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Abstract

We establish two embedding theorems for tree-free groups. The first result embeds a group
G acting freely and without inversions on a �-tree X into a group Ĝ acting freely, without
inversions, and transitively on a �-tree X̂ in such a way that X embeds into X̂ by means of a
G-equivariant isometry. The second result embeds a group G acting freely and transitively
on an R-tree X into RF(H) for some suitable group H , again in such a way that X embeds
G-equivariantly into the R-tree XH associated with RF(H). The group RF(H) referred to
here belongs to a class of groups introduced and studied by the present authors in [3]. As a
consequence of these two theorems, we find that RF-groups and their associated R-trees are
in fact universal for free R-tree actions. Moreover, our first embedding theorem throws light
on the question, arising from the results of [7], whether a group endowed with a Lyndon
length function L can always be embedded in a length-preserving way into a group with a
regular Lyndon length function; modulo an obvious necessary restriction we show that this
is indeed the case if L is free.

1. Introduction

By a tree-free group we mean a group having an action on a �-tree, for some (totally)
ordered abelian group �, which is free and without inversions. This means that every non-
identity element acts as a hyperbolic isometry (see [2, Chapter 3]). This paper arose from our
efforts to verify some of the results in the paper of Alperin and Moss [1], one of the seminal
papers on R-trees. The first is Theorem 3.4, that a group G with a real length function can
be embedded in a group Ĝ which is a “principal ideal group”. The construction involves
taking the corresponding R-tree X on which G acts, and adding copies of X, joined together
at a single point, at every point in the closure of the set of branch points, then iterating the
construction, to obtain an R-tree X∞. Elements of Ĝ are then defined as certain geodesic
paths in X∞. There is a natural length function on Ĝ; however, the detailed proof that Ĝ is a
group, and that X∞ is the canonical tree associated to the length function, are omitted, and
appear to be rather problematic in that context. Consequently, we have adopted a different
approach, defining Ĝ as a set of equivalence classes of sequences under certain rewrite rules,
defining the length function directly, then using the canonical construction of a tree from a
length function to obtain an analogue of X∞ (now called X̂). We also make two changes;
firstly, copies of X can be attached at any point, not just at points in the closure of the set of
branch points. Secondly, when this is done, there is no need to confine attention to R-trees;
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the argument applies to �-trees, for any �. The outcome is the following improved result;
cf. Theorem 5.4.

THEOREM. Let G be a group acting freely and without inversions on a �-tree X. Then
there exist a group Ĝ and a �-tree X̂, such that Ĝ acts freely, without inversions, and
transitively on X̂, together with an embedding G → Ĝ and an equivariant isometry X → X̂.

Our argument bears no obvious resemblance to that in [1]; however, like the one in [1], it
only applies to actions which are free and without inversions.

Our second embedding result is based on [1, Theorem 4.2]. Here, it is left unexplained
why the function Fg in the proof is admissible. Specifically, this involves a certain quotient
set S of a group G; it appears difficult to see how the map with domain S needed to define
admissibility on p. 65 can be chosen so that it is injective. However, with some effort, the
original argument can be adapted to show that, if a group G acts freely on an R-tree X, then
there is an embedding of G into RF(H) for some group H , where RF(H) is one of the
groups constructed and investigated in [3]. Moreover, there is an equivariant embedding of
X into the canonical R-tree XH on which RF(H) acts.

To prove this, we let H be the quotient set S above, given an arbitrary group structure, and
replace the ordered pairs (s1, s2) of elements of S used in [1] by s−1

1 s2. We give the details
to show that this construction works.

It is clear that our results depend heavily on the connection between Lyndon length func-
tions and actions on �-trees, which we summarise next. The definition of a Lyndon length
function is given after [2, Chapter 2, Corollary 4.5]. In particular, if L : G → � is a map,
where G is a group and � is an ordered abelian group, we let

c(g, h) = 1
2

{
L(g) + L(h) − L(g−1h)

}
.

THEOREM 1.1. Let G be a group and let � be an ordered abelian group.

(i) If G acts on a �-tree (X, d) and x ∈ X is any point, define Lx : G → � by
Lx(g) = d(x, gx). Then Lx is a Lyndon length function satisfying c(g, h) ∈ � for all
g, h ∈ G.

(ii) Conversely, given a Lyndon length function L: G → � satisfying c(g, h) ∈ � for all
g, h ∈ G, there are a �-tree (X, d) on which G acts and a point x ∈ X such that
L = Lx .

Proof. See [2, Chapter 2, Theorem 4.6] and the preceding paragraph.

The proof of (i) depends on the fact that �-trees are 0-hyperbolic. If (X, d) is any �-metric
space, and x ∈ X , set

(y · z)x = 1
2

{
d(y, x) + d(z, x) − d(x, y)

}
, y, z ∈ X. (1·1)

Then (X, d) is 0-hyperbolic if at least two of (x · y)t , (y · z)t and (x · z)t are equal, and not
greater than the third, for all x, y, z, t ∈ X . (See [2, Section 2, Chapter 1] for more details.)
We shall make use of the interpretation of the function c(g, h) in (i) as d(x, w) = (gx ·hx)x ,
where [x, gx] � [x, hx] = [x,w].

Finally, we shall be dealing with actions in which every non-identity element acts as a
hyperbolic isometry, so we note the following criterion.
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LEMMA 1.2. Suppose a group G acts by isometries on a �-tree (X, d) and let x ∈ X
be any point. Then an element g ∈ G acts as a hyperbolic isometry of X if, and only if,
Lx(g2) > Lx(g).

Proof. This follows from [2, Chapter 3, Lemma 1.8].

Remark. Following [7], a length function L : G → � such that L(g2) > L(g) for all
non-trivial elements g ∈ G will be called free. (Lyndon used the term archimedean.)

2. The rewriting system R
Let G be a group acting by isometries on a �-tree X = (X, d). We shall assume that the

action of G is free and without inversions. Let B = {bi : i ∈ I } be a set of representatives
for the G-orbits. We assume that 0 ∈ I , and we shall take b0 as basepoint in X. It is probably
implicit, but we assume that the map i �→ bi is bijective, and that X � I = �.

We consider words x = s1s2 . . . sn (si ∈ X � I ) over the alphabet X � I ; we shall usually
separate the letters si by commas to improve readability, and often add parentheses at the
ends of a word. Let R be the set consisting of the following rewrite rules.

(1) gbi , i, x −→ gx , for g ∈ G, i ∈ I , and x ∈ X ;
(2) i, bi −→ ε, where ε is the empty word, for all i ∈ I .

In the usual way, R induces a relation −→ on (X � I )∗, the free monoid generated by the
set X � I , namely the binary relation given by

x1 −→ x2 ⇔ x2 results from x1 by a move of type (1) or type (2).

Let
∗−→ be the reflexive, transitive closure of −→, and let ≡ be the equivalence relation

generated by −→. Explicitly, we have x ≡ y for x, y ∈ (X � I )� if, and only if, there exists
a sequence

x = x1, x2, . . . , xm = y,

where xμ ∈ (X � I )� for 1 � μ � m, m � 1, and for 1 � μ < m, either xμ −→ xμ+1 or
xμ+1 −→ xμ.

As usual, the length of a word

x = (s1, s2, . . . , sn), si ∈ X � I,

is n; and a word x ∈ (X � I )� is reduced, if none of the rewrite rules (1), (2) can be applied
to it. We note that, since the rewrite rules shorten the length of a word, R is terminating; that
is, for each x ∈ (X � I )� there exists t = t (x) ∈ N0 such that no chain of direct moves (1) or
(2) applied to x has more than t terms. Recall that a rewriting system R on a set S is called
locally confluent if, whenever x ∈ S can be transformed into y1 by one direct move, and into
y2 by another, then there exists z ∈ S, such that z can be reached from each of y1, y2 by an
appropriate chain of direct moves.

LEMMA 2.1. The rewriting system R on (X � I )� is locally confluent.

Proof. According to [5, Lemma 12.17], it suffices to show that, for each pair of rewrite
rules u1 −→ t1 and u2 −→ t2, the following are satisfied,

(i) if u1 = rs and u2 = st with r , s, t ∈ (X � I )∗ and s � ε, then there exists
w ∈ (X � I )∗ such that t1t

∗−→ w and r t2
∗−→ w;
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(ii) if u1 = rst and u2 = s with r , s, t ∈ (X�I )∗ and s � ε, then there exists w ∈ (X�I )∗

such that t1
∗−→ w and r t2t

∗−→ w.

Note that in our case, u1 = u2 implies t1 = t2, so that (i) and (ii) are trivially satisfied (but this
makes essential use of the fact that the action of G is free). Thus, we may assume that u1 �
u2. To verify (i), if both rewrite rules are of type (1) above, they have the form gbi , i, hb j −→
ghb j and hb j , j, z −→ hz (so s = hb j , etc.). Then it is easy to see that we may
take w = ghz. It is impossible that both rules are of type (2), so assume one is of type
(1) and the other is of type (2). There are two possibilities; the first is that the two rules have
the form gbi , i, bi −→ gbi and i, bi −→ ε (so s = (i, bi)). Then we may take w = gbi . The
second is that the rules have the form i, bi −→ ε and bi , i, y −→ y (so s = bi , t1 = ε and
t2 = y, etc.) Then we can put w = (i, y).

To verify (ii), the only possibility is that u1 −→ t1 is of type (1) and u2 −→ t2 is of type
(2), and they have the form gbi , i, bi −→ gbi and i, bi −→ ε respectively. Thus s = (i, bi),
r = gbi and t = ε. Then we can let w = gbi .

PROPOSITION 2.2. Each equivalence class of (X � I )� under ≡ contains exactly one
reduced word.

Proof. Since the rewriting system R on (X � I )� is terminating, and locally confluent
by Lemma 2.1, this follows by a well-known result of M. H. A. Newman (the “Diamond
Lemma”); cf. [10], or [4, Chapter 1, Lemma 5.1].

3. The group Ĝ

Consider the subset

S := {
(x0, i1, x1, . . . , in, xn) : n � 0, xμ ∈ X (0 � μ � n), iν ∈ I (1 � ν � n)

}
,

of (X � I )∗, and let ∼ be the equivalence relation induced by R on the set S; that is, we have
x ∼ y if, and only if, there exists a finite sequence

x = x1, x2, . . . , xm = y,

where m � 1, xμ ∈ S for 1 � μ � m, and, for 1 � μ < m, either xμ −→ xμ+1 or
xμ+1 −→ xμ. Clearly, the equivalence class [x] of a word x ∈ S under ∼ is contained in the
equivalence class of x under the relation ≡; in particular, [x] contains at most one reduced
word by Proposition 2.2. Also, each class [x] does contain a reduced word, since the rewrite
rules (1) and (2) both shorten the length, and S is closed under moves of types (1) and (2).

We define a binary operation on S by

x.y := the concatenation x, 0, y.

This operation is clearly associative, and ∼ is a congruence on S, so S/∼ is a semigroup,
with respect to the operation [x][y] = [x.y]. Further, we have, for x ∈ S,

x.(b0) = x, 0, b0
(2)−→ x

(1)←− b0, 0, x = (b0).x,

so that [(b0)] is a (two-sided) identity element for S/∼. Moreover, for

x = (g0b j0, i1, g1b j1, i2, . . . , in, gnb jn ) ∈ S, (3·1)

let

x̄ := (b0, jn, g−1
n bin , jn−1, g−1

n−1bin−1, . . . , j1, g−1
1 bi1, j0, g−1

0 b0). (3·2)
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A straightforward calculation, involving an alternating chain of moves, then shows that

[x][x̄] = [(b0)] = [x̄][x];
hence, S/∼ is a group, which we denote by Ĝ. It is easy to see that Ĝ is independent, up to
isomorphism, of the system of representatives for the G-orbits used in its definition.

4. The length function L

For a reduced word x ∈ S as in (3·1), set

L([x]) := d(b0, g0b j0) +
n∑

k=1

d(bik , gkb jk ).

Since each equivalence class of S contains a unique reduced word, this defines a map
L : Ĝ −→ �. We shall show that L is a Lyndon length function on Ĝ.

LEMMA 4.1. For [x] ∈ Ĝ, we have L([x]) = L([x]−1).

Proof. Let x ∈ S be reduced and as in (3·1), and consider x̄. If, for some k with 1 � k � n,
a type (1) move

g−1
k bik , jk−1, g−1

k−1bik−1 −→ g−1
k g−1

k−1bik−1

were possible in x̄, then it would follow that jk−1 = ik , so that the type (1) move

gk−1b jk−1, ik, gkb jk −→ gk−1gkb jk

would be possible in x, contradicting the fact that x is reduced. Hence, the only possible
type (1) move in x̄ is

b0, jn, g−1
n bin −→ g−1

n bin , jn = 0. (4·1)

Similarly, we see that the only possible type (2) move in x̄ is

j0, g−1
0 b0 −→ ε, j0 = 0 and g0 = 1. (4·2)

Moreover, carrying out these moves, where possible, gives the reduced word in the equival-
ence class [x]−1. Using the facts that d(b0, b0) = 0, that G acts by isometries, and that d is
symmetric, the result follows now by a straightforward computation.

Next, we shall calculate c([x], [y]) for [x], [y] ∈ Ĝ. Our result is as follows.

LEMMA 4.2. Let

x = (x0, i1, x1, . . . , im, xm), y = (y0, j1, y1, . . . , jn, yn) ∈ S

be reduced words. Let k � 0 be maximal with respect to the condition that

(x0, i1, x1, . . . , ik) = (y0, j1, y1, . . . , jk),

and let

w = w(x, y) :=
⎧⎨
⎩

(x0, i1, x1, . . . , xk−1), k � 1;
ε, k = 0.

Then

c([x], [y]) = L([w(x, y)]) + (xk · yk)bik
(4·3)
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where L([w(x, y)]) has to be interpreted as 0 if w = ε, i0 := 0, and, for points x, y, b ∈ X,

(x · y)b is as in (1·1); in particular, we have c([x], [y]) � L([w(x, y)]) and c([x], [y]) ∈ �.

Proof. The fact that c([x], [y]) ∈ � follows from (4·3) together with [2, Chapter 2,
Lemma 1.6]. Since c([x], [y]) is symmetric by Lemma 4.1, we may suppose without loss of
generality that m � n. Let

x′ :=
⎧⎨
⎩

(b0, ik, xk, . . . , im, xm), k � 1

x, k = 0
and y′ :=

⎧⎨
⎩

(b0, jk, yk, . . . , jn, yn), k � 1

y, k = 0.

We note that x′, y′ are reduced words, unless k � 1 and either ik = 0 or jk = 0, in which
case we can use the type (1) moves

b0, 0, xk −→ xk and b0, 0, yk −→ yk

to delete b0, ik or b0, jk where possible, after which the resulting words are reduced. It
follows from this discussion and a computation similar to one occurring in the proof of
Lemma 4.1 that

L([x]) = L([w]) + L([x′])
and

L([y]) = L([w]) + L([y′]).
Also, we have x ∼ w.x′ and y ∼ w.y′, hence x̄.y ∼ x′.y′; here, the concatenations ε.x
and ε.y are to be interpreted as x and y, respectively. We now concentrate on the case when
k < m. Writing x� = g�bμ�

for 0 � � � m, we claim that

x′.y′ ∼ (b0, μm, g−1
m bim , μm−1, . . . , g−1

k+1bik+1, μk, g−1
k yk, jk+1, yk+1, . . . , jn, yn). (4·4)

Indeed, if k > 0, then

x′.y′ = (1 · b0, ik, gkbμk , . . . , im, gmbμm ).(b0, jk, yk, . . . , jn, yn)

= (b0, μm, g−1
m bim , μm−1, . . . , μk, g−1

k bik , 0, b0).(b0, jk, yk, . . . , jn, yn)

∼ (b0, μm, g−1
m bim , μm−1, . . . , μk, g−1

k bik , jk, yk, . . . , jn, yn)

∼ (b0, μm, g−1
m bim , μm−1, . . . , g−1

k+1bik+1, μk, g−1
k yk, jk+1, yk+1, . . . , jn, yn),

where we have used the fact that ik = jk for k > 0 in the last step. If, on the other hand,
k = 0, then

x′.y′ = x̄.y = (b0, μm, g−1
m bim , μm−1, . . . , μ1, g−1

1 bi1, μ0, g−1
0 b0).(y0, j1, y1, . . . , jn, yn)

∼ (b0, μm, g−1
m bim , μm−1, . . . , μ1, g−1

1 bi1, μ0, g−1
0 y0, j1, y1, . . . , jn, yn),

which coincides with the right-hand side of (4·4) in the case when k = 0, as desired.
The only possible type (1) move in the word on the right-hand side of (4·4) is

b0, μm, g−1
m bim −→ g−1

m bim , μm = 0,

while the only possible type (2) move is

μk, g−1
k yk −→ ε, xk = yk .
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This follows from a discussion of possible type (1) and type (2) moves similar to one in the
proof of Lemma 4.1, using the fact that x and y are reduced. Moreover, having performed
these moves in (4·4) where possible, the resulting word is reduced, since k < m and therefore
ik+1 � jk+1 by choice of k. It follows that

L([x]−1[y]) = L([x′.y′])

=
m∑

�=k+1

d(bi� , x�) + d(xk, yk) +
n∑

�=k+1

d(b j� , y�)

= L([x′]) − d(bik , xk) + d(xk, yk) + L([y′]) − d(b jk , yk),

and therefore

c([x], [y]) = L([w]) + 1
2 {d(bik , xk) + d(b jk , yk) − d(xk, yk)}

= L([w]) + (xk · yk)bik
,

as claimed.
It remains to deal with the case when k = m. Again writing xm = gmbμm , we have, for

m � 0,

x′.y′ ∼ (b0, μm, g−1
m ym, jm+1, ym+1, . . . , jn, yn).

The only possible type (1) move now is

b0, μm, g−1
m ym −→ g−1

m ym, μm = 0, (4·5)

while the only possible type (2) move is

μm, g−1
m ym −→ ε, xm = ym . (4·6)

If μm = 0, performing the type (1) move (4·5) results in a reduced word, whereas for μm � 0
and xm = ym , performing the type (2) move (4·6) results in a reduced word for jm+1 � 0,
while for jm+1 = 0 a further type (1) move

b0, jm+1, ym+1 −→ ym+1

is necessary to reach a reduced form. Given this, a routine calculation yields that, for
k = m � 0,

L([x]−1[y]) = L([x′.y′]) = d(xm, ym) +
n∑

�=m+1

d(b j� , y�),

and the rest of the proof proceeds as before.

We are now ready for the main result of this section.

PROPOSITION 4.3. The mapping L is a Lyndon length function on Ĝ with c(g, h) ∈ �

for all g, h ∈ Ĝ.

Proof. In view of Lemmas 4.1 and 4.2, we only need to show that, if

x = (x0, i1, x1, . . . , i�, x�), y = (y0, i ′
1, y1, . . . , i ′

m, ym), z = (z0, i ′′
1 , z1, . . . , i ′′

n , zn) ∈ S

are reduced words, then at least two of the three values

c([x], [y]), c([y], [z]), c([x], [z])
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are equal, and less than or equal to the third. Let p(x, y) denote the largest common prefix
of the words x and y, with a similar definition applying to the pairs y, z and x, z. Without
loss of generality we can assume that p(x, y) = p(y, z) is a prefix of p(x, z). We distinguish
two main cases according to whether p(x, y) ends in a point or an index.

Case (a). We have p(x, y) = x0, i1, x1, . . . , xκ−1 for some κ � 1 (i.e., p(x, y) is non-empty
and ends in a point). Then, in the notation of Lemma 4.2, k = κ − 1, and so

w(x, y) =
⎧⎨
⎩

(x0, i1, x1, . . . , xκ−2), κ � 2

ε, κ = 1,

and, by (4·3),

c([x], [y]) = L([w(x, y)]) + (xκ−1 · yκ−1)biκ−1

= L([w(x, y)]) + d(biκ−1, xκ−1)

= L([p(x, y)])
= c([y], [z]).

Moreover, if iκ � i ′′
κ , we have p(x, y) = p(x, z), and hence w(x, y) = w(x, z), whereas for

iκ = i ′′
κ , the string p(x, y) is a prefix of w(x, z). Consequently, for iκ � i ′′

κ ,

c([x], [z]) = L([w(x, z)]) + (xκ−1 · zκ−1)biκ−1

= L([w(x, y)]) + (xκ−1 · yκ−1)biκ−1

= c([x], [y])
= c([y], [z]),

while, for iκ = i ′′
κ ,

c([x], [z]) � L([w(x, z)]) � L([p(x, y)]) = c([x], [y]) = c([y], [z]).
Case (b). We have p(x, y) = x0, i1, . . . , xκ−1, iκ for some κ � 0 (i.e., p(x, y) is empty or
ends in an index). In this case, w(x, y) = w(y, z) is a prefix of w(x, z), and we have

c([x], [y]) = L([w(x, y)]) + (xκ · yκ)biκ

as well as

c([y], [z]) = L([w(x, y)]) + (yκ · zκ)biκ
.

We now distinguish two subcases.
Case (b1). Suppose that xκ = zκ . Then

c([x], [y]) = c([y], [z])
and

c([x], [z]) � L([w(x, y)]) + d(biκ , xκ)

� L([w(x, y)]) + (xκ · yκ)biκ
= c([x], [y]),
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since, by the triangle inequality,

(xκ · yκ)biκ
= 1

2 {d(biκ , xκ) + d(biκ , yκ) − d(xκ , yκ)}
� 1

2 {d(biκ , xκ) + d(biκ , yκ) − d(biκ , yκ) + d(biκ , xκ)} = d(biκ , xκ).

Case (b2). Suppose that xκ � zκ . Then p(x, z) = p(x, y), so w(x, z) = w(x, y), and

c([x], [z]) = L([w(x, y)]) + (xκ · zκ)biκ
.

In this case, the desired result follows since X is 0-hyperbolic, so two of the quantities

(xκ · yκ)biκ
, (yκ · zκ)biκ

, (xκ · zκ)biκ

are equal, and less than or equal to the third. This completes the proof.

Given the last result, it follows from of Theorem 1.1 (ii) that there exists a �-tree
X̂ = (X̂ , d̂) on which Ĝ acts by isometries, with a basepoint b such that L = Lb is the
displacement length with respect to b.

5. The action of Ĝ on X̂

LEMMA 5.1. The action of Ĝ on X̂ is free and without inversions.

Proof. We need to show that if g ∈ Ĝ, g � 1, then g acts as a hyperbolic isometry on X̂;
that is, L(g2) > L(g). Let g = [x], where x ∈ S is reduced, and write

x = (g0b j0, i1, g1b j1, . . . , in, gnb jn ),

as previously. We use induction on n. We have

x.x = (g0b j0, i1, g1b j1, . . . , in, gnb jn , 0, g0b j0, i1, g1b j1, . . . , in, gnb jn ), (5·1)

and this word is reduced, unless either (1) g0 = 1 and j0 = 0, or (2) jn = 0. If the right-hand
side of (5·1) is reduced, then

L(g2) � L(g) + d(b0, g0b j0) > L(g),

as (1) does not hold, so g is hyperbolic. Otherwise we have two cases to consider.

Case (a). Suppose that g0 = 1 and j0 = 0. Then n � 1 (since g � 1), and

x.x ∼ (b0, i1, g1b j1, . . . , in, gnb jn , i1, g1b j1, . . . , in, gnb jn ). (5·2)

If jn � i1 then the word on the right-hand side of (5·2) is reduced, and, since x is reduced,
we have

L(g2) � L(g) + d(bi1, g1b j1) > L(g),

so again g is hyperbolic. Next, suppose that jn = i1. Then, if n = 1, we have

x.x ∼ (b0, i1, g1bi1).(b0, i1, g1bi1) ∼ (b0, i1, g2
1bi1),

and

L(g2) = d(bi1, g2
1bi1) > d(bi1, g1bi1) = L(g)

in this case, because g1 � 1 as x is reduced, and G acts freely and without inversions. Hence
g is hyperbolic. Now assume that n � 2; then

x.x ∼ (b0, i1, g1b j1, . . . , in, gng1b j1, i2, . . . , in, gnb jn ).
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If either in � j1 or gn � g−1
1 , then this is reduced, and hence

L(g2) � L(g) + d(bin , gng1b j1) > L(g),

so g is hyperbolic.
Suppose in = j1 and gn = g−1

1 . Then n � 3 as x is reduced; in this situation, let

u := (b0, i1, g1b j1) and x′ := (b0, i2, g2b j2, . . . , gn−1b jn−1).

Then

u = (b0, j1, g−1
1 bi1, 0, b0) ∼ (b0, j1, g−1

1 bi1),

and we find that x ∼ u.x′.u. It follows that g = [u][x′][u]−1, so [x′] � 1 since g � 1; and,
by induction, we infer that [x′] is hyperbolic, hence so is the element g.

Case (b). Suppose that jn = 0. If n = 0, then

x.x ∼ (g0b0, 0, g0b0) ∼ (g2
0b0),

and g0 � 1 as g � 1, so

L(g2) = d(b0, g2
0b0) > d(b0, g0b0) = L(g),

since G acts freely and without inversions. Assume that n � 1. Then

x.x ∼ (g0b j0, i1, g1b j1, . . . , in, gng0b j0, i1, g1b j1, . . . , in, gnb jn ).

This is reduced unless in = j0 and gn = g−1
0 , and if it is reduced, then

L(g2) � L(g) + d(bin , gng0b j0) > L(g);
thus, g is hyperbolic.

Suppose that in = j0 and gn = g−1
0 . Then n � 2, otherwise x ∼ (b0), contradicting our

hypothesis that g � 1. We have

x.x ∼ (g0b j0, i1, g1b j1, . . . , in−1, gn−1b jn−1, i1, g1b j1, . . . , j0, gnb jn ).

If i1 � jn−1 then this is reduced, and, since x is reduced, we obtain

L(g2) � L(g) + d(bi1, g1b j1) > L(g);
hence, g is again hyperbolic. It remains to consider the case when jn = 0, in = j0, gn = g−1

0 ,
and i1 = jn−1. Let u := (g0b j0, i1, b0), and set

x′ :=
⎧⎨
⎩

(g1b0), n = 2

(g1b j1, i2, g2b j2, . . . , in−1, gn−1b0), n � 3.

Then

u = (b0, 0, bi1, j0, g−1
0 b0) ∼ (bi1, j0, g−1

0 b0),

and it is easily checked that x ∼ u.x′.u. It follows again that g = [u][x′][u]−1, so [x′] � 1,
and by induction [x′] is hyperbolic, hence so is g. This complete the proof of the lemma.

We call a Lyndon length function L: G → � strongly regular if, for each g ∈ G and every
γ ∈ � such that 0 � γ � L(g), there exist elements g1, g2 ∈ G such that g = g1g2,

L(g1) = γ, and L(g1) + L(g2) = L(g). Our next result spells out the precise connection
between strong regularity of a length function on a group G and the associated action of G
on the corresponding �-tree.



Embedding theorems for tree-free groups 11

LEMMA 5.2. Suppose that a group G acts by isometries on a �-tree X = (X, d), and let
x0 ∈ X be any point. Then the following assertions are equivalent:

(i) the group G is transitive on the subtree spanned by the orbit of x0;
(ii) the displacement function Lx0 is strongly regular.

Proof. See [3, Section A.3, Proposition A.32].

Remark. The reader may wonder why we have introduced the term strongly regular here.
The reason is that there exists already a notion of regular length function in the literature,
which has proved useful; cf., for instance, [7]: a Lyndon length function L: G → � on a
group G is called regular if, for any two elements g, h ∈ G, there exist elements u, g1, h1 ∈
G such that g = ug1, h = uh1, L(g) = L(u) + L(g1), L(h) = L(u) + L(h1), and L(u) =
c(g, h). It is shown in [3, Section A.3] that a strongly regular length function L : G → �

with the property that c(g, h) ∈ � for all g, h ∈ G is in fact regular; thus, in particular,
justifying our terminology (cf. [3, Proposition A.30]).

LEMMA 5.3. The action of Ĝ on X̂ is transitive.

Proof. It follows from [2, Chapter 2, Theorem 4.6] (with X ′ = Z = X̂ and w = b, so
μ is the identity map), that X̂ is spanned by the orbit Ĝb. In view of the previous lemma, it
therefore suffices to show that L = Lb is strongly regular.

Let x be a reduced word as in (3·1), and let γ ∈ � be such that 0 � γ � L([x]). Set i0 :=
0, so that L([x]) = ∑n

k=0 d(bik , gkb jk ). Let N ∈ N0 be minimal subject to the condition that
γ �

∑N
k=0 d(bik , gkb jk ), and let δ := γ − ∑N−1

k=0 d(bik , gkb jk ), thus 0 � δ � d(biN , gN b jN ),
and δ > 0 for N � 1.

Let z be the point on the segment [biN , gN b jN ] of X at distance δ from biN , and define

y =
⎧⎨
⎩

(g0b j0, i1, g1b j1, . . . , iN−1, gN−1b jN−1, iN , z), N � 1

(z), N = 0.

Then y ∈ S is reduced, and

L([y]) =
N−1∑
k=0

d(bik , gkb jk ) + d(biN , z) =
N−1∑
k=0

d(bik , gkb jk ) + δ = γ.

By Lemma 4.2,

c([x], [y]) = L([(g0b j0, i1, g1b j1, . . . , iN−1, gN−1b jN−1)]) + (gN b jN · z)biN

= L([(g0b j0, i1, g1b j1, . . . , iN−1, gN−1b jN−1)]) + d(biN , z)

= L([y]).
Letting g := [x], g1 := [y], and g2 := g−1

1 g, we have found that L(g1) = γ and

L(g2) = L([y]−1[x]) = L([x]−1[y]) = L([x]) − L([y]) = L(g) − L(g1),

which shows that L is strongly regular, as desired.

We are now in a position to establish our first main result.
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THEOREM 5.4. Let G be a group acting freely and without inversions on a �-tree X.
Then there exists a group Ĝ acting freely, without inversions, and transitively on a �-tree X̂,

together with a group embedding ϕ: G −→ Ĝ and a G-equivariant isometry μ: X −→ X̂.

Proof. Define ϕ: G −→ Ĝ by ϕ(g) = [(gb0)]. Then ϕ is a group homomorphism since,
for g, h ∈ G,

ϕ(g)ϕ(h) = [(gb0)][(hb0)] = [(gb0).(hb0)] = [(gb0, 0, hb0)] = [(ghb0)] = ϕ(gh),

where we have used the type (1) move gb0, 0, hb0 −→ ghb0 in the next to last step.
Moreover, since the action of G on X is free, we have, for g ∈ G, that

ϕ(g) = 1 ⇐⇒ [(gb0)] = [(b0)] ⇐⇒ gb0 = b0 ⇐⇒ g = 1,

using the fact that (gb0) and (b0) are reduced words. Hence, ϕ is an embedding.
Since the action of Ĝ on X̂ is transitive by Lemma 5.3, we have

X̂ = {[x]b : [x] ∈ Ĝ
}
,

and the metric d̂ on X̂ is given by

d̂([x]b, [y]b) = d̂(b, [x]−1[y]b) = L([x]−1[y]),
as L = Lb. Define μ: X −→ X̂ by μ(gbi ) := [(gbi )]b. Then

d̂(μ(gbi ), μ(hb j )) = L([(gbi )]−1[(hb j )])
= L([(b0, i, g−1b0)][(hb j )])
= L([(b0, i, g−1b0, 0, hb j )])
= L([(b0, i, g−1hb j )])
= d(bi , g−1hb j ) (whether or not (b0, i, g−1hb j ) is reduced)

= d(gbi , hb j ),

so μ is an isometry. Finally, μ is G-equivariant as

μ(hgbi ) = [(hgbi )]b = [(hb0)][(gbi )]b = [(hb0)]μ(gbi ) = ϕ(h)μ(gbi ).

This completes the proof of the theorem.

A question arising from the results of [7] is the following. Can a group with a Lyndon
length function L always be embedded in a length-preserving way into a group with a regular
Lyndon length function? With an obvious necessary restriction, Theorem 5.4 provides an
affirmative answer to this question in the case when L is free.

COROLLARY 5.5. Let G be a group endowed with a free length function L : G → �

satisfying c(g, h) ∈ � for all g, h ∈ G. Then G can be embedded in a length-preserving
way into a group with a free, regular length function.

Proof. By Part (i) of Theorem 1.1 and Lemma 1.2, our hypotheses guarantee existence of
a �-tree X = (X, d) on which G acts freely and without inversions, and such that L = Lx0

for some point x0 ∈ X . By Theorem 5.4, G can be embedded into a group Ĝ acting freely,
without inversions, and transitively on a �-tree X̂. Furthermore, X embeds by means of a
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G-equivariant isometry μ into X̂; in particular, the group embedding is length-preserving
with respect to the length function L̂ = Lμ(x0) on Ĝ, the latter being strongly regular by
Lemma 5.2, and satisfying

c(ĝ, ĥ) = (ĝμ(x0) · ĥμ(x0))μ(x0) ∈ �

for all ĝ, ĥ ∈ Ĝ by Lemma 1.6 in [2, Chapter 2]. According to the remark preceding Lemma
5.3, L̂ is regular, and it is free by Lemma 1.2, whence the result.

6. Some remarks concerning the �-tree X̂

We shall prove one general result about the structure of X̂, by calculating the degree of
its points. Recall that, if X = (X, d) is a �-tree and v ∈ X , then the set of directions at v is
the quotient of the set of segments {[v, x] | x ∈ X, x � v} by the equivalence relation ≡
defined by

[v, x] ≡ [v, y] ⇐⇒ [v, x] � [v, y]� {v} ⇐⇒ (x · y)v > 0

(cf [2, Chapter 2], after Lemma 1.7). The degree of v, denoted by degX(v), is the cardinality
of the set of directions at v. (Degree is also called valency or index of ramification in the
literature.) We denote the equivalence class containing [v, x] by 〈v, x〉.

PROPOSITION 6.1. In Theorem 5.4, the degree of every point of X̂ is
∑

i∈I degX(bi ).

Proof. Since Ĝ acts transitively, it is enough to show that degX̂(b) = ∑
i∈I degX(bi). To

do this it suffices to define a bijective map

ϕ :
∐
i∈I

Di −→ D,

where Di is the set of directions at bi in X, and D is the set of directions at b in X̂. We set

ϕ(〈bi , x〉) = 〈b, gb〉,
where g = [(b0, i, x)] ∈ Ĝ, for x ∈ X , x � bi . (Note that (b0, i, x) is reduced unless i = 0,
when the reduced form of g is [(x)].)

We need to show ϕ is well-defined and one-to-one. If g, h ∈ Ĝ, then, as noted in the
introduction,

(gb · hb)b = c(g, h).

Suppose g = [(b0, i, x)] and h = [(b0, j, y)]. If i � j , it follows from Lemma 4.2 and
the observation that (z · b0)b0 = 0 for any z ∈ X that c(g, h) = 0. (There are several
cases, depending on whether i , j are equal to zero or not.) If i = j , then Lemma 4.2 gives
c(g, h) = (x · y)bi (again there are several cases). This shows that ϕ is indeed well-defined
and one-to-one, and it remains to show that it is onto.

Since Ĝ acts transitively, a direction in D has the form 〈b, gb〉, where g ∈ Ĝ, g � 1, say
g = [(x0, i1, x1, . . . , in, xn)] in reduced form. Suppose x0 = hb j , where h ∈ G.

If x0 � b0, then 〈b, gb〉 = ϕ(〈b0, x0〉) since ϕ(〈b0, x0〉) = 〈b, [x0]b〉 and, by
Lemma 4.2,

c([x0], g) = (x0 · x0)b0 = d(b0, x0) > 0.
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If x0 = b0, then n � 1 since g � 1, and x1 � bi1 since the expression for g is reduced.
Hence 〈b, gb〉 = ϕ(〈bi1, x1〉), because ϕ(〈bi1, x1〉) = 〈b, [b0, i1, x1]b〉 and, by Lemma 4.2,

c([(b0, i1, x1)], g) = L([b0]) + (x1 · x1)bi1
= d(bi1, x1) > 0,

because (b0, i1, x1) = (x0, i1, x1) is reduced. This completes the proof.

If we take X to be an arbitrary �-tree and G to be the trivial group in Theorem 5.4,
we obtain the result that any �-tree can be embedded in a metrically homogeneous �-tree.
However, by Proposition 6.1, the degree of the points in X̂ will, in many cases, exceed
the degree of any point in X. Thus, our construction will not yield Theorem 2.3 in [6] for
R-trees. Moreover, the R-trees Tα constructed there are complete, and by contrast we have
the following result.

PROPOSITION 6.2. In Theorem 5.4, if � = R and X has more than one G-orbit, then X̂
is not complete as a metric space.

Proof. Define a sequence (gn)n�0 of elements of Ĝ recursively as follows. Put g0 =
[(b0)]; if gn has been defined and gn = [(x0, i1, . . . , in, xn)] in reduced form, and xn is in
the G-orbit of b j , choose in+1 ∈ I such that in+1 � j , and choose xn+1 ∈ X such that
0 < d(bin+1, xn+1) < 1/(n + 1)2, then put

gn+1 = [(x0, i1, . . . , in, xn, in+1, xn+1)],
which is in reduced form.

Then for n > m,

d̂(gmb, gnb) = L((g−1
m gn) =

n∑
r=m+1

d(bir , xr ) <
1

(m + 1)2
+ · · · + 1

n2
,

hence (gnb)n�0 is a Cauchy sequence in X̂.
Suppose (gnb)n�0 converges; since the action of Ĝ is transitive, it converges to gb for

some g ∈ Ĝ, say g = [(y0, j1, . . . , jm, ym)] in reduced form. Let k be maximal subject to

(x0, i1, x1, . . . , ik) = (y0, j1, y1, . . . , jk)

and apply Lemma 4.2 to the reduced words for gn and g, where n > m. We obtain

d̂(gnb, gb) = L(g−1
n g) = L(gn) + L(g) − 2c(gn, g)

=
m∑

r=k

d(b jr , yr ) +
n∑

r=k

d(bir , xr ) − 2(xk · yk)bik

� d(b jk , yk) + d(bik , xk) − 2(xk · yk)bik
+ d(bim+1, xm+1)

= d(xk, yk) + d(bim+1, xm+1)

� d(bim+1, xm+1) > 0,

for all n > m. This contradicts gnb −→ gb as n −→ ∞, hence (gnb)n�0 is a Cauchy
sequence which does not converge, as required.

If, in Theorem 5.4, G acts transitively on X, then G −→ Ĝ, given by g �→ [(gb0)] is
a group isomorphism, and X −→ X̂, given by gb0 �→ [(gb0)]b is a metric isomorphism.
Thus, if � = R, in this case X̂ is complete if, and only if, X is.



Embedding theorems for tree-free groups 15

7. The group RF(G) and its associated R-tree XG

In recent joint work, the present authors have introduced a new construction, which as-
sociates to each (discrete) group G a group RF(G) together with a canonical R-tree action
RF(G) → Isom(XG); cf. [3]. To some extent, in particular when working with hyperbolic
elements, these groups RF(G) appear as continuous analogues of free groups, whereas in
other respects they behave more like amalgamated products, while in fact being neither. For
the benefit of the reader, and since [3] has not yet appeared in print, we briefly review here
the definition of the group RF(G) and its associated R-tree XG .

Given a group G, let F(G) be the set of all functions f : [0, α] → G defined on some
closed real interval [0, α] with α � 0. The real number α will be called the length of the
function f , denoted L( f ). The formal inverse f −1 of an element f ∈ F(G) is the function
defined on the same interval [0, α] as f by

f −1(ξ) = f (α − ξ)−1, 0 � ξ � α.

We have ( f −1)−1 = f . A function f ∈ F(G) is reduced, if to every interior point ξ0 in the
domain of f with f (ξ0) = 1G and every real number ε satisfying 0 < ε � min{α − ξ0, ξ0}
there exists δ such that 0 < δ � ε and f (ξ0 + δ) � ( f (ξ0 − δ))−1. Clearly, every element
in F(G) of length 0 is reduced; and if f is reduced, then so is its formal inverse f −1. We
denote by RF(G) the set of all reduced functions in F(G).

We now proceed to define a multiplication on F(G). Given f, g ∈ F(G) of lengths α, β

respectively, let

ε0 = ε0( f, g) :=
⎧⎨
⎩

sup E( f, g), f (α) = (
g(0)

)−1

0, otherwise,

where

E( f, g) :=
{
ε ∈ [0, min{α, β}] : f (α − δ) = (

g(δ)
)−1

for all δ ∈ [0, ε]
}
,

and define f g on the interval [0, α + β − 2ε0] by

( f g)(ξ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (ξ), 0 � ξ < α − ε0

f (α − ε0)g(ε0), ξ = α − ε0

g(ξ − α + 2ε0), α − ε0 < ξ � α + β − 2ε0.

One can show that the product of two reduced functions is again reduced, so that the above
multiplication restricts to a binary operation on RF(G). Denote by 1G the function of length
0 with 1G(0) = 1G . It is easy to see that, for f ∈ F(G),

1G f = f = f 1G

and

f f −1 = 1G = f −1 f,

which shows in particular that 1G is a neutral element for RF(G) with the above multiplic-
ation, and that the formal inverse f −1 of an element f ∈ RF(G) is its inverse. Moreover,
one can show that our multiplication is associative on RF(G), although the proof of this, as
given in [3, Chapter 1], is surprisingly hard; hence, RF(G) when equipped with the multi-
plication defined above is a group. We note that the group G we started from is embedded



16 I. M. CHISWELL AND T. W. MÜLLER

into RF(G) as the subgroup

G0 = {
f ∈ RF(G) : L( f ) = 0

}
.

Further, it is not hard to see that the map L: RF(G) → R associating with each reduced
function f the length L( f ) of its domain is a (real) Lyndon length function. This yields (by
Theorem 1.1(ii)) the existence of an R-tree XG = (XG, dG) on which RF(G) acts, with a
canonical basepoint x0 such that L = Lx0 . In particular, the stabilizer stabRF(G)(x0) of the
point x0 under the action of RF(G) is given by

stabRF(G)(x0) = G0;
in particular, the action of RF(G) on XG is not free, whenever G is non-trivial. One can
show that XG is metrically complete, and that the action of RF(G) on XG is transitive (see
[3, Sections 2.2 and 2.4]).

8. Universality of RF-groups and their associated R-trees

Let G be a group acting freely and transitively on an R-tree X = (X, d), and choose a
basepoint y0 ∈ X . Following [1], define an equivalence relation ≈ on G − {1G} by

g ≈ h : ⇐⇒ c(g−1, h−1) = 1
2 {L y0(g−1) + L y0(h

−1) − L y0(gh−1)} > 0

(transitivity of ≈ follows from the fact that (c(g, h), c(h, k), c(g, k)) is an isosceles triple
for all g, h, k ∈ G; see the definition after [2, Chapter 1, Lemma 2.6]). Let sg denote the
equivalence class of g, set s1G := {1G}, and let S = {sg : g ∈ G}. Endow S with a group
structure (which is arbitrary and need not be related to the structure of G), and denote the
resulting group by H .

In what follows, we shall use some notation concerning �-trees which can be found in
[2, Section 1, Chapter 2].

For g ∈ G, we define Fg : [0, L y0(g)] −→ H as follows. Let ξ be such that 0 � ξ �
L y0(g); the point in the segment [y0, gy0] at distance ξ from y0 has the form gξ y0 for some
unique gξ ∈ G (since G acts freely and transitively), and we let

Fg(ξ) := s−1
gξ

sg−1gξ
, (g ∈ G, ξ ∈ [0, L y0(g)]).

By definition, Fg ∈ F(H) and L(Fg) = L y0(g).

LEMMA 8.1. For each g ∈ G, we have Fg ∈ RF(H).

Proof. This is clear if g = 1G , so we may assume that g � 1G . It is enough to show that
Fg(ξ) � 1H for every ξ ∈ [0, L y0(g)]. Fix such a value of ξ , and let h = gξ ; we have to
show that sh � sg−1h . This is clear if h = 1G (i.e., if ξ = 0), so we may assume that h � 1G .
Now, the desired assertion is clear if h = g (i.e., if ξ = L y0(g)), so we may assume further
that h � g. Since hy0 ∈ [y0, gy0], we have y0 ∈ [h−1 y0, h−1gy0], so

d(h−1 y0, y0) + d(y0, h−1gy0) = d(h−1 y0, h−1gy0) = d(y0, gy0);
that is,

L y0(h
−1) + L y0(h

−1g) = L y0(g).

It follows that c(h−1, h−1g) = 0, so h �≈ g−1h, as required.

LEMMA 8.2. Let g, h ∈ G. For 0 � ξ < c(g, h), we have Fg(ξ) = Fh(ξ); but
Fg(c(g, h))� Fh(c(g, h)), unless g = h.
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Proof. In the notation of [2, Chapter 2, Lemma 1.2], let Y (y0, gy0, hy0) = ky0, where
k ∈ G, and suppose that 0 � ξ � c(g, h). Then

[y0, gy0] = [y0, gξ y0, ky0, gy0],
hence

[g−1
ξ y0, g−1

ξ gy0] = [g−1
ξ y0, y0, g−1

ξ ky0, g−1
ξ gy0].

Therefore

d(y0, g−1
ξ gy0) = d(y0, g−1

ξ ky0) + d(g−1
ξ ky0, g−1

ξ gy0)

= d(y0, g−1
ξ ky0) + d(y0, k−1gy0);

that is,

L y0(g−1
ξ g) = L y0(g−1

ξ k) + L y0(k
−1g),

and, consequently,

c(g−1
ξ k, g−1

ξ g) = 1

2

{
L y0(g−1

ξ k) + L y0(g−1
ξ g) − L y0(k

−1g)
} = L y0(g−1

ξ k).

Also, gξ y0 = hξ y0, both being the point on [y0, ky0] at distance ξ from y0, so gξ = hξ .
If ξ < c(g, h), then gξ y0 � ky0, so gξ � k, and hence

c(g−1
ξ k, g−1

ξ g) = L y0(g−1
ξ k) > 0,

so sg−1gξ
= sk−1gξ

. Symmetrically, interchanging g and h, we find that sh−1hξ
= sk−1hξ

; and,
since gξ = hξ , it follows that sg−1gξ

= sh−1hξ
. Hence, we find that

Fg(ξ) = s−1
gξ

sg−1gξ
= s−1

hξ
sh−1hξ

= Fh(ξ), 0 � ξ < c(g, h),

as claimed.
If ξ = c(g, h), then gξ = k = hξ , and we have to show that, if g � h, then sg−1k � sh−1k .

Since g−1k, h−1k cannot both be equal to 1G , it is enough to show that c(k−1g, k−1h) = 0,
which in turn is equivalent to the assertion that

L y0(g−1h) = L y0(k
−1g) + L y0(k

−1h). (8·1)

Now [gy0, hy0] = [gy0, ky0, hy0], implying [k−1gy0, k−1hy0] = [k−1gy0, y0, k−1hy0].
It follows that

d(y0, g−1hy0) = d(k−1gy0, k−1hy0) = d(k−1gy0, y0) + d(y0, k−1hy0),

whence (8·1).

LEMMA 8.3. For each g ∈ G, we have Fg−1 = F−1
g .

Proof. We note that

L(Fg−1) = L y0(g) = L(F−1
g ).

Further, since, for 0 � ξ � L y0(g), [y0, gy0] = [y0, gξ y0, gy0] by definition of gξ , we have

[g−1 y0, y0] = [g−1 y0, g−1gξ y0, y0]
as well as d(g−1 y0, g−1gξ y0) = d(y0, gξ y0) = ξ.

Hence,

d(y0, g−1gξ y0) = d(y0, g−1 y0) − ξ = L y0(g) − ξ,
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so that g−1gξ y0 is the unique point of the segment [y0, g−1 y0] at distance L y0(g) − ξ from
y0. By definition,

Fg−1(L(Fg) − ξ) = Fg−1(L y0(g) − ξ) = sg−1gξ
s−1

gξ
= (Fg(ξ))−1,

and the lemma follows.

COROLLARY 8.4. For all g, h ∈ G, we have ε0(Fg, Fh) = c(g−1, h).

Proof. If g−1 = h, then c(g−1, h) = L y0(g) = L y0(h). On the other hand, by Lemma 8.3,

Fg(L(Fg) − ξ)Fh(ξ) = Fg(L(Fg) − ξ)(Fg(L(Fg) − ξ))−1 = 1G, 0 � ξ � L(Fg);
hence,

ε0(Fg, Fh) = sup E(Fg, Fh) = L(Fg) = L y0(g),

as desired.
Now assume that g−1 � h. By Lemma 8.2, we have

Fg−1(ξ) = Fh(ξ), 0 � ξ < c(g−1, h),

Fg−1(ξ)� Fh(ξ), ξ = c(g−1, h).

By Lemma 8.3, this implies that

Fg(L(Fg) − ξ)Fh(ξ) = 1G, 0 � ξ < c(g−1, h),

Fg(L(Fg) − ξ)Fh(ξ)� 1G, ξ = c(g−1, h),

and the corollary follows.

LEMMA 8.5. The mapping ψ: G −→ RF(H) given by g �→ Fg is an injective group
homomorphism.

Proof. By Corollary 8.4, we have c(g−1, h) = ε0(Fg, Fh), and ψ is length preserving by
the definition of Fg, so that L y0(g) = L(Fg) and, by definition of the function c,

L(Fgh) = L y0(gh) = L y0(g) + L y0(h) − 2c(g−1, h)

= L(Fg) + L(Fh) − 2ε0(Fg, Fh) = L(Fg Fh).

Now, let g, h ∈ G, and let Y (y0, g−1 y0, hy0) = ky0. Then c(g−1, h) = d(y0, ky0) = L y0(k).

Moreover, we have gky0 = Y (gy0, y0, ghy0), so

c(g, gh) = d(y0, gky0) = d(g−1 y0, ky0) = d(g−1 y0, y0)−d(y0, ky0) = L y0(g)−c(g−1, h),

since ky0 ∈ [y0, g−1 y0]. This is illustrated by the following picture, and its translate by g.
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By Lemma 8.2,

Fgh(ξ) = Fg(ξ), 0 � ξ < L y0(g) − c(g−1, h). (8·2)

Next, suppose that ξ = L y0(g) − c(g−1, h), so that the point at distance ξ from y0 on
[y0, ghy0] and on [y0, gy0] is gky0. Thus, (gh)ξ = gk = gξ , and so

Fgh(ξ) = s−1
gk sh−1k

as well as Fg(ξ) = s−1
gk sk .

Also, ky0 is the point on [y0, hy0] at distance c(g−1, h) from y0, thus

Fh(c(g−1, h)) = s−1
k sh−1k .

From the last three equations, we conclude that

Fg(L y0(g) − c(g−1, h)) Fh(c(g−1, h)) = Fgh(L y0(g) − c(g−1, h)). (8·3)

Finally, suppose that L y0(g) − c(g−1, h) < ξ � L y0(gh). Then the point p at distance ξ

from y0 on [y0, ghy0] is at distance

ξ − d(y0, gky0) = ξ − L y0(g) + c(g−1, h) > 0

from gky0. Further, [gy0, ghy0] = [gy0, gky0, p, ghy0], so [y0, hy0] = [y0, ky0, g−1 p, hy0],
and

d(y0, g−1 p) = d(y0, ky0) + d(ky0, g−1 p)

= c(g−1, h) + d(gky0, p)

= ξ − L y0(g) + 2c(g−1, h).

Thus, setting ξ ′ := ξ − L y0(g) + 2c(g−1, h), we have g−1 p = hξ ′ y0, hence p =
ghξ ′ y0, and so (gh)ξ = ghξ ′ . It follows that Fgh(ξ) = s−1

ghξ ′ sh−1hξ ′ . It is easy to see that

ky0 = Y (y0, hξ ′ y0, g−1 y0), so

h−1
ξ ′ ky0 = Y (h−1

ξ ′ y0, y0, h−1
ξ ′ g−1 y0),

and hence c(h−1
ξ ′ , h−1

ξ ′ g−1) = d(y0, h−1
ξ ′ ky0) = d(p, gky0) > 0. Since clearly hξ ′, ghξ ′ � 1G ,

it follows that sghξ ′ = shξ ′ , so Fh(ξ
′) = s−1

hξ ′ sh−1hξ ′ = Fgh(ξ). Summarizing, we have shown
that

Fgh(ξ) = Fh(ξ − L y0(g) + 2c(g−1, h)), L y0(g) − c(g−1, h) < ξ � L y0(gh). (8·4)

Combining Equations (8·2), (8·3) and (8·4), we obtain, abbreviating ε0(Fg, Fh) to ε0,

Fgh(ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Fg(ξ), 0 � ξ < L(Fg) − ε0

Fg(L(Fg) − ε0) Fh(ε0), ξ = L(Fg) − ε0

Fh(ξ − L(Fg) + 2ε0), L(Fg) − ε0 < ξ � L(Fgh)

= (Fg Fh)(ξ),

for 0 � ξ � L(Fgh). Thus Fgh = Fg Fh , showing that ψ is a group homomorphism. Also,
since ψ is length preserving, it has trivial kernel, so is injective.

We are now in a position to establish our second main result.
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THEOREM 8.6. Let G be a group acting freely and transitively on an R-tree X = (X, d).
Then there exist a group H, an injective group homomorphism ψ: G → RF(H), and a
G-equivariant isometry ν: X → XH .

Proof. Given a basepoint y0 ∈ X , we have already constructed a group H and an injective
homomorphism ψ: G → RF(H). Define a map ν: X → XH by

ν(gy0) := ψ(g)x0 = Fgx0,

making use of the fact that the action of G is free and transitive. Then we have, for g, h ∈ G,

d(ν(gy0), ν(hy0)) = d(Fgx0, Fh x0) = d(x0, F−1
g Fh x0)

= L(F−1
g Fh) = L(Fg−1h) = L y0(g−1h)

= d(gy0, hy0);
that is, ν is an isometry. Also, ν is G-equivariant, since

ν(hgy0) = ψ(hg)x0 = ψ(h)ψ(g)x0 = ψ(h)ν(gy0),

and the proof of the theorem is complete.

Finally, combining Theorems 5.4 and 8.6, we obtain the following important result.

THEOREM 8.7. Let G be a group acting freely on an R-tree X = (X, d). Then there exist
a group H, a group embedding χ: G → RF(H), and a G-equivariant isometry λ: X → XH

containing the canonical basepoint x0 in its image.

It would be interesting to combine the work of Morgan and Shalen on free R-tree actions
of surface groups with the main results of this paper to explicitly exhibit surface groups
embedded into RF-groups; see [8], [9] and also [11].
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