Spectrum of a homogeneous graph

C. Chen, C.-H. Chu*
School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS, UK

A R T I C L E I N F O

Article history:

Received 8 April 2008
Available online 24 June 2008
Submitted by J.D.M. Wright

Keywords:

Spectrum
Laplacian
Homogeneous graph
Convolution operator
Group representation
Harnack inequality

Abstract

We describe the spectrum of the Laplacian for a homogeneous graph acted on by a discrete group. This follows from a more general result which describes the spectrum of a convolution operator on a homogeneous space of a locally compact group. We also prove a version of Harnack inequality for a Schrödinger operator on an invariant homogeneous graph.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In a weighted graph (V, E), finite or infinite, let d_{v} and $w: V \times V \rightarrow[0, \infty)$ denote respectively the degree of a vertex $v \in V$ and the weight $w(v, u)=w(u, v)$, satisfying $d_{v}=\sum_{u} w(v, u)<\infty$. The Laplacian \mathcal{L}, acting on real or complex functions f on V, is defined by

$$
\mathcal{L} f(v)=f(v)-\sum_{\substack{u \\(v, u) \in E}} \frac{f(u) w(v, u)}{\sqrt{d_{v} d_{u}}} \quad(v \in V)
$$

An important problem in spectral geometry is the estimation of the spectrum $\sigma(\mathcal{L})$ of \mathcal{L}. It is known, for instance, that $1-\sqrt{1-h^{2}}$ is a lower bound for the positive eigenvalues where h is the Cheeger constant of the graph $[5,10,12,14,16]$.

In this paper, we give a full description of the spectrum $\sigma(\mathcal{L})$ for a homogeneous graph under some weight condition.
We call (V, E) a homogeneous graph (cf. [5]), if the vertex set V is a homogeneous space of a discrete group G with a graph condition, by which we mean G acts transitively on V by a right action $(v, g) \in V \times G \mapsto v g \in V$ so that V is represented as a right coset space G / H of G by a finite subgroup H and the edge set E is described by a finite subset $K=K^{-1} \subset G$ in that $(v, u) \in E$ if and only if $u=v a$ for some $a \in K$. Henceforth we denote a homogeneous graph by (V, K), with the edge generating set K having finite cardinality $|K|$. We note that (V, K) is a Cayley graph if H reduces to the identity of G, in which case we write (G, K) for the graph. Although one can consider a more general notion of a homogeneous graph $(G / H, K)$ in which the isotropy subgroup H can be infinite, we only consider this case in the last section of the paper.

[^0]The Laplacian for a weighted homogeneous graph (V, K) can be written as

$$
\mathcal{L} f(v)=f(v)-\frac{1}{|K|} \sum_{a \in K} f(v a) w(v, v a)=\frac{1}{|K|} \sum_{a \in K}(f(v)-f(v a)) w(v, v a) \quad(v \in V) .
$$

We describe the spectrum of \mathcal{L} completely in terms of irreducible representations of G when the weight w is given by a measure μ on G which is symmetric and constant on each set $a H b$, that is, $w(H a, H b)=\mu\left(a^{-1} b\right)=\mu\left(b^{-1} a\right)$ and $\mu(a c b)=\mu(a b)$ for all $c \in H$. A weight w is given by such a measure μ if $w(v, v a)=w(u, u a)$ for $u, v \in V$ and $a \in K$, in which case μ is a measure supported by K. For instance, for unweighted graphs, we have $w(v, v a)=1$.

In fact, we prove a more general result for the L^{2}-spectrum of a convolution operator on the homogeneous space of a locally compact group G by a compact subgroup H, which is of independent interest and includes the above Laplacian as a special case. We note that the connection between a finite homogeneous graph Laplacian and group representations has been discussed in [5, p. 117] and [6]. Our result for convolution operators involves group C^{*}-algebras and applies to infinite graphs as well.

A homogeneous graph (V, K) is called invariant in [7] if G acts on V as automorphisms of V and $a K=K a$ for all $a \in K$. We characterize the invariance of (V, K) in terms of group structures and show that all positive \mathcal{L}-harmonic functions on a connected invariant graph are constant. A Harnack inequality has been proved in [7] for the Laplacian \mathcal{L} of an invariant unweighted homogeneous graph. We extend this Harnack inequality for a Schrödinger operator $\mathcal{L}+\varphi$ on an invariant homogeneous graph.

2. Convolution operators on homogeneous spaces

Let G be a locally compact group with identity e and a right invariant Haar measure λ. Let G act transitively on a locally compact Hausdorff space V by a (continuous) right action

$$
(v, g) \in V \times G \mapsto v g \in V
$$

such that V is represented as a right coset space G / H of G by a compact subgroup H of G and the action identifies with the natural action of G on G / H by right multiplication. In this case, $V=G / H$ admits a G-invariant measure v satisfying $\nu=\lambda \circ q^{-1}$ where $q: G \rightarrow G / H$ denotes the quotient map throughout (cf. [11, p. 58]).

For $1 \leqslant p \leqslant \infty$, let $L^{p}(G / H)$ be the complex Lebesgue space of p-integrable functions on G / H with respect to ν, and write $L^{p}(G)$ for $H=\{e\}$, also $\ell^{p}(G)$ for a discrete group G. We note that $L^{1}(G)$ has an involution

$$
f^{*}(x)=\overline{f\left(x^{-1}\right)} \Delta\left(x^{-1}\right) \quad(x \in G)
$$

where Δ is the modular function of G.
Let $M(G)$ be the Banach algebra of complex Borel measures on G, with the total variation norm, in which the product of two measures $\mu, \mu^{\prime} \in M(G)$ is given by convolution:

$$
\int_{G} f d\left(\mu * \mu^{\prime}\right)=\int_{G} \int_{G} f(x y) d \mu(x) d \mu^{\prime}(y)
$$

for each continuous function f on G vanishing at infinity. The convolution $h * \mu$ for $h \in L^{p}(G)$ is defined by $h * \mu(x)=$ $\int_{G} h\left(x y^{-1}\right) d \mu(y)$.

A measure $\mu \in M(G)$ is called absolutely continuous if its total variation $|\mu|$ is absolutely continuous with respect to the Haar measure λ, in which case μ has a density $f \in L^{1}(G)$ so that $\mu=f \cdot \lambda$. We call μ symmetric if $d \mu(x)=d \mu\left(x^{-1}\right)$. The unit mass at a point $a \in G$ is denoted by δ_{a}.

Given $\mu \in M(G)$, we define the convolution operator $L_{\mu}: L^{p}(G / H) \rightarrow L^{p}(G / H)$ by

$$
\left(L_{\mu} f\right)(H x)=\int_{G} f\left(H x y^{-1}\right) d \mu(y) \quad\left(f \in L^{p}(G / H)\right)
$$

This operator is well defined by G-invariance of the measure v and we have $\left\|L_{\mu}\right\| \leqslant\|\mu\|$. We note that L_{μ} is a self-adjoint operator on the Hilbert space $L^{2}(G / H)$ if μ is symmetric.

Our first task is to describe the spectrum of $L_{\mu}: L^{2}(G / H) \rightarrow L^{2}(G / H)$ for an absolutely continuous symmetric measure μ. For this, we develop a device to identify L_{μ} as an element in a quotient of the group C^{*}-algebra $C^{*}(G)$ which then enables us to use spectral theory of C^{*}-algebras to conclude the result.

We recall that the group C^{*}-algebra $C^{*}(G)$ of G is the completion of $L^{1}(G)$ with respect to the norm

$$
\|f\|_{c}=\sup _{\pi}\{\|\pi(f)\|\}
$$

where the supremum is taken over all $*$-representations $\pi: L^{1}(G) \rightarrow B\left(H_{\pi}\right)$, the latter denotes the algebra of all bounded operators on the Hilbert space H_{π}. If G is discrete, then $C^{*}(G)$ contains an identity.

Let $\rho: C^{*}(G) \rightarrow B\left(L^{2}(G)\right)$ be the right regular representation given by

$$
\rho(f) h=h * f \quad\left(f \in L^{1}(G), h \in L^{2}(G)\right)
$$

which is an extension of the right regular representation $a \in G \mapsto \rho(a) \in B\left(L^{2}(G)\right)$ of G, where $\rho(a) h=h * \delta_{a}$. The reduced group C^{*}-algebra $C_{r}^{*}(G)$ is the norm closure $\overline{\rho\left(L^{1}(G)\right)}=\rho\left(C^{*}(G)\right)$.

We have two natural well-defined continuous linear maps $j: L^{2}(G / H) \rightarrow L^{2}(G)$ and $Q: L^{2}(G) \rightarrow L^{2}(G / H)$ given by

$$
j(f)=f \circ q, \quad Q g(H x)=\int_{H} g(\xi x) d \xi \quad\left(f \in L^{2}(G / H), g \in L^{2}(G)\right)
$$

where $d \xi$ is the normalized Haar measure on the compact group H (cf. [3]).
There is a natural continuous linear map $\Phi: B\left(L^{2}(G)\right) \rightarrow B\left(L^{2}(G / H)\right)$ given by the following diagram:

that is,

$$
\begin{equation*}
\Phi(L)=Q \circ L \circ j \tag{1}
\end{equation*}
$$

for each $L \in B\left(L^{2}(G)\right)$. We define a unitary representation $\tau: G \rightarrow B\left(L^{2}(G / H)\right)$ by right translation:

$$
\tau(a) f(H x)=f\left(H x a^{-1}\right) \quad\left(a, x \in G, f \in L^{2}(G / H)\right)
$$

We can extend τ to a representation $\rho_{H}: C^{*}(G) \rightarrow B\left(L^{2}(G / H)\right)$ in the usual way (cf. [13, p. 229]).
Lemma 2.1. Let $\rho: C^{*}(G) \rightarrow B\left(L^{2}(G)\right)$ be the right regular representation and let $\Phi: B\left(L^{2}(G)\right) \rightarrow B\left(L^{2}(G / H)\right)$ be the map defined in (1). Then the diagram

is commutative.
Proof. For $f \in L^{1}(G)$ and $g \in L^{2}(G / H)$, we have

$$
\Phi(\rho f)(g)=Q(\rho f) j(g)=Q(\rho f(g \circ q))=Q((g \circ q) * f)
$$

and

$$
\begin{aligned}
Q((g \circ q) * f)(H x) & =\int_{H}(g \circ q) * f(\xi x) d \xi=\int_{H} \int_{G}(g \circ q)\left(\xi x y^{-1}\right) f(y) d \lambda(y) d \xi=\int_{H} \int_{G} g\left(H x y^{-1}\right) f(y) d \lambda(y) d \xi \\
& =\int_{G} g\left(H x y^{-1}\right) f(y) d \lambda(y)=g * f(H x)=\rho_{H}(f)(g)(H x)
\end{aligned}
$$

Hence $\Phi(\rho f)=\rho_{H}(f)$.
Lemma 2.2. Let $\mu \in M(G)$ be absolutely continuous with $\mu=f \cdot \lambda$ and $f \in L^{1}(G)$. Then $\rho_{H}(f)=L_{\mu} \in B\left(L^{2}(G / H)\right)$.
Proof. We have

$$
\rho_{H}(f) h=\int_{G}\left(h * \delta_{x}\right) f(x) d \lambda(x) \in L^{2}(G / H) \quad\left(h \in L^{2}(G / H)\right)
$$

and

$$
\rho_{H}(f) h(H y)=\int_{G}\left(h * \delta_{x}\right)(H y) f(x) d \lambda(x)=\int_{G} h\left(H y x^{-1}\right) f(x) d \lambda(x)=(h * f)(H y)=L_{\mu}(h)(H y) .
$$

Let \widehat{G} be the dual space of G, consisting of (equivalence classes of) continuous irreducible unitary representations of G. If G is abelian, then \widehat{G} is the character group of G.

The spectrum of a C^{*}-algebra A is defined to be the space \widehat{A} of (equivalence classes) of irreducible representations $\pi: A \rightarrow B\left(H_{\pi}\right)$ of $A[9,3.1 .5]$. The spectrum $\widehat{C^{*}(G)}$ identifies with $\widehat{G}[9,13.93]$ where each $\pi \in \widehat{G}$ is identified as the irreducible representation of $C^{*}(G)$ satisfying

$$
\pi(f)=\int_{G} f(x) \pi(x) d \lambda(x) \quad\left(f \in L^{1}(G) \subset C^{*}(G)\right)
$$

The spectrum $\widehat{C_{r}^{*}(G)}$ identifies with the following closed subset of \widehat{G}, the reduced dual of G :

$$
\widehat{G}_{r}=\{\pi \in \widehat{G}: \operatorname{ker} \pi \supset \operatorname{ker} \rho\}
$$

(cf. [9, 18.3]). We note that $\widehat{G}_{r}=\widehat{G}$ if G is amenable.
We define the Fourier transform $\widehat{\mu}$ of a measure $\mu \in M(G)$ by

$$
\widehat{\mu}(\pi)=\int_{G} \pi\left(x^{-1}\right) d \mu(x) \quad(\pi \in \widehat{G})
$$

which is an operator in $B\left(H_{\pi}\right)$, with spectrum denoted by $\sigma(\widehat{\mu}(\pi))$.
The spectrum $\sigma(a)$ of a self-adjoint element a in a C^{*}-algebra A with identity is given by

$$
\sigma(a)=\bigcup_{\pi \in \widehat{A}} \sigma(\pi(a))
$$

where $\sigma(\pi(a))$ is the spectrum of $\pi(a)$ in $B\left(H_{\pi}\right)$ (cf. [9, 3.3.5]).
If A is without identity, we adjoin an identity to A as usual to obtain $A_{1}=A \oplus \mathbb{C}$, then we have the identification $\widehat{A}_{1}=\widehat{A} \cup\{\omega\}$ where ω is the one-dimensional irreducible representation of A_{1} annihilating A (cf. [9, 3.2.4]). The quasispectrum $\sigma^{\prime}(a)$ of a self-adjoint element $a \in A$ is the spectrum of a in A_{1} and we have

$$
\sigma^{\prime}(a)=\sigma_{A_{1}}(a)=\bigcup_{\pi \in \widehat{A}_{1}} \sigma(\pi(a))=\bigcup_{\pi \in \widehat{A}} \sigma(\pi(a)) \cup\{0\} .
$$

Theorem 2.3. Let $\mu \in M(G)$ be symmetric and absolutely continuous and let $\sigma\left(L_{\mu}\right)$ be the spectrum of the convolution operator $L_{\mu}: L^{2}(G / H) \rightarrow L^{2}(G / H)$. Then we have

$$
\sigma\left(L_{\mu}\right) \cup\{0\}=\bigcup\left\{\sigma(\widehat{\mu}(\pi)): \pi \in \widehat{G}_{r}, \text { ker } \pi \supset \operatorname{ker} \rho_{H}\right\} \cup\{0\} .
$$

In particular, $\sigma\left(L_{\mu}\right) \cup\{0\}=\bigcup\left\{\sigma(\widehat{\mu}(\pi)): \pi \in \widehat{G}_{r}\right\} \cup\{0\}$ if $H=\{e\}$. If G is discrete, then $\{0\}$ can be removed from both sides of the above equations.

Proof. Let $\mu=f \cdot \lambda$ with $f \in L^{1}(G)$. By Lemma 2.2, we have $L_{\mu}=\rho_{H}(f) \in \rho_{H}\left(C^{*}(G)\right) \cong C^{*}(G) / \operatorname{ker} \rho_{H}$. We consider the quasi-spectrum $\sigma^{\prime}\left(\rho_{H}(f)\right)$ of $\rho_{H}(f)$ in $\rho_{H}\left(C^{*}(G)\right)$ which may not have an identity.

Let $\sigma^{\prime}\left(L_{\mu}\right)$ be the quasi-spectrum of the self-adjoint operator L_{μ} in $B\left(L^{2}(G / H)\right)$. Then we have

$$
\begin{aligned}
\sigma\left(L_{\mu}\right) \cup\{0\} & =\sigma^{\prime}\left(L_{\mu}\right)=\sigma^{\prime}\left(\rho_{H}(f)\right)=\sigma^{\prime}\left(f+\operatorname{ker} \rho_{H}\right) \\
& =\bigcup\left\{\sigma\left(\pi\left(f+\operatorname{ker} \rho_{H}\right)\right): \pi \in C^{*}\left(\widehat{G) / \operatorname{ker}} \rho_{H}\right\} \cup\{0\}\right. \\
& =\bigcup\left\{\sigma(\pi(f)): \pi \in \widehat{C^{*}(G)}, \operatorname{ker} \pi \supset \operatorname{ker} \rho_{H}\right\} \cup\{0\} \\
& =\bigcup\left\{\sigma(\pi(f)): \pi \in \widehat{G}, \operatorname{ker} \pi \supset \operatorname{ker} \rho_{H}\right\} \cup\{0\} \\
& =\bigcup\left\{\sigma(\pi(f)): \pi \in \widehat{G_{r}}, \operatorname{ker} \pi \supset \operatorname{ker} \rho_{H}\right\} \cup\{0\}
\end{aligned}
$$

where, by Lemma 2.1, $\operatorname{ker} \rho_{H} \supset \operatorname{ker} \rho$ which gives the last equality, and

$$
\pi(f)=\int_{G} \pi(x) f(x) d \lambda(x)=\int_{G} \pi(x) d \mu(x)=\widehat{\mu}(\pi)
$$

by symmetry of μ. This proves the first assertion.
If G is discrete, then $C^{*}(G)$ has an identity and one can dispense with the quasi-spectrum and remove $\{0\}$.

Remark 2.4. If G is abelian, the above result can be deduced directly from the Plancherel theorem instead, without the assumption of compactness of H and absolute continuity of μ.

Corollary 2.5. If H is a normal subgroup of G in Theorem 2.3, then

$$
\sigma\left(L_{\mu}\right) \cup\{0\}=\bigcup\left\{\sigma(\widehat{\mu}(\pi)): \pi \in \widehat{G}_{r}, \pi(H)=\pi\{e\}\right\} \cup\{0\}
$$

Proof. By composing with the quotient map $q: G \rightarrow G / H$, the dual space $\widehat{G / H}$ identifies with $\{\pi \in \widehat{G}: \pi(H)=\pi\{e\}\}$, and also $\rho_{H}=\rho_{G / H} \circ q$ where $\rho_{G / H}$ is the right regular representation of the group G / H. It follows that the reduced dual $\widehat{G / H}$ identifies with $\left\{\pi \in \widehat{G}_{r}: \pi(H)=\pi\{e\}\right\}$.

We now consider homogeneous graphs. Let (V, K) be a homogeneous graph with $V=G / H$ and let μ be a positive symmetric measure on G, supported by K, satisfying

$$
\mu(x c y)=\mu(x y) \quad(x, y \in G, c \in H) .
$$

We can define a weight w on $V \times V$ by

$$
w(H x, H y)=\mu\left(x^{-1} y\right)
$$

In this case and in the sequel, $w(v, v a)=\mu(a)$ and the Laplacian has the form

$$
\begin{equation*}
(\mathcal{L} f)(v)=\frac{1}{|K|} \sum_{a \in K}(f(v)-f(v a)) \mu(a)=f *\left(\delta_{e}-\frac{\mu}{|K|}\right)(v) \tag{2}
\end{equation*}
$$

which is a convolution operator $L_{\mu^{\prime}}: L^{2}(G / H) \rightarrow L^{2}(G / H)$ with $\mu^{\prime}=\delta_{e}-\mu /|K|$, where $\mu /|K|$ is a probability measure. For unweighted graphs, we have $\mu(a)=1$ for all $a \in K$.

We note that $\mathcal{L}: \ell^{2}(V) \rightarrow \ell^{2}(V)$ is a positive operator since the inner product

$$
\langle\mathcal{L} f, f\rangle=\frac{1}{2|K|} \sum_{v \in V} \sum_{a \in K}(f(v)-f(v a))^{2} \mu(a) \quad\left(f \in \ell^{2}(V)\right)
$$

is nonnegative. Hence we always have $\sigma(\mathcal{L}) \subset[0,2]$ as $\|\mathcal{L}\| \leqslant\left\|\delta_{e}-\frac{\mu}{|K|}\right\| \leqslant 2$.
Since $\mu=\sum_{a \in K} \mu(a) \delta_{a}$ and $\widehat{\delta}_{a}(\pi)=\pi(a)$, we have the following description of the spectrum $\sigma(\mathcal{L})$.
Corollary 2.6. Let (V, K) be a homogeneous graph with $V=G / H$ and weight w given by a measure μ as above. The spectrum of the Laplacian in (2) is given by

$$
\sigma(\mathcal{L})=1-\bigcup\left\{\sigma\left(\sum_{a \in K} \mu(a)|K|^{-1} \pi(a)\right): \pi \in \widehat{G}_{r}, \operatorname{ker} \pi \supset \operatorname{ker} \rho_{H}\right\}
$$

Remark 2.7. In [6], a Laplacian acting on vector valued functions $f: G / H \rightarrow X$ has been considered and the resulting spectrum is called the vibrational spectrum. For the vector space X of $n \times n$ matrices, the spectrum of a convolution operator acting on X-valued functions on a group G has been described in [3], which yields the vibrational spectrum of a Cayley graph (G, K) in this case.

Example 2.8. Let $V=\mathbb{Z}^{2} / n \mathbb{Z} \times m \mathbb{Z}$ with a finite generating set $K=-K \subset \mathbb{Z}^{2}$. The character group $\widehat{\mathbb{Z}^{2}}$ is the product $\mathbb{T} \times \mathbb{T}$ of two copies of the circle group \mathbb{T}. Each $\pi \in \widehat{\mathbb{Z}^{2}}$ identifies with $(\pi(1,0), \pi(0,1)) \in \mathbb{T} \times \mathbb{T}$, and $\pi(n \mathbb{Z} \times m \mathbb{Z})=\{1\}$ if and only if $\pi=\left(e^{2 \pi i k / n}, e^{2 \pi i \ell / m}\right)$ for $(k, \ell) \in\{0, \ldots, n-1\} \times\{0, \ldots, m-1\}$. For such π, we have

$$
\pi(a, b)=e^{2 \pi i(k a / n+l b / m)} \quad((a, b) \in K)
$$

Hence

$$
\sigma(\mathcal{L})=\left\{1-\left(\sum_{(a, b) \in K} \frac{\mu(a, b)}{|K|} \cos 2 \pi(k a / n+\ell b / m)\right):(k, \ell) \in \mathbb{Z}_{n} \times \mathbb{Z}_{m}\right\}
$$

Example 2.9. Let G be the discrete Heisenberg group

$$
\left\{\left(\begin{array}{ccc}
1 & m & p \\
0 & 1 & n \\
0 & 0 & 1
\end{array}\right): m, n, p \in \mathbb{Z}\right\}
$$

which is amenable. The characters of G are known (cf. $[1,11,15]$). Let \mathbb{R} / \mathbb{Z} be the real numbers $\bmod \mathbb{Z}$ and denote an element of G by (m, n, p). As in [11, Corollary 6.5] or [15], \widehat{G} contains, among others, the one-dimensional unitary representations

$$
\left\{\chi_{\alpha, \beta}: \alpha, \beta \in \mathbb{R} / \mathbb{Z}\right\}
$$

where

$$
\chi_{\alpha, \beta}(m, n, p)=e^{2 \pi i(\alpha m+\beta n)} .
$$

Consider the Cayley graph (G, K) with $K=\{(\pm m, 0,0),(0, \pm n, 0)\}$ and $m, n \neq 0$. Let μ be the following measure on G supported by K :

$$
\mu=\frac{1}{2} \delta_{(m, 0,0)}+\frac{1}{2} \delta_{(-m, 0,0)}+\frac{3}{2} \delta_{(0, n, 0)}+\frac{3}{2} \delta_{(0,-n, 0)} .
$$

We have

$$
\begin{aligned}
\sigma(\mathcal{L}) & =1-\bigcup_{\pi \in \widehat{G}} \sigma\left(\frac{1}{4} \sum_{a \in K} \mu(a) \pi(a)\right) \supset 1-\bigcup\left\{\frac{1}{4} \sum_{a \in K} \mu(a) \chi_{\alpha, \beta}(a): \alpha, \beta \in \mathbb{R} / \mathbb{Z}\right\} \\
& =\left\{1-\left(\frac{1}{4} \cos (2 \pi \alpha m)+\frac{3}{4} \cos (2 \pi \beta n)\right): \alpha, \beta \in \mathbb{R} / \mathbb{Z}\right\}=[0,2]
\end{aligned}
$$

It follows that $\sigma(\mathcal{L})=[0,2]$.

3. Harnack inequality

In this section, we prove a version of Harnack inequality for an invariant homogeneous graph. We do not assume that the isotropy group H is finite in a homogeneous graph $(G / H, K)$, but we let G act as graph automorphisms of G / H, that is, two vertices $H x$ and $H y$ are adjacent if and only if $H x g$ and $H y g$ are adjacent for all $g \in G$. A homogeneous graph (V, K) is called invariant in [7] if the edge generating set K satisfies $a K=K a$ for each $a \in K$. This condition imposes some structure on the group G acting on V. It turns out that a connected Cayley graph (G, K) is invariant if and only if G is an [$\left.\mathrm{IN}_{0}\right]$-group as defined in [4]. A locally compact group G is called an [IN_{0}]-group if $G=\bigcup_{n=1}^{\infty} C^{n}$ for some compact neighborhood C of the identity satisfying $g C=C g$ for each $g \in G$. We first show the relationship between graph invariance and group structures.

Proposition 3.1. Let $V=G / H$ be a homogeneous space of a discrete group G. The following conditions are equivalent.
(i) (V, K) is a connected invariant homogeneous graph for some finite set $K \subset G$.
(ii) $G=\bigcup_{n=0}^{\infty} H K^{n}$ with $K^{0}=\{e\}$ for some finite set $K=K^{-1}$ satisfying $a K=K a$ and $H g K=H K g$ for $a \in K$ and $g \in G$.

In particular, (G, K) is a connected invariant Cayley graph for some finite set $K \subset G$ if and only if G is an $\left[\mathrm{IN}_{0}\right]$-group.
Proof. (i) \Rightarrow (ii). Denote by $v \sim u$ the adjacency of two points in V. We first show $G=\bigcup_{n=0}^{\infty} H K^{n}$. Let $g \in G$ and $g \notin H$. Then $H g \neq H$. Since V is connected, we have $H g \sim H g_{1} \sim \ldots \sim H g_{n} \sim H$ for some $g_{1}, \ldots, g_{n} \in G$, and hence $H g=\left(H g_{1}\right) a_{1}=\left(H g_{2}\right) a_{2} a_{1}=\cdots=\left(H g_{n}\right) a_{n} \cdots a_{1}=H a_{n+1} a_{n} \cdots a_{1}$ where $a_{1}, \ldots, a_{n+1} \in K$. So $g \in H K^{n+1}$. This proves $G=H \cup H K \cup H K^{2} \cup \cdots$.

Next, let $a \in K$ and $g \in G$. Then $H \sim H a$ which implies $H g \sim H a g$ since G acts on V as automorphisms of V. Hence $H a g=H g a_{1}$ for some $a_{1} \in K$, and we have $H K g \subset H g K$. Similarly, $H g K \subset H K g$ using $H g \sim H g a$ implies $H \sim H g a g^{-1}$.
(ii) \Rightarrow (i). Define adjacency \sim in V by K. Given $v \sim u$ in V with $u=v a$ for some $a \in K$, we have, for each $g \in G$, that $u g=v a g=v g a^{\prime}$ for some $a^{\prime} \in K$, that is, $u g \sim v g$. Hence (V, K) is a homogeneous graph which is clearly invariant and connected.

Finally, if (G, K) is an invariant connected Cayley graph, then $C=K \cup\{e\}$ is an invariant neighborhood of the identity by (ii) and $G=\bigcup_{n=1}^{\infty} C^{n}$ is an $\left[\mathrm{IN}_{0}\right]$-group.

Conversely, if G is an $\left[\mathrm{IN}_{0}\right]$-group with $G=\bigcup_{n=1}^{\infty} C^{n}$, then (G, K) is a connected invariant graph with $K=C \cup C^{-1}$.
The product $O(n) \times \mathbb{R}$ of the orthogonal group $O(n)$ and the additive group \mathbb{R} is an [$\left.\mathrm{IN}_{0}\right]$-group [4]. Evidently, a homogeneous graph $(G / H, K)$ is invariant if G is abelian or K is a subgroup of G. We refer to [5] for more examples of invariant homogeneous graphs.

A Harnack inequality for eigenfunctions of the Laplacian on a finite unweighted invariant homogeneous graph has been shown in [7]. This inequality can be proved similarly for the Laplacian in (2) for weighted graphs. We will extend the idea in [7] to deduce a version of Harnack inequality for a Schrödinger operator $\mathcal{L}+\varphi$. We first prove that the positive \mathcal{L}-harmonic functions, that is, the positive 0 -eigenfunctions of \mathcal{L}, are constant.

Let (V, K) be an invariant homogeneous graph with $V=G / H$ and the quotient map $q: G \rightarrow G / H$. Let $C=K \cup\{e\}$ which is an invariant neighborhood of $e \in G$. The discrete subgroup

$$
G_{0}=\bigcup_{n=1}^{\infty} C^{n} \subset G
$$

is an $\left[\mathrm{IN}_{0}\right]$-group. The measure $\mu /|K|$ in the Laplacian \mathcal{L} has support $K \subset G_{0}$ and restricts to a probability measure μ_{0} on G_{0}. A real function h on G_{0} is called μ_{0}-harmonic if $h=h * \mu_{0}$. Given an \mathcal{L}-harmonic function $f: V \rightarrow \mathbb{R}$, the equation $\mathcal{L} f=0$ gives

$$
f(H x)=\left(f * \frac{\mu}{|K|}\right)(H x)=\int_{G} f\left(H x y^{-1}\right) \frac{d \mu}{|K|}(y)=\int_{G_{0}} f\left(H x y^{-1}\right) d \mu_{0}(y)
$$

and hence $f \circ q$ restricts to a μ_{0}-harmonic function on G_{0}.
A function $\varphi: G_{0} \rightarrow(0, \infty)$ is called exponential if $\varphi(x y)=\varphi(x) \varphi(y)$ for all $x, y \in G_{0}$.

Proposition 3.2. Let (V, K) be a connected invariant homogeneous graph with the Laplacian \mathcal{L} in (2). Then all positive \mathcal{L}-harmonic functions on V are constant.

Proof. Let f be a positive function on $V=G / H$ satisfying $\mathcal{L} f=0$. By the above remark, the quotient map $q: G \rightarrow G / H$ lifts f to a positive μ_{0}-harmonic function $f \circ q$ on G_{0}. Since G_{0} is an $\left[\mathrm{IN}_{0}\right]$-group and the support of μ_{0} generates G_{0}, it follows from [4, Theorem 9] that $\left.f \circ q\right|_{G_{0}}$ is an integral

$$
f \circ q(x)=\int_{\mathcal{E}} h(x) d P(h) \quad\left(x \in G_{0}\right)
$$

of (constant multiples of) exponential functions with respect to a probability measure P on \mathcal{E}, where each $h \in \mathcal{E}$ is a constant multiple $\alpha \varphi$ of an exponential function φ on G_{0} satisfying

$$
\int_{G_{0}} \varphi\left(x^{-1}\right) d \mu_{0}(x)=1
$$

We show $\varphi=1$ for all such φ. Indeed, if $\varphi(a) \neq 1$ for some $a \in K$, then $\varphi(a)+\varphi\left(a^{-1}\right)=\varphi(a)+\varphi(a)^{-1}>2$ and $1=$ $\int_{G_{0}} \varphi\left(x^{-1}\right) d \mu_{0}(x)=\sum_{b \in K} \varphi(b) \mu(b) /|K|$ implies

$$
|K|=\varphi(a) \mu(a)+\varphi(a)^{-1} \mu(a)+\sum_{b \in K \backslash\left\{a, a^{-1}\right\}} \varphi(b) \mu(b)>2 \mu(a)+\sum_{b \in K \backslash\left\{a, a^{-1}\right\}} \varphi(b) \mu(b) \geqslant \sum_{b \in K} \mu(b)=\sum_{b \in K} w(v, v b)=|K|
$$

which is impossible. Hence $\varphi=1$ on $C=K \cup\{e\}$ and therefore, on $\bigcup_{n=1}^{\infty} C^{n}=G_{0}$.
It follows that $f \circ q$ is constant on G_{0}. Since $G=\bigcup_{n=1}^{\infty} H C^{n}$ by connectedness of the graph and Proposition 3.1, we have $f(H x)=f(H)$ for all $x \in G$.

Let (V, K) be a weighted invariant homogeneous graph in which the weight is given by a symmetric measure μ satisfying

$$
\begin{equation*}
\mu(a)=\mu\left(b a b^{-1}\right)>0 \quad(a, b \in K) . \tag{3}
\end{equation*}
$$

Let $w_{a}=\mu(a) /|K|$ for $a \in K$ so that the Laplacian in (2) is written

$$
\mathcal{L} f(v)=\sum_{a \in K}(f(v)-f(v a)) w_{a}
$$

Chung and Yau [7] have proved a Harnack inequality for eigenfunctions of \mathcal{L} on unweighted (V, K) where $\mu(a)=1$ for all $a \in K$. By Proposition 3.2, the positive eigenfunctions of \mathcal{L} corresponding to the eigenvalue $\lambda=0$ are constant. By [2, Corollary 3.14], the ℓ^{p}-eigenfunctions of \mathcal{L} for $\lambda=0$ and $1 \leqslant p<\infty$ are also constant. Extending the idea in [7], we consider below eigenfunctions corresponding to eigenvalues $\lambda>0$ for a Schrödinger operator $\mathcal{L}+\varphi$ which is a positive operator on the Hilbert space $\ell^{2}(V)$ if $\varphi \geqslant 0$, but may be unbounded if V is infinite.

We note that if K is a subgroup of G in an invariant homogeneous graph (V, K), then $V=\bigcup_{v \in V}\{v\} \cup v K$ is a disjoint union of connected components. The vertex set S of a union of these components satisfies $S K \subset S$.

Theorem 3.3. Let (V, K) be an invariant homogeneous graph. Let $\varphi \geqslant 0$ be a function on V and let f be a real function on V satisfying

$$
\mathcal{L} f+\varphi f=\lambda f \quad(\lambda>0)
$$

Then on any finite subgraph with vertex set S satisfying $S K \subset S$, we have

$$
\sum_{a \in K} w_{a}[f(v)-f(v a)]^{2}+\alpha \lambda f^{2}(v) \leqslant\left(\frac{\alpha^{2} \lambda}{\alpha-2}+\frac{4}{(\alpha-2) \lambda} \sup _{S} \varphi\right) \sup _{S} f^{2}
$$

for $v \in S$ and $\alpha>2$. In particular, the inequality holds for all $v \in V$ if V is finite, with $S=V$.
Proof. We extend the arguments in [7] and include the details for later reference. Define

$$
\rho(v)=\sum_{a \in K} w_{a}[f(v)-f(v a)]^{2} \quad(v \in S)
$$

and let \mathcal{L} act on the functions ρ and f^{2}. First consider

$$
\begin{aligned}
\mathcal{L} \rho(v)= & \sum_{b \in K} w_{b} \sum_{a \in K} w_{a}\left\{[f(v)-f(v a)]^{2}-[f(v b)-f(v b a)]^{2}\right\} \\
= & -\sum_{b \in K} w_{b} \sum_{a \in K} w_{a}[f(v)-f(v a)-f(v b)+f(v b a)]^{2} \\
& +2 \sum_{b \in K} w_{b} \sum_{a \in K} w_{a}[f(v)-f(v a)-f(v b)+f(v b a)][f(v)-f(v a)] .
\end{aligned}
$$

Let X denote the second term above. We have

$$
\begin{aligned}
X= & 2 \sum_{b \in K} w_{b} \sum_{a \in K} w_{a}[f(v)-f(v a)-f(v b)+f(v b a)][f(v)-f(v a)] \\
= & 2 \sum_{a \in K} w_{a}\left(\sum_{b \in K} w_{b}[f(v)-f(v a)-f(v b)+f(v a b)]\right)[f(v)-f(v a)] \\
& +2 \sum_{a \in K} w_{a}\left(\sum_{b \in K} w_{b}[f(v b a)-f(v a b)]\right)[f(v)-f(v a)] \\
= & 2 \lambda \sum_{a \in K} w_{a}[f(v)-f(v a)]^{2}+2 \sum_{a \in K} w_{a}[\varphi(v a) f(v a)-\varphi(v) f(v)][f(v)-f(v a)]
\end{aligned}
$$

where

$$
\begin{aligned}
& \sum_{b \in K} w_{b}[f(v)-f(v b)]=\lambda f(v)-\varphi(v) f(v) \\
& \sum_{b \in K} w_{b}[f(v a)-f(v a b)]=\lambda f(v a)-\varphi(v a) f(v a)
\end{aligned}
$$

and $\sum_{b \in K} w_{b}[f(v b a)-f(v a b)]=0$ follows from the symmetry of μ and (3).
It follows that

$$
\begin{aligned}
\mathcal{L} \rho(v) \leqslant X & =2 \lambda \sum_{a \in K} w_{a}[f(v)-f(v a)]^{2}+2 \sum_{a \in K} w_{a}[\varphi(v a) f(v a)-\varphi(v) f(v)][f(v)-f(v a)] \\
& \leqslant 2 \lambda \sum_{a \in K} w_{a}[f(v)-f(v a)]^{2}+2 \sum_{a \in K} w_{a}[\varphi(v a) f(v a) f(v)+\varphi(v) f(v) f(v a)]
\end{aligned}
$$

Next we consider

$$
\begin{aligned}
\mathcal{L} f^{2}(v) & =\sum_{a \in K} w_{a}\left[f^{2}(v)-f^{2}(v a)\right]=2 \sum_{a \in K} w_{a} f(v)[f(v)-f(v a)]-\sum_{a \in K} w_{a}[f(v)-f(v a)]^{2} \\
& =2(\lambda-\varphi(v)) f^{2}(v)-\sum_{a \in K} w_{a}[f(v)-f(v a)]^{2}
\end{aligned}
$$

Putting the last two inequalities above together, we arrive at

$$
\begin{aligned}
\mathcal{L}\left(\rho(v)+\alpha \lambda f^{2}(v)\right) \leqslant & 2 \alpha \lambda(\lambda-\varphi(v)) f^{2}(v)-(\alpha-2) \lambda \sum_{a \in K} w_{a}[f(v)-f(v a)]^{2} \\
& +2 f(v) \sum_{a \in K} w_{a} \varphi(v a) f(v a)+2 \varphi(v) f(v) \sum_{a \in K} w_{a} f(v a) .
\end{aligned}
$$

We can find $s \in S$ such that

$$
\rho(s)+\alpha \lambda f^{2}(s)=\sup \left\{\rho(v)+\alpha \lambda f^{2}(v): v \in S\right\} .
$$

Since $S K \subset S$, we have

$$
\begin{align*}
0 & \leqslant \mathcal{L}\left(\rho(s)+\alpha \lambda f^{2}(s)\right) \\
& \leqslant 2 \alpha \lambda(\lambda-\varphi(s)) f^{2}(s)-(\alpha-2) \lambda \sum_{a \in K} w_{a}[f(s)-f(s a)]^{2}+2 f(s) \sum_{a \in K} w_{a} \varphi(s a) f(s a)+2 \varphi(s) f(s) \sum_{a \in K} w_{a} f(s a) . \tag{4}
\end{align*}
$$

This implies

$$
\sum_{a \in K} w_{a}[f(s)-f(s a)]^{2} \leqslant \frac{1}{(\alpha-2) \lambda}\left(2 \alpha \lambda(\lambda-\varphi(s)) f^{2}(s)+2 f(s) \sum_{a \in K} w_{a} \varphi(s a) f(s a)+2 \varphi(s) f(s) \sum_{a \in K} w_{a} f(s a)\right)
$$

Hence for every $v \in S$, we have

$$
\begin{aligned}
& \sum_{a \in K} w_{a}[f(v)-f(v a)]^{2}+\alpha \lambda f^{2}(v) \\
& \quad \leqslant \frac{1}{(\alpha-2) \lambda}\left(2 \alpha \lambda(\lambda-\varphi(s)) f^{2}(s)+2 f(s) \sum_{a \in K} w_{a} \varphi(s a) f(s a)+2 \varphi(s) f(s) \sum_{a \in K} w_{a} f(s a)+\alpha \lambda(\alpha-2) \lambda f^{2}(s)\right) \\
& \quad \leqslant \frac{1}{(\alpha-2) \lambda}\left(\alpha^{2} \lambda^{2} f^{2}(s)+2 f(s) \sum_{a \in K} w_{a} \varphi(s a) f(s a)+2 \varphi(s) f(s) \sum_{a \in K} w_{a} f(s a)\right) \\
& \quad \leqslant \frac{1}{(\alpha-2) \lambda}\left(\alpha^{2} \lambda^{2} f^{2}(s)+\sum_{a \in K} w_{a} \varphi(s a)\left(f^{2}(s)+f^{2}(s a)\right)+\sum_{a \in K} w_{a} \varphi(s)\left(f^{2}(s)+f^{2}(s a)\right)\right) \\
& \quad \leqslant \frac{\alpha^{2} \lambda}{\alpha-2} \sup _{S} f^{2}+\frac{4}{(\alpha-2) \lambda} \sup _{S} \varphi \sup _{S} f^{2} .
\end{aligned}
$$

Remark 3.4. For $\varphi=0$ and $w_{a}=\frac{1}{|K|}$ in Theorem 3.3, the inequality is identical with the Harnack inequality for finite V in [7].

Finally we derive a similar Harnack inequality for Dirichlet eigenfunctions on a finite convex subgraph of an invariant homogeneous graph (V, K), extending the result in [8]. The boundary δS of a subgraph of (V, K) with vertex set S is defined by $\delta S=\{v \in V \backslash S: v \sim$ some $u \in S\}$ where \sim denotes adjacency. A subgraph of (V, K) with vertex set S is called convex [8] if, for any subset $Y \subset \delta S$, its neighborhood $N(Y)=\{v \in V: v \sim$ some $u \in Y\}$ satisfies the boundary expansion property:

$$
|N(Y) \backslash(S \cup \delta S)|=\mid\{v \notin S \cup \delta S: v \sim \text { some } u \in Y\}|\geqslant|Y| .
$$

An eigenfunction f on $S \cup \delta S$ of a Schrödinger operator $\mathcal{L}+\varphi$ is said to satisfy the Dirichlet boundary condition if $f(v)=0$ for $v \in \delta S$.

Theorem 3.5. Let (V, K) be an invariant homogeneous graph and let S be the vertex set of a finite convex subgraph of (V, K). Let $\varphi \geqslant 0$ and let f be a real function on $S \cup \delta S$ satisfying

$$
\begin{equation*}
\mathcal{L} f(v)+\varphi(v) f(v)=\lambda f(v) \quad(\lambda>0) \tag{5}
\end{equation*}
$$

for $v \in S$ and $f(v)=0$ for $v \in \delta S$. Then we have the inequality

$$
w_{a}[f(v)-f(v a)]^{2}+\alpha \lambda f^{2}(v) \leqslant\left(\frac{\alpha^{2} \lambda}{\alpha-2}+\frac{4}{(\alpha-2) \lambda} \sup _{S} \varphi\right) \sup _{S} f^{2}
$$

for $v \in S, a \in K$ and $\alpha>2,|K| / \lambda k$ where $k=\inf \left\{w_{a}: a \in K\right\}$.

Proof. As in the proof of [8, Theorem 1], convexity of S enables one to extend the function f to all vertices of V adjacent to $S \cup \delta S$ so that Eq. (5) also holds on δS, and as in the proof of Theorem 3.3, one can apply similar arguments to the function

$$
\rho_{a}(v)=w_{a}[f(v)-f(v a)]^{2}+\alpha \lambda f^{2}(v) \quad(v \in S \cup \delta S, a \in K)
$$

and find some $s \in S$ and $b \in K$ satisfying

$$
\rho_{b}(s)=\sup \left\{\rho_{a}(v): v \in S, a \in K\right\} .
$$

We have $\rho_{b}(s) \geqslant \rho_{b}(s a)$ for each $a \in K$, given $\alpha>|K| / \lambda k$. It follows that $\mathcal{L}\left(\rho_{b}(s)\right) \geqslant 0$ as in (4) in the proof of Theorem 3.3. From this, one obtains the required inequality as before.

References

[1] L. Baggett, J. Packer, The primitive ideal space of two-step nilpotent group C*-algebras, J. Funct. Anal. 124 (1994) 389-426.
[2] C.-H. Chu, Harmonic function spaces on groups, J. London Math. Soc. 70 (2004) 182-198.
[3] C.-H. Chu, Matrix Convolution Operators on Groups, Lecture Notes in Math., vol. 1956, Springer-Verlag, Heidelberg, 2008.
[4] C.-H. Chu, C.-W. Leung, The convolution equation of Choquet and Deny on [IN]-groups, Integral Equations Operator Theory 40 (2001) $391-402$.
[5] F.R.K. Chung, Spectral Graph Theory, CBMS Leture Notes, Amer. Math. Soc., Providence, RI, 1997.
[6] F.R.K. Chung, S. Sternberg, Laplacian and vibrational spectra for homogeneous graphs, J. Graph Theory 16 (1992) 605-627.
[7] F.R.K. Chung, S.-T. Yau, A Harnack inequality for homogeneous graphs and subgraphs, Comm. Anal. Geom. 2 (1994) 628-639.
[8] F.R.K. Chung, S.-T. Yau, A Harnack inequality for Dirichlet eigenvalues, J. Graph Theory 34 (2000) 247-257.
[9] J. Dixmier, Les C*-algèbres et leur représentations, Gauthier-Villar, Paris, 1969.
[10] J. Dodziuk, W.S. Kendall, Combinatorial Laplacians and isoperimetric inequality, in: From Local Times to Global Geometry, Control and Physics, Longman Scientific and Technical, 1986, pp. 68-75.
[11] E.B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, 1995.
[12] B. Mohar, Isoperimetric inequalities, growth, and the spectrum of graphs, Linear Algebra Appl. 103 (1988) 119-131.
[13] G.K. Pedersen, C^{*}-Algebras and Their Automorphism Groups, Academic Press, London, 1979.
[14] J. Tan, On Cheeger inequalities of a graph, Discrete Math. 269 (2003) 315-323.
[15] H. Tandra, W. Moran, Characters of the discrete Heisenberg group and of its completion, Math. Proc. Cambridge Philos. Soc. 136 (2004) 525-539.
[16] H. Urakawa, The Cheeger constant, the heat kernel, and the Green kernel of an infinite graph, Monatsh. Math. 138 (2003) 225-237.

[^0]: * Corresponding author.

 E-mail addresses: c.chen@qmul.ac.uk (C. Chen), c.chu@qmul.ac.uk (C.-H. Chu).

