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Infinite dimensional holomorphic homogeneous
regular domains

Cho-Ho Chu · Kang-Tae Kim · Sejun Kim

Abstract. We extend the concept of a finite dimensional holomorphic homogeneous regular

(HHR) domain and some of its properties to the infinite dimensional setting. In particular,
we show that infinite dimensional HHR domains are domains of holomorphy and determine
completely the class of infinite dimensional bounded symmetric domains which are HHR. We
compute the greatest lower bound of the squeezing function of all HHR bounded symmetric
domains, including the two exceptional domains. We also show that uniformly elliptic
domains in Hilbert spaces are HHR.

1. Introduction

The concept of a holomorphic homogeneous regular (HHR) complex manifold M of finite
dimension has been introduced by Liu, Sun and Yau [20] in connection with the estimation
of several invariant metrics on the moduli and Teichmüller spaces of Riemann surfaces. It
can be described by saying that a particular function σ : M → (0, 1], called the squeezing
function, has strictly positive lower bound (cf. [7]). These manifolds possess many important
geometric properties (e.g. all classical metrics on them are equivalent) [20, 21] and have also
been studied by several authors (see, for example, [7, 8, 9, 15, 25]) in the case of complex
domains. In particular, it has been shown in [25] that a holomorphic homogeneous regular
bounded domain D in C

n must be pseudoconvex and all strongly convex domains in C
n

are holomorphic homogeneous regular. Recently, it has been shown in [15] that all bounded
convex domains in Cn are holomorphic homogeneous regular. The squeezing function on
a bounded homogeneous domain in Cn is constant, by its holomorphic invariance, and has
been computed explicitly for the four classical series of Cartan domains in [18]. In view of
these interesting works, it is natural to ask if they can be extended to the setting of infinite
dimensional domains.

The object of this paper is to begin a study of infinite dimensional holomorphic homo-
geneous regular domains. We extend the concept of a holomorphic homogeneous regular
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domain and generalise the aforementioned results to the infinite dimensional setting. In ad-
dition, we also obtain new results in finite dimensions, in particular, the squeezing functions
are explicitly computed for all bounded symmetric domains, including the two exceptional
domains, which were left untreated in [18].

The concept of the squeezing function for domains in C
n involves comparing a given

domain with various Euclidean balls via embeddings. For infinite dimensional domains, we
consider their holomorphic embeddings in Hilbert balls, that is, open unit balls of complex
Hilbert spaces.

Throughout, all Banach spaces V are over the complex field C and the dual of V is denoted
by V ∗. Let D be a bounded domain in a (complex) Banach space V . We will call a map
f : D1 → D2 between two domains a holomorphic embedding of D1 in D2 if f(D1) is a
domain in D2 and f is biholomorphic onto f(D1).

Let BH = {x ∈ H : ‖x‖ < 1} be the open unit ball of a Hilbert space H and denote by
H(D,BH) the set of all holomorphic embeddings of D into BH , which may be an empty set.
For instance, if D is the open unit ball of the Banach space ℓ∞ of bounded sequences, then
H(D,BH) = ∅ for any Hilbert ball BH .

In fact, H(D,BH) 6= ∅ if and only if the ambient Banach space V of D is linearly home-
omorphic to H . Indeed, if there is a holomorphic embedding f : D → BH , then V , as the
tangent space at a point p in D, must be linearly homeomorphic to H , which is the tangent
space of f(D) at f(p). Conversely, if ϕ : V → H is a linear homeomorphism, then we have
ϕ(D) ⊂ RBH for some R > 0, and for each p ∈ D, the map f : z ∈ D 7→ ϕ(z − p)/2R ∈ BH

is a biholomorphic map onto the domain f(D) in BH , with f(p) = 0 and rBH ⊂ f(D) ⊂ BH

for some r > 0.
Given H(D,BH) 6= ∅, then for each p ∈ D, the set

F(p,D) = {f ∈ H(D,BH) : f(p) = 0}
is nonempty, as noted previously. Hence we can define the squeezing function σD : D → (0, 1]
by

σD(p) = sup
f∈F(p,D)

{r > 0 : rBH ⊂ f(D)}.

The squeezing constant σ̂D for D is defined by

σ̂D = inf
p∈D

σD(p).

Both the squeezing function and squeezing constant are biholomorphic invariants.

Remark 1.1. We note that, if H(D,BH) 6= ∅, then the definition of the squeezing function
for a domain D ⊂ V does not depend on the chosen Hilbert ball BH . Indeed, if there is a
holomorphic embedding of D into another Hilbert ball BK of a Hilbert space K, then the
previous remarks imply that there is a continuous linear isomorphism T : H → K. Let
α : H∗ → H and β : K → K∗ be the canonical isometries. Then the linear isomorphism
αT ∗βT : H → H satisfies

〈αT ∗βTx, y〉H = 〈Tx, Ty〉K (x, y ∈ H)

and the linear isomorphism T (αT ∗βT )−1/2 : H → K is an isometry. It follows that the
squeezing functions σD defined in terms BH and BK respectively are identical.
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We now extend the concept of a finite dimensional HHR manifold introduced in [20, 21]
to infinite dimensional complex domains. A finite dimensional HHR domain is also called a
domain with uniform squeezing property in [25].

Definition 1.2. A bounded domain D in a complex Banach space V is called holomorphic
homogeneous regular (HHR) if D admits a holomorphic embedding into some Hilbert ball
BH and its squeezing function σD : D → (0, 1] has a strictly positive lower bound, that is,
σ̂D > 0.

Remark 1.3. If D is an HHR domain in a Banach space V , then as noted previously, V
must be linearly homeomorphic to a Hilbert space. We call V an isomorph of a Hilbert space.
The class of of these Banach spaces has been characterised by many authors, for instance,
it has been shown in [19] that a Banach space is an isomorph of a Hilbert space if and only
if it is of type 2 and cotype 2. We refer to [23, Chapter IV] for more details.

For infinite dimensional bounded symmetric domains, we shall see that only those of finite
rank can be embedded holomorphically in a Hilbert ball. We prove the following main results.

Theorem 2.5. An HHR domain is a domain of holomorphy.

This result extends the finite dimensional result in [25, Lemma 2] since a domain of
holomorphy in a Banach space is pseudoconvex (cf. [22, 11.4, 37.7]). We note that a domain
of holomorphy need not be HHR even in finite dimensions, as shown in [9, Theorem 1].

The following result reveals the connection between the rank of a symmetric domain and
the extent to which a Hilbert ball can be squeezed inside it.

Theorem 4.5. Let D be a bounded symmetric domain in a complex Banach space V . Then
D is HHR if and only if D is of finite rank. In this case, D is biholomorphic to a finite
product

D1 × · · · ×Dk

of irreducible bounded symmetric domains and we have

σ̂D =

(
1

σ̂2
D1

+ · · ·+ 1

σ̂2
Dk

)−1/2

.

If dimDj < ∞, then Dj is a classical Cartan domain or an exceptional domain, and
σ̂Dj

= 1/
√
pj where pj is the rank of Dj.

If dimDj = ∞, then Dj is either a Lie ball or a type I domain of finite rank pj. For a

Lie ball Dj, we have σ̂Dj
= 1/

√
2. For a rank pj type I domain Dj, we have σ̂Dj

= 1/
√
pj.

Theorem 5.3. Let Ω be a uniformly elliptic domain in a Hilbert space H. Then Ω is HHR.

We introduce the concept of a uniformly elliptic domain in Section 5, which generalises
the notion of strong convexity. This theorem generalises the finite dimensional result in [25,
Proposition 1].
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2. Holomorphic homogeneous regular domains

We begin our discussion of infinite dimensional HHR domains in this section by showing
some properties of the squeezing function and conclude with a proof of pseudoconvexity for
these domains.

Given two (nonempty) sets A and B in a Banach space V , we write

d(A,B) = inf{‖x− y‖ : x ∈ A, y ∈ B}
and for p ∈ V , write d(p, B) for d({p}, B) which is the distance from p to B. Let D be
a bounded domain in V , a closed subset K of D is said to be strictly contained in D if
d(K, V \D) > 0. Let

BV (p, r) := {z ∈ V : ‖z − p‖ < r}
denote the norm-open ball centred at p with radius r > 0. The open unit ball BV (0, 1) is
often written simply BV . We will make use of the Carathéodory distance CD on D, which
is equivalent to the norm-distance on any closed ball (for the norm) strictly contained in
D (see [10, Theorem IV.2.2]). For each v ∈ BV , we have CBV

(v, 0) = tanh−1 ‖v‖, by [10,
Theorem IV.1.8].

In what follows, the boundary of a topological subspace E of V will be denoted by ∂E.
The complement of E in V will be denoted by Ec and as usual, E denotes the closure of E.

We first show that the squeezing function is continuous. Our proof follows the arguments
in [7, Theorem 3.1]. It is included for completeness.

Proposition 2.1. Let D be a bounded domain in a Banach space V linearly homeomorphic
to a Hilbert space H. Then the squeezing function σD : D → (0, 1] is continuous.

Proof. Let (zk) be a sequence converging to a ∈ D. We show

lim
k→∞

inf σD(zk) ≥ σD(a) ≥ lim
k→∞

sup σD(zk).

Let 0 < 2ε < σD(a) and pick σD(a) ≥ ρ > σD(a) − ε such that there is a holomorphic
embedding f : D → BH satisfying f(a) = 0 and ρBH ⊂ f(D). By continuity, we have

‖f(zk)‖ < ε

for k > K, for some K > 0. Consider the holomorphic embedding fk : D → BH given by

fk(ω) =
f(ω)− f(zk)

1 + ε
(ω ∈ D)

which satisfies fk(zk) = 0 and
ρ− ε

1 + ε
BH ⊂ fk(D).

This gives

σD(zk) ≥
ρ− ε

1 + ε
>

σD(a)− 2ε

1 + ε

for k > K and hence limk→∞ inf σD(zk) ≥ σD(a) since ε > 0 was arbitrary.
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For the upper limit, let 0 < 2ε < limk inf σD(zk) and let fk : D → BH be a holomorphic
embedding satisfying fk(zk) = 0 and ρkBH ⊂ fk(D) for some σD(zk) ≥ ρk > σD(zk) − ε.
Since CD(zk, a) → 0 as k → ∞, we have

tanh−1 ‖fk(a)‖ = CBH
(0, fk(a)) ≤ CD(0, a) → 0

and hence there exists some M > 0 such that ‖fk(a)‖ < ε for k > M . By analogous
arguments as before, one obtains

σD(a) ≥
ρk − ε

1 + ε
>

σD(zk)− 2ε

1 + ε

for k > M , which gives σD(a) ≥ limk→∞ sup σD(zk). �

Although the continuity of the squeezing function implies readily that if there is a sequence
(pk) in a finite dimensional bounded domain D with limk σD(pk) = 0, then the sequence
admits a subsequence (pj) converging to a boundary point p ∈ ∂D, this is not immediately
clear for infinite dimensional domains. Nevertheless, one can still show, in infinite dimension,
(pk) has a subsequence (pj) for which the distance d(pj, ∂D) to the boundary tends to 0. We
prove a lemma first.

Lemma 2.2. Let Ω be a bounded domain in an isomorph V of a Hilbert space H and
ϕ : V → H a linear homeomorphism. Then there is a constant m > 0 such that for each
q ∈ Ω satisfying BV (q, s) ⊂ Ω for some s > 0, we have

σΩ(q) ≥
s

m2‖ϕ‖‖ϕ−1‖ .

Proof. By a translation, we may assume q = 0. Since Ω is bounded, we have Ω ⊂ BV (0, m)
for some m > 0 and

(2.1)
1

‖ϕ−1‖BH(0, m) ⊂ ϕ(BV (0, m)) ⊂ BH(0, m‖ϕ‖) = m‖ϕ‖BH .

The restriction of ϕ to Ω, still denoted by ϕ, is a holomorphic embedding of Ω into m‖ϕ‖BH

satisfying ϕ(q) = 0. It follows from (2.1) that

s

m‖ϕ−1‖BH(0, m) ⊂ ϕ(BV (0, s)) ⊂ ϕ(Ω) ⊂ ϕ(BV (0, m)) ⊂ m‖ϕ‖BH .

Hence we have

σΩ(q) ≥
s

m2‖ϕ‖‖ϕ−1‖ .

�

Lemma 2.3. Let (pk) be a sequence in a bounded convex domain Ω in an isomorph V of
a Hilbert space such that limk→∞ σΩ(pk) = 0. Then there is a subsequence (pj) of (pk) such
that

lim
j→∞

d(pj, ∂Ω) = 0.

Further, there is a sequence (p′j) in Ω such that limj→∞ σΩ(p
′
j) = 0, and for each j, there

exists a boundary point qj ∈ ∂Ω with ‖p′j − qj‖ = d(p′j, ∂Ω).
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Proof. Let (pk) be the given sequence satisfying

(2.2) lim
k→∞

σΩ(pk) = 0.

Since the bounded domain Ω is relatively weakly compact in V , there is a subsequence (pj)

in Ω converging weakly to some point p ∈ Ω. We do not know if the squeezing function σΩ

is weakly continuous on Ω.
Let rj = d(pj, ∂Ω) denote the distance from pj to the boundary ∂Ω. We first show that

limj→∞ rj = 0. Otherwise, we may assume (by choosing a subsequence)

rj ≥ s, for some s > 0

for all j. For all z ∈ ∂Ω, we have ‖z − pj‖ ≥ rj. Observe that BV (pj, rj) ⊂ Ω, for if there

exists some ω ∈ BV (pj , rj)\Ω, then we must have ω /∈ Ω. Therefore the (real) line joining pj
and ω must intersect ∂Ω at a point z0 say, which gives a contradiction that

rj ≤ ‖z0 − pj‖ ≤ ‖ω − pj‖ < rj .

By Lemma 2.2, there exists m > 0 such that

σΩ(pj) ≥
rj

m2‖ϕ‖‖ϕ−1‖ ≥ s

m2‖ϕ‖‖ϕ−1‖ > 0,

contradicting limj σΩ(pj) = 0. Therefore we have established

rj = d(pj , ∂Ω) → 0 as j → ∞.

To show the second assertion, we make use of a result in [3, Theorem 3.2], which states
that in a reflexive Banach space V , if the complement V \C of a non-empty closed set C in
V is convex, then C is almost proximinal, in other words, there is a dense Gδ set A in V \C
such that for each x ∈ A, there is a point z ∈ C satisfying

‖x− z‖ = d(x, C).

The given Banach space V is reflexive. We apply the above result to the set C = V \Ω,
which is almost proximinal. By continuity of the squeezing function σΩ, there is an open
neighbourhood Nj of pj such that σΩ(x) < 2σΩ(pj) for all x ∈ Nj and for each j. By density
of A, one can find p′j ∈ A ∩Nj for which there exists qj ∈ C satisfying

‖p′j − qj‖ = d(p′j, C) = d(p′j, V \Ω) ≤ d(p′j, ∂Ω)

where the last inequality holds because the boundary ∂Ω is contained in V \Ω.
If qj /∈ ∂Ω, then qj /∈ Ω since qj /∈ Ω. Hence the line segment {p′j +α(qj − p′j) : 0 ≤ α ≤ 1}

joining p′j and qj must intersect the boundary ∂Ω at some point ω = p′j + β(qj − p′j) ∈ ∂Ω
with 0 < β < 1. It follows that

‖p′j − qj‖ ≤ d(p′j, ∂Ω) ≤ ‖p′j − ω‖ = β‖p′j − qj‖ < ‖p′j − qj‖
which is impossible. Hence we have qj ∈ ∂Ω and ‖p′j − qj‖ = d(p′j, ∂Ω).

Finally, σΩ(p
′
j) < 2σΩ(pj) for all j implies limj σΩ(p

′
j) = 0. �
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To show that an HHR domain D in a complex Banach space V is pseudoconvex, we show
that D is a domain of holomorphy, as defined in [22]. In finite dimensions, a bounded domain
D is a domain of holomorphy if (D,CD) is complete [16, p.368]. We first extend this useful
result to infinite dimension.

Lemma 2.4. Let D be a bounded domain in a complex Banach space V . If D is complete
with respect to the Carathéodory distance, then it is a domain of holomorphy.

Proof. Suppose that D is not a domain of holomorphy. Then by definition, there are open
subsets U,W of V satisfying the following conditions:

(i) U is connected.
(ii) D ∩ U 6= ∅.
(iii) U 6⊂ D.
(iv) ∅ 6= W ⊂ D ∩ U .

(v) For each holomorphic function f : D → C, there is a holomorphic function f̃ : U → C

such that f̃(z) = f(z) for each z ∈ W .

We deduce a contradiction. Without loss of generality, we may assume that U is bounded.
Let W0 be a connected component of U ∩D with W0 ∩W 6= ∅. Then we have

∂W0 ∩ ∂D ∩ U 6= ∅.
Indeed, if this is not the case, then for each p ∈ U\W0 6= ∅, either p /∈ ∂W0 or p /∈ ∂D. If
p /∈ ∂W0, then there is a norm-open ball Bp ⊂ U containing p such that either Bp ∩W0 = ∅
or Bp ∩W c

0 = ∅. Since p /∈ W0, we must have Bp ∩W0 = ∅. On the other hand, if p /∈ ∂D,
then there is an open ball Bp containing p such that Bp ∩D = ∅ or Bp ∩Dc = ∅. In either
case, we have Bp∩W0 = ∅ since, if Bp ⊂ D, then the connected ball Bp resides in a connected
component W1 of U ∩D and we must have W1 6= W0 as p /∈ W0. Now the disconnection

U = W0 ∪




⋃

p∈U\W0

Bp





contradicts the connectedness of U .
Pick a point p ∈ ∂W0 ∩ ∂D ∩ U and let (zn) be a sequence in W0 norm-converging to p.

By omitting the first few terms of the sequence if necessary, we may assume that (zn) and p
are contained in a closed ball strictly contained in U . It follows that (zn) also converges to
p with respect to the Carathéodory distance CU .

By condition (v) above, each holomorphic function f : D → C with |f(z)| < 1 extends

to a holomorphic function f̃ : U → C, which coincides with f on the connected component
W0 by the identity principle. Moreover, if |f̃(u)| > 1 for some u ∈ U , then we deduce a
contradiction by considering the extension to U of the function 1

f−f̃(u)
on D. Hence we must

have |f̃(u)| ≤ 1 for all u ∈ U and, by the maximum principle, |f̃(u)| < 1 for all u ∈ U . It
follows that

CD(zn, zm) ≤ CU(zn, zm)

for n,m = 1, 2, . . ., where CU(zn, zm) converges to CU(p, p) = 0 as n,m → ∞. Hence (zn)
is a Cauchy sequence in D with respect to CD. However, (zn) does not converge in D, with



8 C-H. CHU, K-T. KIM, S. KIM

respect to CD. Indeed, if (zn) CD-converges to some point z ∈ D say, then by [10, Lemma
2.1], there is a constant α > 0 such that

α‖zn − z‖ ≤ CD(zn, z) → 0 as n → ∞

which is impossible since (zn) does not converge inD with respect to the norm-distance. This
shows that (D,CD) fails to be complete, which is a contradiction. We therefore conclude
that D is a domain of holomorphy. �

We now extend the result in [25, Lemma 2] to the following infinite dimensional setting.

Theorem 2.5. Let D be an HHR domain in a complex Banach space V . Then D is a
domain of holomorphy.

Proof. In view of Lemma 2.4, we need only show that the Carathéodory distance in D is
complete.

By the hypothesis, the squeezing constant σ̂D takes the value, say, r ∈ (0, 1]. Let (xn) be
a CD-Cauchy sequence in D. We show that (xn) CD-converges.

Let ε = tanh−1 r
2
. Then there is a number N > 0 such that CD(xn, xN) < ε for n > N.

Let f : D → BH be a holomorphic embedding into a Hilbert ball BH with f(xN) = 0 and
BH(0,

3r
4
) ⊂ f(D). Then the inverse holomorphic map g := f−1 : f(D) → D is well-defined

on the ball BH(0,
3r
4
).

We have, for n > N ,

CBH
(0, f(xn)) = CBH

(f(xN), f(xn)) ≤ CD(xN , xn) < ε = tanh−1 r

2

as well as

lim
n,m→∞

CBH
(f(xm), f(xn)) ≤ lim

n,m→∞
CD(xm, xn) = 0.

Since BH is complete in the Carathéodory distance, there is a subsequence (xnk
) of (xn) such

that f(xnk
) converges to some y0 ∈ BH with respect to CBH

, and CBH
(0, y0) ≤ ε. Hence, as

noted previously, we have y0 ∈ BH(0,
r
2
) ⊂ BH(0,

3r
4
) ⊂ f(D) and also,

lim
k→∞

CD(xnk
, g(y0)) ≤ lim

k→∞
CD(g(ynk

), g(y0))

≤ lim
k→∞

4

3r
CBH

(f(g(ynk
)), f(g(y0)))

= lim
k→∞

4

3r
CBH

(ynk
, y0) = 0.

It follows that the sequence (xn) converges to g(y0) in D with respect to CD and the proof
is complete. �

In the remaining sections, we will show that various infinite dimensional domains are
HHR, including the finite-rank bounded symmetric domains and the class of strongly convex
domains in Hilbert spaces.
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3. Bounded symmetric domains

In this section, we discuss infinite dimensional bounded symmetric domains and some
basic results which are needed later. We will make use of the underlying Jordan algebraic
structures of a bounded symmetric domain to study the squeezing function.

Let D be a bounded symmetric domain in a complex Banach space V . Then V carries the
structure of a JB*-triple, by Kaup’s Riemann mapping theorem [12] (see also [4, Theorem
2.5.26]). More precisely, V is equipped with an equivalent norm ‖·‖ and a continuous Jordan
triple product

{·, ·, ·} : V × V × V → V

which is linear in the outer variables but conjugate linear in the middle one, and satisfies
the following conditions:

(i) {u, v, {x, y, z}} = {{u, v, x}, y, z} − {x, {v, u, y}, z}+ {x, y, {u, v, z}};
(ii) z z : v ∈ V 7→ {z, z, v} ∈ V is a hermitian operator on V , that is, ‖ exp it(z z)‖ = 1

for all t ∈ R;
(iii) z z has non-negative spectrum;
(iv) ‖z z‖ = ‖z‖2

for all u, v, x, y, z ∈ V . In this case, D is biholomorphic to the open unit ball {v ∈ V : ‖v‖ <
1} of the JB*-triple (V, ‖ · ‖) and, we say that D is realised as the open unit ball of the
JB*-triple (V, ‖ · ‖).

The rank of D can be defined in terms of the Jordan structures of V . A closed subspace
E of a JB*-triple V is called a subtriple if a, b, c ∈ E implies {a, b, c} ∈ E. For each a ∈ V ,
let V (a) be the smallest subtriple of V containing a. For V 6= {0}, the rank of V is defined
to be

r(V ) = sup{dimV (a) : a ∈ V } ∈ N ∪ {∞}.

The rank of D is defined to be r(V ). A (nonzero) JB*-triple V has finite rank, that is,
r(V ) < ∞ if, and only if, V is a reflexive Banach space (see [13, Proposition 3.2]). In
particular, if there is a holomorphic embedding of D into a Hilbert ball, then V is linearly
homeomorphic to a Hilbert space and hence D must be of finite rank.

A finite-rank JB*-triple can be coordinatised by elements called tripotents. An element e
in a JB*-triple V is called a tripotent if {e, e, e} = e. A nonzero tripotent e is called minimal
if {e, V, e} = C e. The Banach subspace K0(V ) of V generated by the minimal tripotents
has been studied in [6]. Two elements a, b ∈ V are said to be mutually (triple) orthogonal if
a b = b a = 0, where a b denotes the continuous linear operator

a b : x ∈ V 7→ {a, b, x} ∈ V.

In fact, it can be shown that a b = 0 is equivalent to b a = 0 [4, Lemma 1.2.32]. For
a finite-rank JB*-tiple V , its rank r(V ) is the (unique) cardinality of a maximal family of
mutually orthogonal minimal tripotents in V , which is an ℓ∞-sum of a finite number of
finite-rank Cartan factors. There are six types of finite-rank Cartan factors, which can be
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infinite dimensional, listed below.

Type I L(Cℓ, K) (ℓ = 1, 2, . . .), rank = ℓ ≤ dimK,

Type II {z ∈ L(Cℓ,Cℓ) : zt = −z} (ℓ = 5, 6, . . .), rank =

[
ℓ

2

]

Type III {z ∈ L(Cℓ,Cℓ) : zt = z} (ℓ = 2, 3, . . .), rank = ℓ

Type IV spin factor, rank = 2

Type V M1,2(O) = {1× 2 matrices over the Cayley algebra O}, rank = 2

Type VI H3(O) = {3× 3 hermitian matrices over O}, rank = 3

where L(Cℓ, K) is the JB*-triple of linear operators from Cℓ to a Hilbert space K and zt

denotes the transpose of z in the JB*-triple L(Cℓ,Cℓ) of ℓ× ℓ complex matrices. The Jordan
triple product in the first three types is given by

{x, y, z} =
1

2
(xy∗z + zy∗x)

where y∗ denotes the adjoint of y.
A spin factor is a JB*-triple V equipped with a complete inner product 〈·, ·〉 and a conju-

gation ∗ : V → V satisfying

〈x∗, y∗〉 = 〈y, x〉 and {x, y, z} =
1

2

(
〈x, y〉z + 〈z, y〉x− 〈x, z∗〉y∗

)
.

The Cartan factor H3(O) is a Jordan algebra with product

x · y =
1

2
(xy + yx)

where the product on the right-hand side is the usual matrix product. The Jordan triple
product of H3(O) is given by

{x, y, z} = (x · y) · z + x · (y · z)− y · (x · z).

The Cartan factor M1,2(O) can be identified as a subtriple of H3(O).
The only possible infinite dimensional finite-rank Cartan factors are the spin factors and

L(Cℓ, K), with dimK = ∞ > ℓ, where a spin factor has rank 2 and L(Cℓ, K) has rank
ℓ. The open unit balls of the finite dimensional Cartan factors are exactly the six types of
irreducible bounded symmetric domains in É. Cartan’s classification. The last two types are
the exceptional domains. This explains the etymology of Cartan factor. The open unit ball
of a spin factor is known as a Lie ball.

For a finite-rank JB*-triple V with rank ℓ, each element z ∈ V has a spectral decomposition

z = α1e1 + · · ·+ αℓeℓ

where e1, . . . , eℓ are mutually (triple) orthogonal minimal tripotents and α1 ≥ · · · ≥ αℓ ≥ 0
with α1 = ‖z‖, also called the spectral norm of z.
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4. Squeezing functions of bounded symmetric domains

In finite dimensions, it is well-known that a bounded symmetric domain of rank ℓ contains
a polydisc of dimension ℓ as a totally geodesic submanifold [17, p.41]. To see that this is
also the case for infinite dimensional bounded symmetric domains of finite rank, we only
need to consider the irreducible ones. As remarked previously, there are only two classes of
such domains, namely, the Lie balls, which are of rank 2, and the type I domains of rank ℓ,
which can be realised as the open unit ball of the Banach space L(Cℓ, K) of bounded linear
operators between Hilbert spaces Cℓ and K, with ℓ ≤ dimK ≤ ∞ and ℓ < ∞.

Given ℓ < ∞, every operator T ∈ L(Cℓ, K) is a Hilbert-Schmidt operator in the Hilbert-
Schmidt norm

‖T‖2 = (
ℓ∑

k=1

‖Tek‖2)1/2

satisfying ‖T‖ ≤ ‖T‖2 ≤
√
ℓ‖T‖, where {e1, . . . , eℓ} is the standard orthonormal basis in Cℓ.

Let D be the closure of D = {z ∈ C : |z| < 1} and D the closure of the open unit ball

D = {T ∈ L(Cℓ, K) : ‖T‖ < 1}.
Fix orthonormal basis vectors uα1

, . . . , uαℓ
from an orthonormal basis {uα} in K. Then the

continuous map ϕ : D× · · · × D → D, defined by

(4.1) ϕ(z1, . . . zℓ) =

ℓ∑

k=1

zk(ek ⊗ uαk
) (z1, . . . , zℓ) ∈ D

ℓ
,

restricts to an injective holomorphic map

ϕ : D× · · · × D → D

with ϕ(0, . . . , 0) = 0, where ek ⊗ uαk
: Cℓ → K is the rank-one operator

ek ⊗ uαk
(h) = 〈h, ek〉uαk

(h ∈ C
ℓ)

with ‖ek ⊗ uαk
‖ = ‖ek ⊗ uαk

‖2 = 1. This also implies that ϕ maps the boundary ∂Dℓ of Dℓ

into the boundary ∂D = {T ∈ L(Cℓ, K) : ‖T‖ = 1} .
Let D be the open unit ball of a spin factor V , which is of rank 2. Let e1 and e2 be

two mutually (triple) orthogonal minimal tripotents in V . Then we have ‖λe1 + µe2‖ =
max{|λ|, |µ|} for λ, µ ∈ C [4, Corollary 3.1.21]. Hence one can define a continuous map

(4.2) ϕ : (z1, z2) ∈ D
2 7→ z1e1 + z2e2 ∈ D

which restricts to an injective holomorphic map from D2 to D satisfying ϕ(0) = 0 and
ϕ(∂D2) ⊂ ∂D.

Given a Hilbert space H , a holomorphic map f : Dn → H admits a power series repre-
sentation in terms of homogeneous polynomials from Cn to H (cf. [4, p.65]). A homogeneous
polynomial p of degree d from Cn to H is given by

p(z1, . . . , zn) = P ( (z1, . . . , zn), . . . , (z1, . . . , zn) ) ∈ H, (z1, . . . , zn) ∈ C
n
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where P : Cn × · · · × C
n

︸ ︷︷ ︸

d-times

→ H is a d-linear map. Let {eα} be an orthonormal basis in H .

We can write

p(z1, . . . , zn) =
∑

α

qα(z1, . . . , zn)eα

where qα(z1, . . . , zn) is a homogeneous polynomial of degree d in n complex variables z1, . . . , zn
and has the form

qα(z1, . . . , zn) =
∑

j1+···+jn=d

cα; j1,...,jnz
j1
1 · · · zjnn (cα; j1,...,jn ∈ C).

A holomorphic map f : Dn → H has a power series representation

f(z1, . . . , zn) = f(0) +
∞∑

d=1

pd(z1, . . . , zn), (z1, . . . , zn) ∈ D
n

where pd is a homogeneous polynomial of degree d from Cn to H and has the from

(4.3) pd(z1, . . . , zn) =
∑

α

∑

j1+···+jn=d

cdα; j1,...,jnz
j1
1 · · · zjnn eα (cdα; j1,...,jn ∈ C).

Let h : D → D′ be a biholomorphic map between two open unit balls D,D′ of Banach
spaces V and V ′ respectively. If h(0) = 0, then it follows from Cartan’s uniqueness theorem
that h is the restriction of the derivative h′(0) : V → V ′, which is a linear isometry (cf. [11,

Corollary 6] and [14]). In particular, h extends to a continuous map h̄ : D̄ → D
′
between

the closures D and D
′
, where h̄ = h′(0)|D̄. Moreover, h̄(∂D) = ∂D′.

Let D be a bounded symmetric domain, realised as the open unit ball of a JB*-triple V .
Given a holomorphic embedding f : D → BH of D into a Hilbert ball BH , the image f(D) is
a bounded symmetric domain and hence there is an equivalent norm ‖ · ‖∞ on H such that
(H, ‖ · ‖∞) is a JB*-triple and f(D) identifies (via a biholomorphic map) as the open unit
ball of (H, ‖ · ‖∞) (cf. [4, Theorem 2.5.26]). If f(0) = 0, then the previous remark implies
that f extends to a continuous map f̄ , which maps ∂D onto the boundary ∂f(D) of the
domain f(D).

The following lemma is a simple infinite dimensional extension of Alexander’s result in [2,
Proposition 1] (see also [18, Lemma 1]).

Lemma 4.1. Let D be a bounded domain with boundary ∂D and B a Hilbert ball such that
the following two continuous maps

D
ℓ ϕ

−→ D
f
−→ B

on the closures restrict to holomorphic maps

D
ℓ ϕ

−→ D
f
−→ B

with open image f(D), satisfying ϕ(∂Dℓ) ⊂ ∂D and f(∂D) ⊂ ∂f(D). If ρB ⊂ f(D) for
some ρ > 0, then ℓρ2 ≤ 1.
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Proof. Let {eα} be an orthonormal basis in the Hilbert space containing the ball B. By
(4.3), the holomorphic map f ◦ ϕ on Dℓ has a power series representation

f ◦ ϕ(z1, . . . , zℓ) =
∞∑

d=1

pd(z1, . . . , zℓ)

where pd(z1, . . . , zℓ) is a d-homogeneous polynomial of the form

pd(z1, . . . , zℓ) =
∑

α

∑

j1+···+jℓ=d

cdα; j1,...,jℓz
j1
1 · · · zjℓℓ eα (cdα; j1,...,jℓ ∈ C).

Since ρB ⊂ f(D), we have ‖f(w)‖ ≥ ρ for each w ∈ ∂D. Noting that f ◦ϕ(∂Dℓ) ⊂ ∂f(D),
we deduce

ρ2 ≤ 1

2π

∫ 2π

0

‖f ◦ ϕ(0, . . . , eiθj , 0, . . . , 0)‖2dθj

=
1

2π
lim
r→1

∫ 2π

0

‖f ◦ ϕ(0, . . . , reiθj , 0, . . . , 0)‖2dθj

=
1

2π
lim
r→1

∫ 2π

0

∑

α

∣
∣
∣
∣
∣

∑

d

cdα; 0,...,0,d,0,...,0r
deidθj

∣
∣
∣
∣
∣

2

dθj

=
1

2π
lim
r→1

∑

α

∫ 2π

0

∣
∣
∣
∣
∣

∑

d

cdα; 0,...,0,d,0,...,0r
deidθj

∣
∣
∣
∣
∣

2

dθj

= lim
r→1

∑

α

∑

d

∣
∣cdα; 0,...,0,d,0,...,0

∣
∣
2
r2d

=
∑

α

∑

d

∣
∣cdα; 0,...,0,d,0,...,0

∣
∣
2
.

It follows that

1 ≥ lim
r→1

(
1

2π

)ℓ ∫ 2π

0

· · ·
∫ 2π

0

‖f ◦ ϕ(reiθ1 , . . . , reiθℓ)‖2dθ1 · · · dθℓ

= lim
r→1

∑

α

∑

d

∑

ν1+···+νℓ=d

∣
∣cdα; ν1,...,νℓ

∣
∣
2
r2d

=
∑

α

∑

d

∑

ν1+···+νℓ=d

∣
∣cdα; ν1,...,νℓ

∣
∣
2

≥
∑

α

∑

d

∣
∣cdα; d,0,...,0

∣
∣
2
+ · · ·+

∑

α

∑

d

∣
∣cdα; 0,...,0,d

∣
∣
2 ≥ ℓρ2.

�

In finite dimensions, the squeezing constant of the four series of classical Cartan domains
has been computed by Kubota in [18]. We will now compute the squeezing constants of the
remaining finite rank bounded symmetric domains of all dimensions.

We begin with the two exceptional domains which are realised as the open unit balls of the
JB*-triples M1,2(O) and H3(O) respectively, where dimM1,2(O) = 16 and dimH3(O) = 27.
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Both JB*-triples are equipped with the spectral norm, as noted previously. They also carry
a Hilbert space structure, with inner product

(4.4) 〈x, y〉 = 1

18
TraceD(x, y) (x, y ∈ H3(O)),

shown in [24, Corollary 2.14], where D(x, y) = 2x y. Given a minimal tripotent e ∈ H3(O),
we have 〈e, e〉 = 1 [24, Proposition 2.8]. If e and u are two mutually (triple) orthogonal
tripotents in H3(O), then 〈e, u〉 = 0 [24, Lemma 2.9].

The 27-dimensional domain D27 ⊂ H3(O) has rank 3 whereas the 16-dimensional domain
D16 ⊂ M1,2(O) has rank 2. The following two propositions, together with Kubota’s results in
[18], give a complete list of squeezing constants of all finite dimensional irreducible bounded
symmetric domains.

Proposition 4.2. The squeezing constant of the exceptional domain D27 is given by
σ̂D27

= 1/
√
3.

Proof. We compute σD27
(0) = σ̂D27

. We have D27 = {z ∈ H3(O) : ‖z‖ < 1}, where ‖ · ‖ is
the spectral norm. Given z ∈ H3(O) with spectral decomposition

z = α1e1 + α2e2 + α3e3 (α1 ≥ α2 ≥ α3 ≥ 0),

the spectral norm ‖z‖ equals α1, where the minimal tripotents e1, e2, e3 are mutually orthog-
onal with respect to the inner product given in (4.4). The Hilbert space norm ‖z‖2 of z is
given by

‖z‖22 = 〈z, z〉 = α2
1 + α2

2 + α2
3.

It follows that

‖z‖ ≤ ‖z‖2 ≤
√
3‖z‖

for all z ∈ H3(O). This implies

B27 ⊂ D27 ⊂
√
3B27

where B27 = {z ∈ H3(O) : ‖z‖2 < 1} is the Hilbert ball in H3(O). Hence we have σ̂D27
≥

1/
√
3. To show the reverse inequality, we define a continuous map ϕ : D

3 → D27 by

ϕ(z1, z2, z3) =





z1 0 0
0 z2 0
0 0 z3



 = z1e11 + z2e22 + z3e33

where ejj is the diagonal matrix in H3(O) with 1 in the jj-entry and 0 elsewhere. Since
e11, e22, e33 are mutually (triple) orthogonal minimal tripotents in H3(O), we see that ϕ
restricts to an injective holomorphic map from D3 into D27 with ϕ(0) = 0 and ϕ(∂D3) ⊂
∂D27. By Lemma 4.1 and the remarks before it, for each holomorphic embedding f : D27 →
B27 with f(0) = 0 and ρB27 ⊂ f(D27), we must have 3ρ2 ≤ 1. This proves the reverse
inequality. �

Proposition 4.3. The squeezing constant of the exceptional domain D16 is given by
σ̂D16

= 1/
√
2.
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Proof. The arguments are similar to those in the proof of Lemma 4.2, we recapitulate for
completeness. We consider M1,2(O) as a subtriple of H3(O). It suffices to show σD16

(0) =

1/
√
2. We have D16 = {z ∈ M1,2(O) : ‖z‖ < 1}, where ‖ · ‖ is the spectral norm. Given

z ∈ M1,2(O) with spectral decomposition

z = α1e1 + α2e2 (α1 ≥ α2 ≥ 0),

the spectral norm ‖z‖ equals α1, where the minimal tripotents e1, e2 are mutually orthogonal
with respect to the inner product given in (4.4). The Hilbert space norm ‖z‖2 of z is given
by

‖z‖22 = 〈z, z〉 = α2
1 + α2

2

and

‖z‖ ≤ ‖z‖2 ≤
√
2‖z‖

for all z ∈ M1,2(O). This implies

B16 ⊂ D16 ⊂
√
2B16,

where B16 = {z ∈ M1,2(O) : ‖z‖2 < 1} is the Hilbert ball in M1,2(O). Hence σ̂D16
≥ 1/

√
2.

For the reverse inequality, one defines a continuous map ϕ : D
2 → D16 by

ϕ(z1, z2) = z1e11 + z2e22

where e11 = (1, 0) and e22 = (0, 1) are mutually (triple) orthogonal minimal tripotents in
M1,2(O), and ϕ restricts to an injective holomorphic map from D2 into D16 with ϕ(0) = 0
and ϕ(∂D2) ⊂ ∂D16. As before, for each holomorphic embedding f : D16 → B16 satisfying
f(0) = 0 and ρB16 ⊂ f(D16), we must have 2ρ2 ≤ 1. This proves the reverse inequality. �

The following result extends Kubota’s result [18] for the classical Cartan domains to all
finite dimensional irreducible bounded symmetric domains.

Corollary 4.4. Let D be a finite dimensional irreducible bounded symmetric domain of rank
p. Then its squeezing constant is given by σ̂D = 1/

√
p.

We are now ready to show that finite-rank bounded symmetric domains, which can be
infinite dimensional, are HHR and compute their squeezing constants.

Theorem 4.5. Let D be a bounded symmetric domain in a complex Banach space. Then D
is HHR if and only if it is of finite rank. In this case, D is biholomorphic to a finite product

D1 × · · · ×Dk

of irreducible bounded symmetric domains and we have

(4.5) σ̂D =

(
1

σ̂2
D1

+ · · ·+ 1

σ̂2
Dk

)−1/2

.

If dimDj < ∞, then Dj is a classical Cartan domain or an exceptional domain, and
σ̂Dj

= 1/
√
pj where pj is the rank of Dj.

If dimDj = ∞, then Dj is either a Lie ball or a Type I domain of finite rank pj. For a

Lie ball Dj, we have σ̂Dj
= 1/

√
2. For a rank pj Type I domain Dj, we have σ̂Dj

= 1/
√
pj.
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Proof. Let D be HHR, realised as the open unit ball of a JB*-triple V . Then V is linearly
homeomorphic to some Hilbert space H . In particular, V is reflexive and hence D is of
finite rank. Conversely, a finite-rank bounded symmetric domain D decomposes into a finite
Cartesian product D = D1×· · ·×Dk of irreducible bounded symmetric domains, where each
Dj is of finite rank pj and realised as the open unit ball of a Cartan factor Vj for j = 1, . . . , k.

To complete the proof, we show that each domain Dj of rank pj has squeezing constant
σ̂Dj

= 1/
√
pj and σ̂D = (p1 + · · ·+ pk)

−1/2.
By Corollary 4.4, we have σ̂Dj

= 1/
√
p
j
if dimVj < ∞. In fact, this is also the case even if

Vj is infinite dimensional, in which case Vj is either a spin factor or the type I Cartan factor
L(Cℓ, K) with dimK = ∞ > ℓ. We now compute the squeezing constant in these two cases.

First, let Dj be a Lie ball, that is, the open unit ball of a spin factor (V, ‖ · ‖), which has
rank 2. In this case, V is a Hilbert space with norm ‖ · ‖h satisfying

‖ · ‖ ≤ ‖ · ‖h ≤
√
2‖ · ‖

(cf. [5, Section 2]). This gives σ̂Dj
≥ 1/

√
2. Making use of the map ϕ in (4.2) and analogous

arguments in the proof of Lemma 4.3, one concludes that σ̂Dj
= σ̂Dj

(0) = 1/
√
2.

Next, let Dj be a Type I domain of rank pj, realised as the open unit ball

Dj = {T ∈ L(Cpj , K) : ‖T‖ < 1}
of L(Cpj , K) with dimK = ∞. Equipped with the Hilbert-Schmidt norm ‖ · ‖2, the vector
space L(Cpj , K) is a Hilbert space. Let B = {T ∈ L(Cpj , K) : ‖T‖2 < 1} be its open unit
ball. Since ‖ · ‖ ≤ ‖ · ‖2 ≤ √

pj‖ · ‖, we have B ⊂ Dj ⊂ √
pjB and therefore σ̂Dj

(0) ≥ 1/
√
pj .

As before, using the map ϕ in (4.1) and similar arguments, we deduce σ̂Dj
= σ̂Dj

(0) = 1/
√
pj .

It remains to establish (4.5). The domain D = D1 × · · · ×Dk is the open unit ball of the
ℓ∞-sum

V1 ⊕ · · · ⊕ Vk

of Cartan factors, where Dj is the open unit ball of Vj of rank pj for j = 1, . . . , k. We observe
from the previous arguments that for each domain Dj, one can construct a continuous map

ϕj : D
pj → Dj which restricts to a holomorphic map from Dpj to Dj satisfying ϕj(0) = 0

and ϕj(∂D
pj ) ⊂ ∂Dj . Hence the product map

ϕ := ϕ1 × · · · × ϕk : D
p1 × · · · × D

pk → D1 × · · · ×Dk = D

is continuous, which restricts to a holomorphic map from Dp1 × · · · × Dpk to D1 × · · · ×Dk

satisfying ϕ(0, . . . , 0) = (0, . . . , 0) and maps the boundary of Dp1×· · ·×Dpk into the boundary
of D1 × · · · ×Dk = D. Applying Lemma 4.1 again, we deduce that

σ̂D ≤ 1√
p1 + · · ·+ pk

=
1

√

σ̂−2
D1

+ · · ·+ σ̂−2
Dk

.

For each j = 1, . . . , k, the previous arguments reveal that there is a Hilbert space Hj with
open unit ball Bj such that

Bj ⊂ Dj ⊂
√
pjBj .

Let B be the open unit ball of the Hilbert space direct sum H1 ⊕2 · · · ⊕2 Hk. Then we have

B ⊂ D1 × · · · ×Dk ⊂
√
p1 + · · ·+ pk B.
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This implies that

σ̂D ≥ 1√
p1 + · · ·+ pk

which completes the proof. �

5. Uniformly elliptic domains

Bounded symmetric domains can be realised as convex domains in Banach spaces and
those which are HHR have been completely determined previously. We conclude the paper
in this section by introducing a large class of bounded convex domains, which include the
strongly convex domains, and show that these domains are HHR in Hilbert spaces. The
domains to be introduced are called uniformly elliptic domains.

We begin with a preamble. Recall that a finite dimensional bounded domain D ⊂ Cn with
a C2 boundary ∂D is called strongly convex if all normal curvatures of ∂D are positive (cf. [1,
p.108]). Such a domain is a manifold with curvature pinched which entails the existence of
two positive constants R > r > 0 such that for each q ∈ ∂D, there are two points q′, q′′ in
Cn with the property that q is a common boundary point of the Euclidean balls BCn(q′, r)
and BCn(q′′, R) satisfying BCn(q′, r) ⊂ D ⊂ BCn(q′′, R). For fixed r and R, it can be seen
that q′ and q′′ are unique and colinear with q. For instance, an ellipsoid is strongly convex
and has this property.

In view of the fact that Hilbert balls are the only bounded symmetric domains with a C2

boundary, we generalise the concept of strong convexity to infinite dimension without the
assumption of a smooth boundary, to cover a wider class of domains, as follows.

Definition 5.1. A bounded convex domain Ω in a complex Banach space V is called uni-
formly elliptic if there exist universal constants r, R with 0 < r < R such that to each
q ∈ ∂Ω, there correspond two unique points q′, q′′ ∈ V , colinear to q, satisfying

(5.1.1) BV (q
′, r) ⊂ Ω ⊂ BV (q

′′, R);
(5.1.2) q ∈ ∂BV (q

′, r) ∩ ∂BV (q
′′, r), that is, q is a common boundary point of BV (q

′, r),
BV (q

′′, R) and Ω.

Evidently, the definition of uniform ellipticity depends on the norm of the ambient Banach
space. By the previous remarks, strongly convex domains are uniformly elliptic, but the
converse is false. In fact, all open balls in Banach spaces are uniformly elliptic. Indeed, if
say, Ω = BV is the open unit ball of a Banach space V , then for each boundary point q ∈ ∂Ω,
we have ‖q‖ = 1 and

BV (q/2, 1/2) ⊂ Ω = BV (0, 1)

and q ∈ ∂BV (
q
2
, 1
2
) ∩ ∂Ω ∩ ∂BV (0, 1). For R = 1 and r = 1/2, the points q′ = q/2 and

q′′ = 0 are unique and colinear to q.
By definition, each point p in a uniformly elliptic domain Ω in a Banach space V lies in

the ball BV (q
′′, R) for all q ∈ ∂Ω, as in (5.1.1) above, although p need not be colinear with

q and q′′. We consider the question of colinearity below.

Lemma 5.2. Let Ω be a uniformly elliptic domain in a Banach space V and for each q ∈ ∂Ω,
let

BV (q
′, r) ⊂ Ω ⊂ BV (q

′′, R), q ∈ ∂BV (q
′, r) ∩ ∂BV (q

′′, r)
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be as in the definition of uniform ellipticity. Then for each p ∈ Ω and q ∈ ∂Ω with ‖p−q‖ =
d(p, ∂Ω), either p is colinear with q and q′′ or, there exists q1 ∈ ∂Ω such that p is colinear
with q1 and q′′1 = q′′ satisfying ‖p− q1‖ = ‖p− q‖.
Proof. Let q ∈ ∂Ω ∩ ∂BV (q

′′, R) satisfy ‖p− q‖ = d(p, ∂Ω). Suppose p is not colinear with q
and q′′. We show the existence of q1 in the lemma.

Consider p ∈ Ω ⊂ BV (q
′′, R). Extend the (real) line through q′′ and p to a point q1 ∈

∂BV (q
′′, R). Then we have ‖p− q1‖ = d(p, ∂BV (q

′′, R)) ≤ ‖p− q‖. We show that q1 ∈ ∂Ω,
which would imply ‖p− q1‖ ≥ ‖p− q‖ and complete the proof by uniqueness of q′1 and q′′1 .

If q1 /∈ ∂Ω, we deduce a contradiction. Since q1 /∈ Ω and p ∈ Ω, the line joining p and q1
must intersect ∂Ω at some point ω, say. Now we have the contradiction

‖p− q‖ ≥ ‖p− q1‖ > ‖p− ω‖ ≥ d(p, ∂Ω) = ‖p− q‖.
�

We will discuss uniformly elliptic domains in greater detail in another work, but complete
this section presently by showing that these domains are HHR in Hilbert spaces, which
generalises the finite dimensional result for strongly convex domains in [25, Proposition 1].

Theorem 5.3. Let Ω be a uniformly elliptic domain in a Hilbert space H. Then Ω is HHR.

Proof. We need to show that the squeezing function σΩ of Ω has a strictly positive lower
bound. Suppose, to the contrary, that there is a sequence (pν) in Ω such that

(5.1) lim
ν→∞

σΩ(pν) = 0.

We deduce a contradiction. By Lemma 2.3, we may assume, by choosing another sequence
if necessary, that d(pν , ∂Ω) converges to 0 as ν → ∞ and one can find a boundary point
qν ∈ ∂Ω such that

‖qν − pν‖ = d(pν , ∂Ω) > 0.

Write λν = d(pν , ∂Ω) and let

BV (q
′
ν , r) ⊂ Ω ⊂ BV (q

′′
ν , R), qν ∈ ∂BV (q

′
ν , r) ∩ ∂BV (q

′′
ν , R)

be as in the definition of uniformly ellipticity of Ω where, by Lemma 5.2, qν can be chosen
so that pν lies on the line through qν and q′′ν .

We complete the proof by a contradiction that there is a subsequence (pν′) of (pν) and a
constant δ > 0 satisfying

σΩ(pν′) > δ for all ν ′.

In fact, δ depends only on r and R.
For each ν, we define a holomorphic embedding

Φ ◦ Lν : Ω → H

as follows. Let e1 be the unit vector

e1 :=
q′′ν − qν

‖q′′ν − qν‖
.

We have

(S1) q′′ν = Re1 + qν , q′ν = re1 + qν ,
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(S2) pν = λνe
1 + qν (λν → 0 as ν → ∞).

Since σΩ(pν) = σΩ−qν(pν − qν), taking a translation, we may assume qν = 0. Then we have

(S10) q′′ν = Re1, ϕq′ν = re1,
(S20) pν = λνe

1.

We now have

(5.2) pν = λνe
1 ∈ BH(re

1, r) ⊂ Ω ⊂ BH(Re1, R).

where
q′ν = re1, q′′ν = Re1.

Extend {e1} to an orthonormal basis {eγ}γ∈Γ in H . For each z ∈ H , we will write

z =
∑

γ∈Γ

zγe
γ = z1e

1 +
∑

γ 6=1

zγe
γ

with zγ ∈ C. We have

z ∈ BH(re
1, r) ⇔ ‖z − re1‖ < r

where

(5.3) ‖z − re1‖2 = |z1 − r|2 +
∑

γ 6=1

|zγ|2 = |z1|2 − 2rRe z1 + r2 +
∑

γ 6=1

|zγ|2.

We definite a dilation Lν : H → H by

Lν(z) =
z1
λν

e1 +
1√
λν

∑

γ 6=1

zγe
γ, z =

∑

γ∈Γ

zγe
γ

which satisfies Lν(pν) = e1. The map Lν is a linear homeomorphism of H , with inverse

L−1
ν (z) = λνz1e

1 +
√

λν

∑

γ 6=1

zγe
γ.

Define a Cayley transform Φ : {z ∈ H : Re z1 > 0} → H by

Φ(z) :=
z1 − 1

z1 + 1
e1 +

∑

γ 6=1

√
2zγ

z1 + 1
eγ , z =

∑

γ

zγe
γ

and the holomorphic embedding
Φ ◦ Lν : Ω → H

where Φ(Lν(pν)) = 0. Although Φ depends on ν, we omit the subscript ν indicating this, to
simplify notation, since confusion is unlikely.

We will show that

BH

(

0,

√
r

2 + 2r

)

⊂ Φ(Lν(Ω)) ⊂ BH(0,
√
1 +R)

for sufficiently large ν.
Substituting R for r in (5.3), we see that

BH(Re1, R) = {z ∈ H : ‖z −Re1‖2 < R2} = {z ∈ H :
∑

γ∈Γ

|zγ|2 < 2R Re z1}.
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Given ζ =
∑

γ ζγe
γ ∈ BH , we have

Φ−1(ζ) =
1 + ζ1
1− ζ1

e1 +
∑

γ 6=1

√
2ζγ

1− ζ1
eγ.

Hence

ζ ∈ ΦLν(BH(Re1, R)) ⇔ L−1
ν Φ−1ζ ∈ BH(Re1, R)

⇔ λν

(
1 + ζ1
1− ζ1

)

e1 +
∑

γ 6=1

√
2λν

1− ζ1
eγ ∈ BH(Re1, R)

⇔ αλ2
ν |1 + ζ1|2 + 2λν

∑

γ 6=1

|ζγ|2 < 2Rλν(1− |ζ1|2)

⇒
∑

γ 6=1

|ζγ|2 < R(1− |ζ1|2)

⇒ ‖ζ‖2 = |ζ1|2 +
∑

γ 6=1

|ζγ|2 < 1 +R

and therefore we have, by (5.2),

(5.4) ΦLν(Ω) ⊂ ΦLν(BH(Re1, R)) ⊂ BH(0,
√
1 +R).

We now show that BH(0,
√

r
2+2r

) ⊂ ΦLν(Ω) for sufficiently large ν. For this, we will make

use of the inclusion BH(ru, r) ⊂ Ω.
We have L−1

ν Φ−1(ζ) ∈ BH(ru, r) if and only if ‖L−1
ν Φ−1(ζ)− ru‖ < r, where

‖L−1
ν Φ−1(ζ)− ru‖2 < r2 ⇔

∣
∣
∣
∣
λν

(
1 + ζ1
1− ζ1

)

− r

∣
∣
∣
∣

2

+
2λν

|1− ζ1|2
∑

γ 6=1

|ζγ|2 < r2(5.5)

⇔ λν(λν |1 + ζ1|2 − 2r(1− |ζ1|2) + 2
∑

γ 6=1

|ζγ|2) < 0.

For ζ ∈ BH(0,
√

r
2+2r

), we have 2r− (2r|ζ1|2+2‖ζ‖2) > r and |1+ ζ1|2 ≤
(

1 +

√
r

2 + 2r

)2

.

Since λν → 0 as ν → ∞, there exists ν0 such that ν ≥ ν0 implies

λν <
r

2
(

1 +
√

r
2+2r

)2

and hence

λν |1 + ζ1|2 − 2r(1− |ζ1|2) + 2
∑

γ 6=1

|ζγ|2 ≤ λν |1 + ζ1|2 − 2r + 2r|ζ1|2 + 2‖ζ‖2

<
r

2
(

1 +
√

r
2+2r

)2 |1 + ζ1|2 − r < −r/2

which gives λν(λν |1 + ζ1|2 − 2r(1− |ζ1|2) + 2
∑

γ 6=1 |ζγ|2) < −rλν/2 < 0 and by (5.5),

‖L−1
ν Φ−1(ζ)− ru‖2 < r2.
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We have therefore shown that, for ν ≥ ν0, the inclusions

BH(0,
√

r/(2 + 2r ) ⊂ ΦLν(BH(re
1, r)) ⊂ ΦLν(Ω)

are satisfied.
Now it follows from this and (5.4) that

σΩ(pν) ≥
√

r

2(1 + r)(1 +R)
> 0

for all ν ≥ ν0, which contradicts limν→∞ σΩ(pν) = 0 and completes the proof.
�
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