action of G on G/H by right multiplication. In this case, V = G/H admits a G-invariant measure v satisfying
Vv=%xoq~! where q: G — G/H denotes the quotient map throughout (cf. [11, p. 58]).

For 1 < p < oo, let LP(G/H) be the complex Lebesgue space of p-integrable functions on G/H with respect to v, and
write LP(G) for H = {e}, also £P(G) for a discrete group G. We note that L'(G) has an involution

f*o=fxNakx") xeG)

where A is the modular function of G.
Let M(G) be the Banach algebra of complex Borel measures on G, with the total variation norm, in which the product of
two measures u, i’ € M(G) is given by convolution:

/fd(u*u’)=//f(xy)du(><)du/(y)
G

G G

for each continuous function f on G vanishing at infinity. The convolution h * u for h € LP(G) is defined by h * u(x) =
Johxy™Hdu(y).

A measure u € M(G) is called absolutely continuous if its total variation || is absolutely continuous with respect to the
Haar measure %, in which case y has a density f € L'(G) so that u = f - A. We call i symmetric if dp(x) = dp(x~1). The
unit mass at a point a € G is denoted by §;.

Given u € M(G), we define the convolution operator L, : LP(G/H) — LP(G/H) by

(L, f)(Hx) = f F(Hxy ) duy) (f € LP(G/H)).
G

This operator is well defined by G-invariance of the measure v and we have ||L, || < [|]l. We note that L, is a self-adjoint
operator on the Hilbert space L2(G/H) if  is symmetric.

Our first task is to describe the spectrum of L, : L2(G/H) — L?(G/H) for an absolutely continuous symmetric measure (.
For this, we develop a device to identify L, as an element in a quotient of the group C*-algebra C*(G) which then enables
us to use spectral theory of C*-algebras to conclude the result.

We recall that the group C*-algebra C*(G) of G is the completion of L1(G) with respect to the norm

I £lle = sup{]l= (D]}

where the supremum is taken over all x-representations 7 : L1(G) — B(Hy), the latter denotes the algebra of all bounded
operators on the Hilbert space Hy. If G is discrete, then C*(G) contains an identity.
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Let p : C*(G) — B(L2(G)) be the right regular representation given by

p(Hh=hxf (fel'(G), hel?G)

which is an extension of the right regular representation a € G — p(a) € B(L?(G)) of G, where p(a)h = h  8,. The reduced
group C*-algebra C}(G) is the norm closure p(L1(G)) = p(C*(G)).
We have two natural well-defined continuous linear maps j: L2(G/H) — L2(G) and Q : L*(G) — L*(G/H) given by

i) =foq.  Qe(Hx) = / gEnde (f e 2(G/H). gel?(G))
H

where d¢ is the normalized Haar measure on the compact group H (cf. [3]).
There is a natural continuous linear map & : B(L%(G)) — B(L%(G/H)) given by the following diagram:

12(G) ——12(G)

i Jo
12(G/H) 2" 126 /H)
that is,
®(L)=Qoloj (1)
for each L € B(L?>(G)). We define a unitary representation 7 : G — B(L%(G/H)) by right translation:

t(@f(Hx) = f(Hxa™') (a,xeG, fel*G/H)).
We can extend 7 to a representation py : C*(G) — B(L?(G/H)) in the usual way (cf. [13, p. 229]).

Lemma 2.1. Let p : C*(G) — B(L2(G)) be the right regular representation and let @ : B(L*(G)) — B(L?(G/H)) be the map defined
in (1). Then the diagram

C*(G) B(L?(G/H))

\ /
B(L*(G))

is commutative.
Proof. For f € L'(G) and g € L>(G/H), we have

2(pf)@=Q(NijE®=Q(pf(goq)=0Q((goq) * f)

and

Q((goq) * f)(HY) = / (goq) * f(Ex)dE = / / (goq)(Exy ") F(y) da(y) dé = / / g(Hxy ™) f(y) di(y) de
H H G H G

- / g(Hxy ™) f () dr(y) = g+ F(HX) = pr () (2)(HX).

G
Hence @(pf) = pu(f). O

Lemma 2.2. Let 11 € M(G) be absolutely continuous with it = f - A and f € L'(G). Then py(f) = Ly, e B(L%(G/H)).

Proof. We have

pi(fHh = / (h# 80 f(x)dA(x) € L2(G/H)  (h e L(G/H))
G

and

,OH(f)h(HY)=/(h*5x)(HY)f(X)dk(X)=/h(HyX_l)f(X)dk(X)=(h*f)(HY)=Lu(h)(Hy)~ a
G G
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Let G be the dual space of G, consisting of (equivalence classes of) continuous irreducible unitary representations of G.
If G is abelian, then G is the character group of G. N
The spectrum of a C*-algebra A is defined to be the space A of (equivalence classes) of irreducible representations

7w :A— B(Hy) of A [9, 3.1.5]. The spectrum C/*@ identifies with G [9, 13.93] where each 7 € G is identified as the
irreducible representation of C*(G) satisfying

n(f):ff(x)n(x)dk(x) (f eL'(G) C C*(@).
G

The spectrum C/;‘(?) identifies with the following closed subset of G, the reduced dual of G:

G, = {m e G: kerm > ker p}

(cf. [9, 18.3]). We note that G, =G if G is amenable.
We define the Fourier transform ft of a measure € M(G) by

() = / m(x ) du (el
G

which is an operator in B(Hy), with spectrum denoted by o ({1 (5)).
The spectrum o (a) of a self-adjoint element a in a C*-algebra A with identity is given by
o) = U o (7 (@)
weA
where o (77 (a)) is the spectrum of 7 (a) in B(Hy) (cf. [9, 3.3.5]).
__If A is without identity, we adjoin an identity to A as usual to obtain A; = A ® C, then we have the identification

A1 = AU {w} where w is the one-dimensional irreducible representation of A; annihilating A (cf. [9, 3.2.4]). The quasi-
spectrum o”'(a) of a self-adjoint element a € A is the spectrum of a in A; and we have

o'@=0on@= ] o(@@)=]Jo@@w)uio}.

TeA TeA

Theorem 2.3. Let € M(G) be symmetric and absolutely continuous and let o (L,,) be the spectrum of the convolution operator
Ly : L*(G/H) — L*(G/H). Then we have

o (L) U0} =|J{o(E()): m €G,. kerm Dkerpy} U{0}.

In particular, o (L) U {0} = | {o (Ti(m)) 1 € Er} U {0} if H = {e}. If G is discrete, then {0} can be removed from both sides of the
above equations.

Proof. Let ;= f - A with f € L1(G). By Lemma 2.2, we have Ly = pu(f) € pu(C*(G)) = C*(G)/ ker py. We consider the
quasi-spectrum o’(pg (f)) of py(f) in py(C*(G)) which may not have an identity.
Let 0/(L,,) be the quasi-spectrum of the self-adjoint operator L, in B(L*(G/H)). Then we have

o (L) U{0}=0'(Ly) =0'(pu(f)) =0'(f + ker pn)
= U{o(n(f +kerpn)): we C*(mrm{} u {0}
= U{a(n(f)): 7 € C*(G), kerm O ker py } U {0}
= U{o(n(f)): 7 eG, kerw O ker py } U {0}
= U{U(n(f)): 7 €Gr, kerm D ker py } U {0}
where, by Lemma 2.1, ker py D ker p which gives the last equality, and

w(f)= f (0 f (%) dA(x) = / 7 (%) dpe(x) = A7)

G G

by symmetry of w. This proves the first assertion.
If G is discrete, then C*(G) has an identity and one can dispense with the quasi-spectrum and remove {0}. O
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Remark 2.4. If G is abelian, the above result can be deduced directly from the Plancherel theorem instead, without the
assumption of compactness of H and absolute continuity of .

Corollary 2.5. If H is a normal subgroup of G in Theorem 2.3, then

o (L) U0} =|J{o(B(m): m Gy, mw(H) =m{e}} U {0}.

Proof. By composing with the quotient map q: G — G/H, the dual space Em identifies with {7 € G: w(H) =m{e}}, and

also pn = pc/H 0 q where pg/y is the right regular representation of the group G/H. It follows that the reduced dual G//ﬁr
identifies with {w € G;: w(H)=m{e}}. O

We now consider homogeneous graphs. Let (V, K) be a homogeneous graph with V = G/H and let i be a positive
symmetric measure on G, supported by K, satisfying
nxcy) = pu(xy) (x,y€G, ceH).
We can define a weight w on V x V by

w(Hx, Hy) = u(x"'y).
In this case and in the sequel, w(v, va) = i(a) and the Laplacian has the form

1
(LHw) = Kl Z(f(v) — fva))u(a) = f * <6e - %)(V) (2)
aekK

which is a convolution operator L, : L?>(G/H) — L?(G/H) with p/ =8, — j1/|K|, where 14/|K| is a probability measure. For
unweighted graphs, we have w(a) =1 for all a € K.
We note that £ : ¢2(V) — ¢2(V) is a positive operator since the inner product

(Lf, )= ﬁ Y (Fw) - fv)u@ (f e )

veV aek

is nonnegative. Hence we always have o (£) C [0, 2] as ||£]| < ||8e — ‘;‘—qll <2.
Since =73 .k 1(@)dg and :S\a(n) =1 (a), we have the following description of the spectrum o (£).

Corollary 2.6. Let (V, K) be a homogeneous graph with V = G/H and weight w given by a measure [ as above. The spectrum of the
Laplacian in (2) is given by

oL)y=1— U{a(Zu(a)lK\‘ln(a)): 7 €G,, kerm Dker,oH}.

aek

Remark 2.7. In [6], a Laplacian acting on vector valued functions f :G/H — X has been considered and the resulting
spectrum is called the vibrational spectrum. For the vector space X of n x n matrices, the spectrum of a convolution operator
acting on X-valued functions on a group G has been described in [3], which yields the vibrational spectrum of a Cayley
graph (G, K) in this case.

Example 2.8. Let V = 72 /nZ x mZ with a finite > generating set K = —K C 7Z2. The character group 72 is the product T x T
of two copies of the circle group T. Each 7 € 72 identifies with (7r(1,0),7(0,1)) € T x T, and 7 (nZ x mZ) = {1} if and
only if 7w = (eZTik/n e2mit/my for (k, ) €{0,...,n —1} x {0, ...,m — 1}. For such m, we have

(@, b) — ezm(ka/nH{b/m) ((a’ b) e K).

Hence

o(L)= il — ( Mﬁtlb) cos 27 (ka/n —I—Zb/m)): (k, ) € Zn x Zm}.
(a,b)eK

Example 2.9. Let G be the discrete Heisenberg group
1 m p

0 1 n):mnpeZ
0 0 1
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which is amenable. The characters of G are known (cf. [1,11,15]). Let R/Z be the real numbers mod Z and denote an element
of G by (m,n, p). As in [11, Corollary 6.5] or [15], G contains, among others, the one-dimensional unitary representations

{Xa.p: @, B ER/Z}
where

Xa,p(m, 1, p) = ZTHCmHAM.
Consider the Cayley graph (G, K) with K = {(+m, 0, 0), (0, £n,0)} and m,n # 0. Let u be the following measure on G
supported by K:

= 13 + ]5 + 38 + 35
n= 5°2m.0,0) T 50(=m,0,0) * 50(0.n,0) T 50(0,-n.0)-

We have

oL)y=1-J o(}l Z/L(a)n(a)) o1-— U{izu(a)xmﬁ(a): a, B GR/Z}

7eC aek aek
1 3
= :1 — (4_1 cos(2mam) + 2 cos(27r;3n)>: o,Be R/Z} =10, 2].
It follows that o (£) =[O0, 2].
3. Harnack inequality

In this section, we prove a version of Harnack inequality for an invariant homogeneous graph. We do not assume that
the isotropy group H is finite in a homogeneous graph (G/H, K), but we let G act as graph automorphisms of G/H, that is,
two vertices Hx and Hy are adjacent if and only if Hxg and Hyg are adjacent for all g € G. A homogeneous graph (V, K) is
called invariant in [7] if the edge generating set K satisfies aK = Ka for each a € K. This condition imposes some structure
on the group G acting on V. It turns out that a connected Cayley graph (G, K) is invariant if and only if G is an [INg]-group
as defined in [4]. A locally compact group G is called an [INg]-group if G =|J52, C" for some compact neighborhood C
of the identity satisfying gC = Cg for each g € G. We first show the relationship between graph invariance and group
structures.

Proposition 3.1. Let V = G/H be a homogeneous space of a discrete group G. The following conditions are equivalent.

(i) (V, K) is a connected invariant homogeneous graph for some finite set K C G.
(il) G =2y HK™ with KO = {e} for some finite set K = K~ satisfying ak = Ka and HgK = HKg fora € K and g € G.

In particular, (G, K) is a connected invariant Cayley graph for some finite set K C G if and only if G is an [INg]-group.

Proof. (i) = (ii). Denote by v ~ u the adjacency of two points in V. We first show G = J;2,HK". Let g € G and
g ¢ H. Then Hg # H. Since V is connected, we have Hg ~ Hg; ~ --- ~ Hg, ~ H for some gi1,...,8, € G, and hence
Hg = (Hg1)ay = (Hgy)axay = --- = (Hgp)ay ---a1 = Hay1a,---a; where aq,...,ap41 € K. So g € HK™1. This proves
G=HUHKUHK?*U.--,

Next, let a € K and g € G. Then H ~ Ha which implies Hg ~ Hag since G acts on V as automorphisms of V. Hence
Hag = Hga, for some a; € K, and we have HKg C HgK. Similarly, HgK c HKg using Hg ~ Hga implies H ~ Hgag~'.

(ii) = (i). Define adjacency ~ in V by K. Given v ~u in V with u = va for some a € K, we have, for each g € G, that
ug = vag = vga' for some a € K, that is, ug ~ vg. Hence (V, K) is a homogeneous graph which is clearly invariant and
connected.

Finally, if (G, K) is an invariant connected Cayley graph, then C = K U {e} is an invariant neighborhood of the identity
by (ii) and G =J;2; C" is an [INg]-group.

Conversely, if G is an [INg]-group with G = | J52, C", then (G, K) is a connected invariant graph with K =C U cl. o

The product O(n) x R of the orthogonal group O(n) and the additive group R is an [INg]-group [4]. Evidently, a homo-
geneous graph (G/H, K) is invariant if G is abelian or K is a subgroup of G. We refer to [5] for more examples of invariant
homogeneous graphs.

A Harnack inequality for eigenfunctions of the Laplacian on a finite unweighted invariant homogeneous graph has been
shown in [7]. This inequality can be proved similarly for the Laplacian in (2) for weighted graphs. We will extend the
idea in [7] to deduce a version of Harnack inequality for a Schrédinger operator £ + ¢. We first prove that the positive
L-harmonic functions, that is, the positive 0-eigenfunctions of £, are constant.
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Let (V, K) be an invariant homogeneous graph with V = G/H and the quotient map q: G — G/H. Let C = K U {e} which
is an invariant neighborhood of e € G. The discrete subgroup

(o]
Go=|JC"cc
n=1
is an [INg]-group. The measure w/|K| in the Laplacian £ has support K C G and restricts to a probability measure (o

on Gop. A real function h on Gy is called wo-harmonic if h = h * po. Given an £-harmonic function f : V — R, the equation
Lf =0 gives

d
f(Hx) = (f x %)(Hx) = / f(ny‘l)ﬁw) = / F(Hxy ") duo(y)
G Go

and hence f oq restricts to a jtp-harmonic function on Gy.
A function ¢ : Go — (0, 00) is called exponential if p(xy) = @(x)@(y) for all x, y € Go.

Proposition 3.2. Let (V, K) be a connected invariant homogeneous graph with the Laplacian L in (2). Then all positive L-harmonic
functions on V are constant.

Proof. Let f be a positive function on V = G/H satisfying £f = 0. By the above remark, the quotient map q: G — G/H
lifts f to a positive po-harmonic function f oq on Gg. Since Go is an [INg]-group and the support of o generates Go,
it follows from [4, Theorem 9] that f oq|g, is an integral

fOQ(X)=/h(X)dP(h) (x€Go)
£

of (constant multiples of) exponential functions with respect to a probability measure P on &, where each h € £ is a
constant multiple a of an exponential function ¢ on Gg satisfying

fw(x”)duo(x)ﬂ.

Go

We show ¢ =1 for all such ¢. Indeed, if ¢(a) # 1 for some a € K, then ¢(a) + @@ ') = @) + ¢@ ! >2 and 1=
Jeo Px D dio(0) = Ypei p(b)a(b)/|IK| implies

KI=p@p@+e@ 'n@+ Y ebpb) >2u@+ Y @bub) =)y ub)=Y wv,vh)=IK|

beK\{a,a~1} beK\{a,a~1} bek bek

which is impossible. Hence ¢ =1 on C =K U {e} and therefore, on (52, C" = Go.
It follows that f oq is constant on Go. Since G =|J;2; HC" by connectedness of the graph and Proposition 3.1, we have
f(Hx)= f(H) forall xe G. O

Let (V, K) be a weighted invariant homogeneous graph in which the weight is given by a symmetric measure p satisfy-
ing

p(@ = p(bab~') >0 (a,beK). 3)

Let wg = u(a)/|K| for a € K so that the Laplacian in (2) is written

LIw)=) (fv) - fva))wa.

aek

Chung and Yau [7] have proved a Harnack inequality for eigenfunctions of £ on unweighted (V, K) where w(a) =1 for
all a € K. By Proposition 3.2, the positive eigenfunctions of £ corresponding to the eigenvalue A = 0 are constant. By
[2, Corollary 3.14], the ¢P-eigenfunctions of £ for A =0 and 1 < p < co are also constant. Extending the idea in [7], we
consider below eigenfunctions corresponding to eigenvalues A > 0 for a Schrédinger operator £ + ¢ which is a positive
operator on the Hilbert space £2(V) if ¢ > 0, but may be unbounded if V is infinite.

We note that if K is a subgroup of G in an invariant homogeneous graph (V, K), then V =, .y {v}U VK is a disjoint
union of connected components. The vertex set S of a union of these components satisfies SK C S.
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Theorem 3.3. Let (V, K) be an invariant homogeneous graph. Let ¢ > 0 be a function on V and let f be a real function on V satisfying

Lf+@f=rf (.>0).

Then on any finite subgraph with vertex set S satisfying SK C S, we have

2
A
- sup w) sup 2
S

— 2 2
> wa[f(v) = fva)]” +arf (")<<a_2+(a—2)x s

aek

forv e S and a > 2. In particular, the inequality holds for all v € V if V is finite, with S = V.

Proof. We extend the arguments in [7] and include the details for later reference. Define

p() = wo[f(v) - fva)]* (veS)

ack

and let £ act on the functions p and f2. First consider

Low)=>"wy Y wa{[f) — fva)]* — [f(vb) — f(vba)]’}

bek aek
=— wy Y wa[f(v) — f(va) - f(vb) + f(vba)]’
beK ack
+2) wp Yy wa[f(v) = f(va) - f(vb) + f(vba)][f (v) - f(va)].
bek aek

Let X denote the second term above. We have

X=2) wp Yy wal[f(v)— f(va)— f(vb) + f(vb)][f(v) — f(va)]

bek aek
=23 wg ( Y wy[f(v) = fva) - f(vb)+ f(vab)]) [fw) = fva)]
aek beK

+2) wg ( > wh[f(vba) — f(vab)]) [f() = fva)]

ack beK

=2.) wa[f(v) — fFv)]’ +2) wa[p(va) fF(va) — o fF W] [ (¥) — f(va)]

aek aek
where
> wp[f(v) = Fb)] =Af(v) — p(v) f(W),
bek

Y wp[f(va) — f(vab)] = 1f(va) — (va) f (va)

bek

and Yy ¢ Wplf(vba) — f(vab)] =0 follows from the symmetry of w and (3).
It follows that

LpW) <X =20 wa[f() = Fom)]* +2) wa[e(va) f(va) — o) fFW][f (V) — f(va)]

ack aek
<Y W[ ) — FOD)]* +2 3 wa[e(va) f(va) F(v) + o) f (V) f (va)].
ack ack

Next we consider

LW =Y wa[f20) — F2va)] =2 wafW[F W) — Fva)] = Y wa[f ) — fFva)]?

ack aek aek

=20k~ ) F2v) = Y wa[f ) ~ fva)].

aek
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Putting the last two inequalities above together, we arrive at

L(p(v) +arf2(v)) <200 — p() F2(v) — (@ =21 Y W[ f(v) - f(va)]?

aek
+2f() ) wap(va) f(va) +2¢(v) f(v) Y waf (va).
aek aek
We can find s € S such that
p(s) +arf2(s) =sup{p(v) + arf?(v): veS}.
Since SK C S, we have
0 < L(p(s) +arf?(s))
<200(h— 9(©) F2(5) — (@ — D1 Y Wa[ £(5) — FD)]* +2(5) Y wa(sa) f (50) +20(5) f(5) Y wa f (sa). (4)
ack aek ack
This implies
Y walf )~ fsa)]’ < —(m(x —9(5)) f2(5) +2f(s) Y wag(sa) f (sa) + 29(5) f (5) Zwaf(sa)>.
ack (a _-Z)A ack aek

Hence for every v € S, we have

> wa[f(v) — Fva)]’ +arf2(v)

aek

<@ (M(A —9(9)) () +2f(5) Y wag(sa) f (sa) + 2¢(5) f (5) Y _ wa f(sa) +ar(@ — Z)Afz(s))

aek aek

(azxzfz(s) +2£(5) ) wap(sa) f(sa) +20(5) f(5) ) waf(sa)>

aek aek

(azxzfz(s) + ) wag(sa)(F2(s) + f2(s0) + Y wap($)(F3(5) + fz(sa)))

aek ack

g—
(o —2)A

<7
(@ —2)x

2
a‘a 2 4 )
< su —suppsup f°. O
a2 WP T supesup S
Remark 3.4. For ¢ =0 and wy = |11_<\
in [7].

in Theorem 3.3, the inequality is identical with the Harnack inequality for finite V

Finally we derive a similar Harnack inequality for Dirichlet eigenfunctions on a finite convex subgraph of an invariant
homogeneous graph (V, K), extending the result in [8]. The boundary &S of a subgraph of (V, K) with vertex set S is defined
by §S={veV\S: v~some ueS} where ~ denotes adjacency. A subgraph of (V, K) with vertex set S is called convex
[8] if, for any subset Y C §S, its neighborhood N(Y) ={v € V: v ~some u € Y} satisfies the boundary expansion property:

IN(Y)\ (SUSS)|=|{v¢SuUsS: v~someueY} >|Y|

An eigenfunction f on SUGSS of a Schrédinger operator £+ ¢ is said to satisfy the Dirichlet boundary condition if f(v) =0
for v € 6S.

Theorem 3.5. Let (V, K) be an invariant homogeneous graph and let S be the vertex set of a finite convex subgraph of (V, K). Let
@ > 0and let f be areal function on S U §S satisfying

LIfW)+oW)fv)=rf(v) (A>0) (5)
forv e Sand f(v) =0 for v € §S. Then we have the inequality

2
A
- sup w) sup 2
S

_ 2 2 -
Wa[f(v) f(va)] +arfiv) < <0[ -2 + (a—2)A s

forveS,aeKando > 2, |K|/Ak where k = inf{w,: a € K}.
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Proof. As in the proof of [8, Theorem 1], convexity of S enables one to extend the function f to all vertices of V adjacent
to SUSS so that Eq. (5) also holds on 8S, and as in the proof of Theorem 3.3, one can apply similar arguments to the
function

pa(v)zwa[f(v)—f(va)]2+akf2(v) (veSUsS, aek)

and find some s € S and b € K satisfying

pp(s) =sup{pa(v): V€S, aeK}.

We have pp(s) = pp(sa) for each a € K, given o > |K|/rk. It follows that L£L(pp(s)) > 0 as in (4) in the proof of Theorem 3.3.
From this, one obtains the required inequality as before. O
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