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Abstract. A method of constructing orders on free products of groups is

given, based on work of Botto Mura and Rhemtulla, and of Holland and
Medvedev.

1. Introduction

In the book of Botto Mura and Rhemtulla [5, Theorem 2.3.1], there is an
argument, attributed to P. Hall, to prove the theorem of Vinogradov [6], that
a free product of ordered groups can be ordered. It is pointed out in Holland
and Medvedev [3] that the argument as given there does not work. However,
the argument does show that, given an order on a free product, more generally
a sequence of orders, a new order can be constructed. The details were carried
out, in the context of free groups, in [3], with some interesting consequences. In
fact, Holland and Medvedev went further, carrying out their construction using
only partial orders, and by iterating, they were able to construct orders on free
groups without an initial sequence of total orders.

One of several methods of ordering free groups is that given by Bergman [1].
This was adapted for free products of ordered groups in [2]. Given a family of
ordered groups and a total order on the index set, this gives a canonical way of
ordering the free product of the family. This was expressed in [2] by defining an
appropriate category and a functor from this category to the category of ordered
groups and order-preserving homomorphisms, which will be denoted by O.

The method of Bergman is formally similar, although different from the ar-
gument in [5]. Here a version of the construction in [3] will be carried out in
the context of free products, and in the style of [2]. This entails defining a cate-
gory whose objects are unfortunately rather elaborate, and in general the basic
construction does not appear to define even a partial order on a free product of
groups. However, it does work to define a total order when all the initial orders
involved are total orders. This leads to sufficient conditions for the procedure to

2010 Mathematics Subject Classification. Primary 20F60; Secondary 20E06, 06F15.

Key words and phrases. free product, partially ordered group, ordered group.

1
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define a partial order, and this result is enough for the construction of orders on
free products without an initial sequence of total orders. The basic construction
is carried out in the next section, and a normal form, analogous to that in [3],
is considered in the following section. Then a version of the iterative procedure
of [3] is carried out in Section 4, to construct total orders on a free product of
ordered groups, given a total order on the index set.

To fix terminology, some basic definitions will be recalled. A partial right
order on a group G is a partial order ≤ on G such that, for all x, y and z ∈ G,
x ≤ y implies xz ≤ yz. Similarly, a partial left order on a group G is a partial
order ≤ on G such that, for all x, y and z ∈ G, x ≤ y implies zx ≤ zy, and a
partial order that satisfies both of these conditions is called a two-sided partial
order, or just a partial order on G. If the order is total, the word ‘partial’ is
omitted (or sometimes replaced by ‘total’ for emphasis). Thus an order on a
group G is a total order satisfying both conditions. An ordered group is a group
G together with an order on G.

Given a partial right order ≤ on a group G, the strictly positive cone is the
set P := {x ∈ G | 1 < x}. It has the properties

P P ⊂ P, P ∩ P−1 = ∅.

Conversely, given a subset of G satisfying these conditions, a partial right order
can be defined on G by: x ≤ y if and only if x = y or yx−1 ∈ P , and P is
the strictly positive cone for this partial right order. Further, it is a (two-sided)
partial order if and only if x−1Px ⊆ P for all x ∈ G, and it is a total order if and
only if G \ {1G} = P ∪ P−1. In particular, the strictly positive cone of a partial
order on a group G is a normal subsemigroup of G. Note that the trivial partial
order (x ≤ y if and only if x = y) gives a partial order on any group G, whose
strictly positive cone is empty. In what follows, the term “strictly positive cone”
will be abbreviated to “positive cone”.

2. New Orders for Old

As indicated in the introduction, a category F will be defined, and a construc-
tion given which applies to objects of F, which in certain circumstances will lead
to an order or partial order on a free product of groups.

The objects of F are triples G = (G, {Gλ | λ ∈ Λ} , {≤i| i ∈ N}) where G is
a group, {Gλ | λ ∈ Λ} is a family of ordered subgroups of G, ≤0 is a partial
order on the set Λ, ≤i is a partial order on the group G, for all i ∈ N>0,
and G = ∗λ∈ΛGλ (that is, G is the free product of its family of subgroups
{Gλ | λ ∈ Λ}). Note that the orders ≤i can be arbitrary, in particular, the
restriction of ≤i to Gλ, for i > 0, λ ∈ Λ, need not be related in any way to the
given order on Gλ. It should also be emphasised that the given order on Gλ is
a total order.
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The set Λ is called the index set of G and Gλ is called a free factor of G. Also,
G is denoted by 〈G〉. The strict order corresponding to ≤i will be denoted by
<i.

Let

G = (G, {Gλ | λ ∈ Λ} , {≤i| i ∈ N}) and H = (H, {Hµ | µ ∈M} , {�i| i ∈ N})

be objects of F. An F-morphism from G to H is a pair

f = (ϕ, {fλ | λ ∈ Λ})

where ϕ : Λ→M is an order isomorphism, and for each λ ∈ Λ, fλ : Gλ → Hλϕ

is an isomorphism of ordered groups, such that for all i ∈ N>0 and g1, g2 ∈ G,
g1 ≤i g2 if and only if g1f̄ �i g2f̄, where f̄ is the unique extension of the fλ to
an isomorphism G→ H.

If g = (ψ, {gµ | µ ∈M}) : H → K is a morphism, fg is defined to be the
morphism (ϕψ, {fλgλϕ | λ ∈ Λ}), and the identity morphism 1G is defined to be
(idΛ, {idGλ | λ ∈ Λ}). Clearly this makes F into a category.

The first aim is to define a subset PG of 〈G〉, which in certain circumstances
will be the positive cone for a partial or total order on 〈G〉. To do this, an
auxiliary construction is necessary. Let ν ∈ Λ, and define Λν := ∗ν<0λGλ.
Then set

L = 〈a−1Gνa | a ∈ Λν〉.

Then L = ∗a∈Λν
a−1Gνa. To see this, if u = a−1

1 g1a1 . . . a
−1
n gnan, where

aj ∈ Λν , gj ∈ Gν \ {1}, for 1 ≤ j ≤ n and aj 6= aj+1 for 1 ≤ j < n, then viewing
this as a word in

⋃
λ∈ΛGλ and cancelling / consolidating to obtain a reduced

word, the letters gj (1 ≤ j ≤ n), the initial word a−1
1 and the final word an

remain. This follows by induction on n. Thus u 6= 1, hence L is a free product
as claimed.

Define an order on a−1Gνa by: a−1ga < a−1ha if and only if g < h in Gν .
Then let ≤′0 be the restriction of ≤1 to Λν . This gives a new object in F, namely

Gν := (L, {Gν,a | a ∈ Λν} , {≤′i| i ∈ N})

where, for a ∈ Λν , Gν,a = a−1Gνa, and for i ∈ N>0, ≤′i is the restriction to L of
≤i+1. Thus L = 〈Gν〉.

Remark 2.1. Strictly, the index set is {ν} × Λν , ordered via the ordering on
Λν , but in what follows it will cause no confusion to view Λν as the index set.

Take 1 6= g ∈ G and write g as a reduced word relative to the decomposition

∗λ∈ΛGλ, say g = g1 . . . gk, where gj ∈ Gλj . The G-length of g is defined to be
k.
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If the set {λj | 1 ≤ j ≤ k} has a least element, it will be denoted by gmG .
Before proceeding, here are some properties of the function mG which will be
used later.

Remark 2.2. (1) If ν = hmG and g ∈ ∗ν<0λ
Gλ = Λν , then (gh)mG = ν.

(2) If 1 6= h ∈ 〈Gν〉, then hmG = ν.

The proofs are easy and left to the reader ((2) follows from the discussion
above showing that L is a free product). Suppose gmG is defined, and denote
it by ν. Rewrite g = g1 . . . gk as g = a0b1a1 . . . bnan, where aj ∈ Gν , and
bj ∈ ∗ν<0λ

Gλ = Λν , which in turn can be rewritten as

g = (b1 . . . bn)

n∏
j=0

(bj+1 . . . bn)−1aj(bj+1 . . . bn) = g′g∗ (2.1)

where g′ = b1 . . . bn ∈ Λν and g∗ ∈ 〈Gν〉. This decomposition is unique: if
g = h′h∗, where h′ ∈ Λν and h∗ ∈ 〈Gν〉, then g p = g′ = h′, where p : G → Λν
is the projection map, (which is trivial on Gλ for λ ≤ ν, and the identity on Gλ
for λ > ν). Hence also g∗ = h∗.

Remark 2.3. If g 6= 1 then g∗ 6= 1, and if g 6∈ Gν then the Gν-length of g∗ is
less than the G-length of g.

Now define a subset XG of 〈G〉 recursively as follows.

(1) If gmG is not defined, then g 6∈ XG .
(2) If g ∈ Gν then g ∈ XG if and only if g > 1 in the given order on Gν .
(3) If g′ 6= 1 (so g 6∈ Gν), then g′ has shorter G-length than g, and g ∈ XG if

and only if g′ ∈ XG .
(4) If g 6∈ Gν and g′ = 1, then g∗ has Gν-length shorter that the G-length of g,

and g ∈ XG if and only if g∗ ∈ XGν .

Define PG to be the normal subsemigroup of G generated by XG .

Note that, if gmG is defined, then

g−1mG = gmG , g
−1 = (g′)−1(g′(g∗)−1(g′)−1)

and (g′)−1 ∈ Λν , g
′(g∗)−1(g′)−1 ∈ 〈Gν〉, where ν = gmG .

}
(2.2)

It follows easily by induction on length that for all g ∈ G, at most one of g,
g−1 ∈ XG , that is, XG ∩ X−1

G = ∅. However, there is no obvious reason for

PG ∩P−1
G = ∅ to be true. Before considering situations where this is true, it will

be shown that the sets XG are preserved by morphisms.

Lemma 2.1. Let

G = (G, {Gλ | λ ∈ Λ} , {≤i| i ∈ N}), H = (H, {Hµ | µ ∈M} , {�i| i ∈ N})
be objects of F, and let f = (ϕ, {fλ | λ ∈ Λ}) be a morphism from G to H. Then
XG f̄ ⊆ XH; consequently, PG f̄ ⊆ PH.
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Proof. Firstly, for ν ∈ Λ, f induces a morphism fν = (ψν , {fa | a ∈ Λν}) from Gν
to Hνϕ, as follows. For a ∈ Λν , define aψν = af̄. Note that af̄ ∈ ∗νϕ≺ 0µ

Hµ =
Mνϕ, because ϕ is order-preserving. Also, ψν : Λν → Mνϕ maps Λν bijectively
onto Mνϕ, and by the conditions for a morphism, it is order-preserving.

For a ∈ Λν , the mapping fa : a−1Gνa → (af̄)−1Hνϕ(af̄) is defined by
a−1ga 7→ (af̄)−1(gfν)(af̄). This is clearly an isomorphism of ordered groups,
as fν is order-preserving.

Note that fa is f̄ restricted to a−1Gνa, and it follows that f̄ν is f̄ restricted
to 〈Gν〉. Thus, for g1, g2 ∈ 〈Gν〉 and i ∈ N>0,

g1 ≤′i g2 ⇒ g1 ≤i+1 g2 ⇒ g1f̄ �i+1 g2f̄⇒ g1f̄ν �′i g2f̄ν ,

hence fν is indeed a morphism of F.
To prove the lemma, it will be shown, by induction on n, that for all n and any

morphism f = (ϕ, {fλ | λ ∈ Λ}) of F, say from G = (G, {Gλ | λ ∈ Λ} , {≤i| i ∈ N})
to H = (H, {Hµ | µ ∈M} , {�i| i ∈ N}), if g ∈ 〈G〉, g 6= 1, has G-length n, then
g ∈ XG implies gf̄ ∈ XH.

Assume then, that g has G-length n and g ∈ XG . Write g = g′g∗ as in the
recursive definition, so g′ ∈ ∗ν<0λ

Gλ, g∗ ∈ 〈Gν〉, where ν = gmG . Then

h := gf̄ = (g′f̄) (g∗f̄)

= (g′f̄) (g∗f̄ν)

and g′f̄ ∈ ∗νϕ≺ 0µ
Hµ, g∗f̄ν ∈ 〈Hνϕ〉. Let g = g1 . . . gn be the expression of g as a

reduced word relative to the decomposition∗λ∈ΛGλ, where gk ∈ Gλk . Then h =
h1 . . . hn is the expression of h as a reduced word relative to the decomposition

∗µ∈M Hµ, where hk = gkfλk ∈ Hλkϕ. Since ϕ is order-preserving, it follows that

hmH = νϕ. Therefore, h′ = g′f̄ and h∗ = g∗f̄ν . There are three possibilities.

(1) If g ∈ Gν then g > 1 in Gν , and h = gfν , hence h > 1 in Hνϕ since fν is
order-preserving, and by definition h ∈ XH.

(2) If g′ 6= 1, then g′ has shorter G-length than g, and g′ ∈ XG , so h′ ∈ XH by
induction, hence h ∈ XH by definition.

(3) If g′ = 1 and g 6∈ Gν , then h′ = 1 and g∗ has shorter Gν-length than the
G-length of g so by induction and the definition of XG , XH,

g ∈ XG ⇒ g∗ ∈ XGν ⇒ h∗ = g∗f̄ν ∈ XHνϕ ⇒ h ∈ XH.

This completes the proof that XG f̄ ⊆ XH, and it follows that PG f̄ ⊆ PH since f̄
is a group homomorphism. �

Definition. Denote by F0 the full subcategory of F whose objects are the objects
of F of the form

G = (G, {Gλ | λ ∈ Λ} , {≤i| i ∈ N})
where ≤i is a total order, for all i ∈ N.
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Next it will be shown that, for objects G of F0, the construction works well
and PG = XG is the positive cone for an order on 〈G〉. This is the situation
considered in [5], indeed the proof of the next two lemmas is essentially the
argument for [5, Theorem 2.3.1], although as presented there the argument does
not work.

If G is an object of F0, then it is easily seen by induction on G-length, using
equations 2.2, that for all g ∈ G \ {1G} (where G = 〈G〉), either g ∈ XG or
g−1 ∈ XG ; that is, G \ {1G} = XG ∪X−1

G .

Lemma 2.2. Let G be an object of F0. If g, h ∈ XG then gh ∈ XG.

Proof. Let ν = gmG and κ = hmG . Use induction on the sum of the G-lengths
of g and h.

Case 1. ν < κ. Then gh = g′h(h−1g∗h), so (gh)′ = g′h, and g′h ∈ XG , either
because g′ = 1 or because g′ ∈ XG and g′ has smaller G-length than g and the
induction hypothesis applies.
Case 2. κ < ν. Similarly gh = gh′ and either h′ = 1 or the induction hypothesis
applies.
Case 3. κ = ν. Then

gh = g′g∗h′h∗ = (g′h′)((h′−1g∗h′)h∗)

whence (gh)′ = g′h′. If g′ 6= 1 or h′ 6= 1 then (gh)′ ∈ XG , so gh ∈ XG . Otherwise
(gh)′ = 1 and gh = (gh)∗ = g∗h∗, and the sum of the Gν-lengths of g∗ and h∗ is
less than the sum of the G-lengths of g and h. Hence by induction, (gh)∗ ∈ XGν ,
so by definition gh ∈ XG .

This completes the proof. �

Thus if G is an object of F0, XG is the positive cone for a right order on 〈G〉.

Lemma 2.3. Let G = (G, {Gλ | λ ∈ Λ} , {≤i| i ∈ N}) be an object of F0 and let
x ∈ 〈G〉. Then x−1XGx ⊆ XG.

Proof. It will be shown that, for all G, all x ∈ 〈G〉 and all g ∈ XG of G-length n,
x−1gx ∈ XG , by induction on n. Since 〈G〉 is generated by

⋃
λ∈ΛGλ, it can be

assumed that x ∈ Gκ for some κ. Write g = g′g∗ as in the recursive definition,
so g′ ∈ ∗ν<0λ

Gλ, g∗ ∈ 〈Gν〉, where ν = gmG .

Case 1. κ < ν. Then (x−1gx)′ = g, so if g ∈ XG then by definition x−1gx ∈ XG .

Case 2. κ = ν. Then (x−1gx)′ = g′, so if g′ 6= 1 then

g ∈ XG ⇒ g′ ∈ XG ⇒ (x−1gx)′ ∈ XG ⇒ x−1gx ∈ XG .

If g′ = 1 then x−1gx = (x−1gx)∗ = x−1g∗x, x ∈ 〈Gν〉 and g = g∗ has shorter
Gν-length than the G-length of g, so by induction

g ∈ XG ⇒ g ∈ XGν ⇒ x−1gx ∈ XGν ⇒ x−1gx ∈ XG .
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Case 3. κ > ν. Then (x−1gx)′ = x−1g′x, so if g′ 6= 1, then g′ has shorter
G-length than g and the induction hypothesis applies.

Suppose g′ = 1. Then conjugation by x induces a morphism

f = (ϕ, {fa | a ∈ Λν}) : Gν → Gν ,
where aϕ = ax and yfa = x−1yx for y ∈ a−1Gνa. Note that ϕ is order-
preserving, since ≤1 is an order on G, so in particular a right order. Also, for
i > 0, ≤′i is preserved by conjugation by x, since it is obtained by restriction
from ≤i+1, which is an order on G. Hence f is indeed a morphism. 1 By Lemma
2.1,

g ∈ XG ⇒ g = g∗ ∈ XGν ⇒ x−1gx = gf̄ ∈ XGν ⇒ x−1gx ∈ XG
since x−1gx = (x−1gx)∗.

This completes the inductive proof. �

The last two lemmas establish the following.

Proposition 2.4. If G is an object of F0, then XG = PG is the positive cone for
an order on 〈G〉. �

For an object G of F0, define GQ to be 〈G〉 with the order defined by PG ,
and for a morphism f, define fQ to be f̄. It is easily checked that this defines a
functor Q : F0 → O.

In general, there seems no reason why PG should be the positive cone for even
a partial order on 〈G〉. However, this proposition can be used to show that, for
certain objects of F, PG is the positive cone for a partial order. Before stating
this result, it is convenient to define a partial order on the class of objects of F
and establish some of its properties.

Definition. Let

G = (G, {Gλ | λ ∈ Λ} , {≤i| i ∈ N}), H = (H, {Hµ | µ ∈M} , {�i| i ∈ N})
be objects of F. Then G ≤ H means that G ≤ H, Λ ⊆M , �i is an extension of
≤i, for all i ∈ N, and for λ ∈ Λ, Hλ = Gλ (as ordered group).

Clearly this defines a partial order on the class of objects of F.

Lemma 2.5. Let

G = (G, {Gλ | λ ∈ Λ} , {≤i| i ∈ N}), H = (H, {Hµ | µ ∈M} , {�i| i ∈ N})
be objects of F, and suppose G ≤ H. Then

(1) For ν ∈ Λ, Gν ≤ Hν ;
(2) XG ⊆ XH, hence PG ⊆ PH.

1It is essential that ≤i+1 is an order, not just a right order, and this is why the argument

in [5] fails.
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Proof. (1) For ν ∈ Λ,

Λν = ∗
ν<0λ

Gλ ≤ ∗
ν≺0µ

Hµ = Mν

where λ ∈ Λ, µ ∈M , and (1) follows easily.

(2) It will be shown by induction on the G-length of g that if g ∈ XG , then
g ∈ XH. If g ∈ Gν for some ν ∈ Λ, then g > 1 in Gν = Hν , hence g ∈ XH.

Otherwise, g has a decomposition as g = g′g∗, where g′ ∈ ∗ν<0λ
Gλ, g∗ ∈

〈Gν〉, and ν = gmG = gmH. Then g′ ∈ ∗ν≺ 0 µ
Hµ, and by (1), g∗ ∈ 〈Hν〉.

If g′ 6= 1 then g′ ∈ XG , and has shorter G-length than g, so by induction
g′ ∈ XH, hence g ∈ XH by definition of XH.

If g′ = 1, then g∗ ∈ XGν , and the Gν-length of g∗ is smaller than the G-length
of g, so by induction and (1), g∗ ∈ XHν , hence g ∈ XH by definition of XH.
Thus XG ⊆ XH, and it follows that PG ⊆ PH. �

Corollary 2.6. Let G = (G, {Gλ | λ ∈ Λ} , {≤i| i ∈ N}) be an object of F. Sup-
pose ≤i can be extended to a total order �i on G, for all i > 0. Then PG is the
positive cone for a partial order on G, which can be extended to an order on G.

Proof. Define

G = (G, {Gλ | λ ∈ Λ} , {�i| i ∈ N})
where �0 is an extension of ≤0 to a total order on the set Λ, so G is an object
of F0. Then G ≤ G, so PG ⊆ PG , and PG is the positive cone for an order on G

by Proposition 2.4. Hence PG ∩P−1
G ⊆ PG ∩P

−1

G = ∅, so PG is the positive cone

for a partial order on G, and this partial order is extended by the order defined
by PG . �

3. Normal Form

Given an object G of F, a normal form will be established for the elements of
〈G〉. Although the normal form will be shown to be unique, if it exists, there is
no guarantee, in general, that an element will have a normal form.

Let G = (G, {Gλ | λ ∈ Λ} , {≤i| i ∈ N}) be an object of F and let λ0 ∈ Λ.
One can form Gλ0

, with index set Λλ0
. Given λ1 ∈ Λλ0

, the construction can be
repeated, obtaining (Gλ0)λ1 with index set (Λλ0)λ1 . Continuing (and omitting
parentheses) gives an object Gλ0...λn of F with index set Λλ0...λn .

Definition. A sequence of indices arising in this way, padded with 1’s to give
an infinite sequence (λ0, . . . , λn, 1, 1, . . .) is called a G-descent sequence.

For later use, note that, by an easy induction, 〈Gλ0...λn〉 = ∗
λ∈Λλ0...λn

Gλ1...λnλ
λ0

and

Λλ0...λn = ∗
λn<nλ

G
λ1...λn−1λ
λ0

, where λ ∈ Λλ0...λn−1
. (3.1)
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(When n = 0, Λλ0...λn−1
is to be interpreted as Λ, and G

λ1...λn−1λ
λ0

as Gλ.)

Strictly (cf Remark 2.1), the index set of Gλ0...λn is {(λ0, . . . , λn)} × Λλ0...λn ,

and for λ ∈ Λλ0...λn , the free factor Gλ0...λnλ of Gλ0...λn is Gλ1...λnλ
λ0

. However,
to keep notation as simple as possible, the index set will be viewed as Λλ0...λn .

Let Gi = G with the ordering ≤i. Then a G-descent sequence is an element of
the set Λ×G1×G2× . . ., and this set can be partially ordered lexicographically,
hence the set of G-descent sequences is partially ordered by restriction. For a
G-descent sequence λ = (λ0, . . . , λn, 1, 1, . . .), define, for g ∈ Gλ0

,

gλ = gλ1...λn .

(As usual, gλ1...λn means (λ1 . . . λn)−1g(λ1 . . . λn). If g 6∈ Gλ0
, gλ is undefined.)

Remark 3.1. If λ = (λ0, λ1, . . . , λn, 1, 1, . . .) is a G-descent sequence and 1 6=
h ∈ Gλ0

, then hλmG = λ0.

Proof. Because λ1 ∈ ∗λ0<0λ
Gλ, hλ1 ∈ 〈Gλ0

〉. Also, λ1 ∈ 〈G〉, and similarly
λ2 ∈ 〈Gλ0

〉, λ3 ∈ 〈Gλ0λ1
〉 etc. Since

〈G〉 ≥ 〈Gλ0
〉 ≥ . . . ≥ 〈Gλ0...λn〉,

λ2 . . . λn ∈ 〈Gλ0
〉, whence 1 6= hλ ∈ 〈Gλ0

〉. By Remark 2.2(2), hλmG = λ0. �

Before proceeding to the discussion of normal forms, a result for later use will
be proved.

Lemma 3.1. Let G = (G, {Gλ | λ ∈ Λ} , {≤i| i ∈ N}) and

G = (G,
{
Gλ | λ ∈ Λ

}
, {�i| i ∈ N}).

be objects of F with G ≤ G. Then every G-descent sequence is a G-descent
sequence.

Proof. Let λ = (λ0, λ1, . . .) be a G-descent sequence. It follows by induction
on n, using Lemma 2.5, that (λ0, . . . , λn, 1, 1, . . .) is a G-descent sequence and
Gλ0...λn ≤ Gλ0...λn . Since λ = (λ0, . . . , λn, 1, 1, . . .) for sufficiently large n, the
lemma follows. �

If λ = (λ0, . . . , λn, 1, 1, . . .) is a G-descent sequence, λj will be denoted by
λ(j). This is to allow for the finite sequence of descent sequences occurring in
the normal form. The normal form is as follows.

Definition. If G = (G, {Gλ | λ ∈ Λ} , {≤i| i ∈ N}) is an element of F and g ∈ G,

then a G-normal form for g is an expression g = gλ1
1 . . . gλkk for some G-descent

sequences λ1, . . . ,λk with λ1 > . . . > λk in the lexicographic order, where
1 6= gi ∈ Gλi(0) for 1 ≤ i ≤ k.

If A is a set of G-descent sequences and g has such an expression with all λi
belonging to A, g is said to have a normal form with exponents from A.
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Note that k = 0 is allowed, that is, 1G always has a normal form, with
exponents from any set of G-descent sequences. The next lemma is needed to
show that the normal form, if it exists, is unique.

Lemma 3.2. Suppose G = (G, {Gλ | λ ∈ Λ} , {≤i| i ∈ N}) is an object of F,
g ∈ G and g has a normal form

g = gλ1
1 . . . gλkk

where k ≥ 1. Let l be such that λl+1(0) = . . . = λk(0) but λl+1(0) <0 λl(0)
(l = 0 if λ1(0) = . . . = λk(0)), so 0 ≤ l < k. Then

(1) if g ∈ Gν for some ν ∈ Λ, then k = 1;
(2) g 6= 1;
(3) gmG = λk(0);

(4) g′ = gλ1
1 . . . gλll and g∗ = g

λl+1

l+1 . . . gλkk .

Proof. First, since g
λl+1

l+1 , . . . , gλkk all belong to 〈Gλk(0)〉 (cf the proof of Remark

3.1), g
λl+1

l+1 . . . gλkk ∈ 〈Gλk(0)〉. Also, by Remark 3.1, gλii mG = λi(0) for 1 ≤ i ≤ k.
For 1 ≤ i ≤ l,

λk(0) <0 λl(0) ≤0 λi(0)

hence gλ1
1 . . . gλll ∈ ∗λk(0)<0λGλ. Since g = (gλ1

1 . . . gλll )(g
λl+1

l+1 . . . gλkk ), (4) fol-

lows at once from (3).
Now suppose (1) is false, and take G, an object of F, G-descent sequences

λ1, . . . ,λk and gi ∈ Gλi(0) \ {1}, where k ≥ 2, such that g := gλ1
1 . . . gλkk ∈ Gν

for some ν ∈ Λ, and with k as small as possible.
Let p : G → ∗λk(0)<0λ

Gλ be the projection map. Then gp ∈ Gν , either

because ν > λk(0), so gp = g, or otherwise because gp = 1, and

gp = gλ1
1 . . . gλll .

It follows that g
λl+1

l+1 . . . gλkk ∈ Gν , and since l < k, l ≤ 1 by minimality of k.

Suppose l = 1. Then g
λl+1

2 . . . gλkk 6= 1 by minimality of k and because gk 6= 1.

Hence ν = (g
λl+1

2 . . . gλkk )mG = λk(0) by Remark 2.2(2). Also, gλ1
1 ∈ Gν , so

ν = gλ1
1 mG = λ1(0). But as noted above, λk(0) <0 λ1(0), a contradiction.

Hence l = 0, so λ1(0) = . . . = λk(0) and (from the first sentence of the proof)
g ∈ 〈Gλk(0)〉. Hence g ∈ Gλk(0), either because g = 1 or because ν = gmG =
λk(0) by Remark 2.2(2).

For 1 ≤ i ≤ k, let hi = g
λi(1)
i , so hi ∈ Gλi(1), and let λ′i = (λi(1),λi(2), . . .).

Then λ′i is a Gλk(0)-descent sequence, λ′1 > . . . > λ′k in the lexicographic order
and hi 6= 1 for 1 ≤ i ≤ k. Therefore g has a Gλk(0)-normal form:

g = h
λ′1
1 . . . h

λ′k
k .



ORDERING FREE PRODUCTS OF GROUPS 11

Using the argument above, noting that Gλk(0) is a free factor of Gλk(0), λ
′
1(0) =

. . . = λ′k(0), that is, λ1(1) = . . . = λk(1). Continuing, it follows by induction on
n that

λ1(n) = . . . = λk(n)

for all n ≥ 0, that is, λ1 = . . . = λk. Since λ1 > . . . > λk and k ≥ 2, this is a
contradiction, establishing part (1).

Now (2) follows, since if g = 1, k = 1 by (1), hence g = gλ1
1 6= 1 since g1 6= 1,

a contradiction. It remains to prove (3).

By (2), g
λl+1

l+1 . . . gλkk 6= 1, and by Remark 2.2(2), (g
λl+1

l+1 . . . gλkk )mG = λk(0).
Since

gλ1
1 . . . gλll ∈ ∗

λk(0)<0λ

Gλ,

it follows by Remark 2.2(1) that gmG = λk(0). �

The next lemma is an addendum to part (1) of Lemma 3.2.

Lemma 3.3. Suppose G = (G, {Gλ | λ ∈ Λ} , {≤i| i ∈ N}) is an object of F and
ν ∈ Λ. If gλ ∈ Gν , where λ is a G-descent sequence and 1 6= g ∈ λ(0), then
ν = λ(0) and λ = (ν, 1, 1, . . .).

Proof. By Remark 3.1, ν = gλmG = λ(0). Suppose λ(1) 6= 1. Then

gλ = (gλ(1))h

where h = λ(2)λ(3) . . . (a finite product) and h ∈ 〈Gν〉 (cf the proof of Remark
3.1). But gλ and gλ(1) are in different free factors of Gν (Gν and λ(1)−1Gνλ(1)
respectively), so are not conjugate in 〈Gν〉 (see, for example, [4, Ch.4, Theorem
1.4]), a contradiction. Hence λ(1) = 1. It follows that Gλ(1) = λ(1)−1Gνλ(1) =
Gν , so g ∈ Gλ(1). Also, λ′ := (λ(1),λ(2), . . .) is a Gν-descent sequence, and

gλ
′

= gλ ∈ Gλ(1). Applying the argument above, λ′(1) = λ(2) = 1. Continuing
(formally, by induction on n), λ(n) = 1 for all n ≥ 1, as required. �

Theorem 3.4. Suppose G = (G, {Gλ | λ ∈ Λ} , {≤i| i ∈ N}) is an object of F
and let g ∈ G. If g has a normal form

g = gλ1
1 . . . gλkk

where k ≥ 0, then k, g1, . . . , gk and λ1, . . . ,λk are uniquely determined by g.

Proof. In view of Lemma 3.2(2), it can be assumed that g 6= 1 and k ≥ 1. The
proof will use induction on G-length. If g ∈ Gν for some ν ∈ Λ, uniqueness of
the expression in normal form follows from Lemmas 3.2(1) and 3.3, so assume
g 6∈ Gν for any ν ∈ Λ.

Let l be such that λl(0) > λl+1(0) = . . . = λk(0) (so 0 ≤ l < k), l = 0
meaning that λ1(0) = . . . = λk(0)). By Lemma 3.2, λk(0) = gmG , which will be
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denoted by ν, and g′ = gλ1
1 . . . gλll and g∗ = g

λl+1

l+1 . . . gλkk . This gives a Gν-normal
form for g∗, namely

g∗ = h
λ′l+1

l+1 . . . h
λ′k
k ,

where hi = g
λi(1)
i and λ′i = (λi(1),λi(2), . . .). Applying a similar argument to

that just given, with g∗ in place of g, shows that any G-normal form for g∗ gives
a Gν-normal form for g∗ in the same way. Since g∗ has shorter Gν-length than
the G-length of g, by induction it has a unique Gν-normal form, hence has a
unique G-normal form. If g′ = 1, then this is the unique G-normal form of g.

Suppose g′ 6= 1. Then g′ has shorter G-length than g, so has a unique G-
normal form, and it follows by Lemma 3.2(4) that the G-normal form of g is
unique. �

Next, the question of existence of a normal form will be considered.

Definition. Let G = (G, {Gλ | λ ∈ Λ} , {≤i| i ∈ N}) be an object of F, and let
A be a subset of Λ. For positive integers k, set

kA := {g1 . . . gk | gi ∈ Gλi , where λi ∈ A for 1 ≤ i ≤ k} .

Note that kA ⊆ (k + 1)A (gi = 1 is allowed).

Definition . Two elements g, h of 〈G〉 are said to have compatible normal

forms if they have normal forms, say g = gλ1
1 . . . gλkk , h = hµ1

1 . . . hµll such that
{λ1, . . . ,λk,µ1, . . . ,µl} is totally ordered in the lexicographic order on G-descent
sequences.

Remark 3.2. If ν ∈ Λ and µ = (µ0, µ1, . . .) is a Gν-descent sequence, then

λ := (ν, µ0, µ1, . . .)

is a G-descent sequence, and if h ∈ Gµ0
ν (the free factor of Gν corresponding to

µ0), so h = gµ0 for some g ∈ Gν , then hµ = gλ.

To prove existence of normal forms, an extra hypothesis is needed.

Definition. Let G = (G, {Gλ | λ ∈ Λ} , {≤i| i ∈ N}) be an object of F. Then G
is said to satisfy CNC if the following condition is satisfied.

if two elements of G have compatible normal forms, then
they are ≤i-comparable, for all i ≥ 1.

The next proposition is the existence theorem for normal forms which will be
used to construct total orders on free products in the next section. It is based
on [3, Lemma 11].

Proposition 3.5. Let G = (G, {Gλ | λ ∈ Λ} , {≤i| i ∈ N}) be an object of F
which satisfies CNC.

Let A be a subset of Λ, totally ordered by ≤0 and let k ≥ 1. Then there is a
set B of G-descent sequences, totally ordered by the lexicographic order, such that
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every element of kA has a normal form with exponents from B. Consequently,
kA is totally ordered by ≤i, for all i ≥ 1.

Proof. First note that, if ν ∈ Λ and two elements of 〈Gν〉 have compatible Gν-
normal forms, then they have compatible G-normal forms. This follows easily
from Remark 3.2. It then follows that Gν satisfies CNC.

The proof that the proposition is true for all such A is by induction on k. If
k = 1, take

B = {(λ, 1, 1, . . .) | λ ∈ A} .
Assume that k ≥ 2 and it is true for k − 1.
For ν ∈ A, let Aν := {µ ∈ A | ν <0 µ}; then (k−1)Aν ⊆ Λν . By the induction

hypothesis, (k−1)Aν is totally ordered by ≤i for all i ≥ 1, in particular for i = 1,
so it is a totally ordered subset of Λν . By the induction hypothesis, there is a
set of Gν-descent sequences Cν , totally ordered by the lexicographic order, such
that every element of

Dν :=
{
ga11 . . . g

ak−1

k−1 | gi ∈ Gν , ai ∈ (k − 1)Aν
}

has a Gν-normal form with exponents from Cν . Let

Bν := {(ν, µ0, µ1, . . .) | (µ0, µ1, . . .) ∈ Cν} .

Then Bν is a set of G-descent sequences, totally ordered by the lexicographic
order, and every element of Dν has a G-normal form with exponents from Bν , by
Remark 3.2. Let B :=

⋃
ν∈ABν . Since A is totally ordered by ≤0, B is totally

ordered by the lexicographic order. In fact, if ν, ν′ ∈ A and ν <0 ν
′, then for all

λ ∈ Bν and λ′ ∈ Bν′ , λ < λ′ in the lexicographic order.
Let g ∈ kA; it will be shown that g has a G-normal form with exponents from

B. This is obvious if g = 1, so assume g 6= 1 and write g as g = g1 . . . gk, where
gi ∈ Gλi and λi ∈ A for 1 ≤ i ≤ k. Since A is totally ordered by ≤0, gmG is
defined, and will be denoted by ν. The G-reduced form of g has length at most
k, and writing g = g′g∗ using equation (2.1), it is easy to see that g∗ ∈ Dν .

If g′ 6= 1 then ν <0 g
′mG , and repeating this procedure with g′ in place of g,

and continuing, eventually g can be written as

g = r1 . . . rp

where ri ∈ Dνi for some νi ∈ A such that νp <0 . . . <0 ν1. Now ri has a normal
form with exponents from Bνi , and substituting these expressions for ri in the
expression for g shows that g has a G-normal form with exponents from B. �

Corollary 3.6. Suppose G = (G, {Gλ | λ ∈ Λ} , {≤i| i ∈ N}) is an object of F0.
Then every element g of G has a G-normal form.

Proof. Obviously G satisfies CNC, and one can take A = Λ in Proposition 3.5.
Since every element of G belongs to kΛ for some k, the corollary follows. �
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The next result in this section shows that, if an element g 6= 1 in 〈G〉 has a
normal form, then g ∈ XG ∪X−1

G .

Proposition 3.7. Suppose G = (G, {Gλ | λ ∈ Λ} , {≤i| i ∈ N}) is an object of

F, let g ∈ G \ {1} and assume g has a normal form g = gλ1
1 . . . gλkk with k ≥ 1.

Then

(1) if g1 > 1 in Gλ1(0) then g ∈ XG;

(2) if g1 < 1 in Gλ1(0) then g−1 ∈ XG.

Proof. The proof is by induction on G-length. If g ∈ Gν for some ν then g = g1,
by Lemmas 3.2(1) and 3.3, and the proposition follows in this case. Suppose
g 6∈ Gν , for any ν ∈ Λ. By Lemma 3.2, g decomposes as g = g′g∗, where
g′ ∈ Λν , g∗ ∈ 〈Gν〉 and ν = gmG , moreover g′ = gλ1

1 . . . gλll for some l ≥ 0.
Further, g−1mG = gmG and the corresponding decomposition of g−1 is given by
equations 2.2.

If g′ 6= 1 then l ≥ 1, and g′ has shorter G-length than g, so by induction and
the definition of XG ,

g1 > 1 in Gλ1(0) ⇒ g′ ∈ XG ⇒ g ∈ XG
and

g1 < 1 in Gλ1(0) ⇒ (g′)−1 ∈ XG ⇒ g−1 ∈ XG .
Suppose g′ = 1. Then l = 0 by Lemma 3.2(2), and by definition of l, λ1(0) =
. . .λk(0); denote λ1(0) by ν. Now g can be written as

g = g∗ = h
λ′1
1 . . . h

λ′k
k

where hi = g
λi(1)
i and λ′i = (λi(1),λi(2), . . .). This is the normal form of g∗

in Gν , and the Gν-length of g∗ is less than the G-length of g = g∗. Again by
induction and the definition of XG ,

h1 > 1 in Gλ′1(0) ⇒ g∗ ∈ XGν ⇒ g ∈ XG
and

h1 < 1 in Gλ′1(0) ⇒ (g∗)−1 = (g−1)∗ ∈ XGν ⇒ g−1 ∈ XG .
Also, Gλ′1(0) = Gλ1(1) = λ1(1)−1Gνλ1(1); it follows by definition of Gν that

h1 > 1 in Gλ′1(0) ⇔ g1 > 1 in Gν and h1 < 1 in Gλ′1(0) ⇔ g1 < 1 in Gν ,

completing the proof. �

Corollary 3.8. Suppose G = (G, {Gλ | λ ∈ Λ} , {≤i| i ∈ N}) is an object of F.
Let

S :=
{
gλhµ | λ,µ are G-descent sequences, λ > µ, g ∈ Gλ(0), h ∈ Gµ(0),

g > 1 in Gλ(0)

}
∪
{
gλ | λ is a G-descent sequence, g ∈ Gλ(0), g > 1 in Gλ(0)

}
.
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Then S ⊆ XG, and if G is an object of F0, then PG is the subsemigroup of G
generated by S.

Proof. The elements of S belong to XG by Proposition 3.7. Suppose G is an
object of F0, and let P be the subsemigroup generated by S. It follows that
P ⊆ PG . By Corollary 3.6, every element of g has a normal form, and by

Proposition 2.4, PG = XG . By Proposition 3.7, if g = gλ1
1 . . . gλkk (k ≥ 1) in

normal form, then g ∈ PG if and only if g1 > 1 in Gλ1(0). Thus it suffices to

show that, if g = gλ1
1 . . . gλkk (k ≥ 1) in normal form and g1 > 1 in Gλ1(0), then

g ∈ P . This will be accomplished by induction on k.
If k ≤ 2 then g ∈ S, so assume k ≥ 3. Suppose gk−1 > 1. Then

g = (gλ1
1 . . . g

λk−2

k−2 )(g
λk−1

k−1 gλkk ).

By induction, the first factor in this product is in P , and the second is in S, so
g ∈ P .

Suppose gk−1 < 1. Then

g = (gλ1
1 . . . (g2

k−1)λk−1)((g−1
k−1)λk−1gλkk ).

The two factors are in normal form, and again the first factor is in P by induction,
while the second is in S, hence g ∈ P , completing the proof. �

In the corollary, for any object G of F, if P is the normal subsemigroup of G
generated by S, it follows that P ⊆ PG . If the procedure of [3] were followed
exactly, one would define PG to be P , rather than use the recursive definition in
§2. However, it is not clear that P = PG in general.

Finally, here are two remarks which will be useful in the next section.

Remark 3.3. Let G = (G, {Gλ | λ ∈ Λ} , {≤i| i ∈ N}) be an object of F and
assume all Gλ are non-trivial. Suppose λ, µ ∈ Λ, λ 6= µ and take gλ ∈ Gλ,
gµ ∈ Gµ with gλ > 1 and gµ < 1. Put g = gλgµ. Then:
if µ <0 λ then g′ = gλ, so g ∈ XG ;
if λ <0 µ then g = gµ(g−1

µ gλgµ), so g′ = gµ, hence g 6∈ XG .
It follows that, if Λ has at least two elements, and G′ is an object of F, obtained

from G by changing the total order ≤0, and possibly changing {≤i| i ∈ N>0},
but otherwise leaving G unchanged, then XG 6= XG′ .

Remark 3.4. If G is an object of F and λ = (λ0, λ1, . . .) is a G-descent sequence,
then

〈Gλ0...λn〉 ∩XG = XGλ0...λn
for n ≥ 0. By induction on n, it suffices to show that 〈Gλ0

〉 ∩XG = XGλ0 . But

if g ∈ 〈Gλ0
〉 and g 6= 1, then gmG = λ0 by Remark 2.2(2), hence g′ = 1 and

g = g∗, so by definition g ∈ XG if and only if g ∈ XGλ0 .
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4. Constructing Orders on Free Products

The objects of the category G defined in [2] are pairs (G, {Gλ | λ ∈ Λ}), where,
for all λ ∈ Λ, Gλ is a totally ordered subgroup of G, the index set Λ is totally
ordered and G = ∗λ∈ΛGλ. Given such an object, and a sequence whose terms
are ±1, an order will be constructed on G.

Fix an object G = (G, {Gλ | λ ∈ Λ}) of G, and a sequence s = (s1, s2, . . .)
with si = ±1 for all i ≥ 1. Define

G(0) := (G, {Gλ | λ ∈ Λ} , {≤i| i ∈ N})
where ≤0 is the given order on Λ and for i ≥ 1, ≤i is the trivial partial order of
equality on G; thus G(0) is an object of F. Let ≤ be a total order on G; then
≤ extends ≤i for all i ≥ 1, so by Corollary 2.6, PG(0) is the positive cone for a
partial order on G, which has an extension to a total order on G.

For m ∈ N, assume an object G(m) of F has been defined with 〈G(m)〉 = G,
such that PG(m) is the positive cone for a partial order on G, which has an
extension to a total order on G. Set

G(m+ 1) := (G, {Gλ | λ ∈ Λ} , {≤mi | i ∈ N})
where ≤m0 is the given order on Λ, and for i ≥ 1, ≤mi is the partial order
corresponding to PG(m) if si = 1, and the reverse of this partial order if si = −1.
Then PG(m+1) is the positive cone of a partial order on G which has an extension
to a total order on G, by Corollary 2.6. This recursively defines G(m) for all
m ≥ 0; PG(m) will be abbreviated to Pm, and the corresponding partial order on
G will be denoted by ≤m.

Lemma 4.1. For all m ≥ 0, G(m) ≤ G(m+ 1) and Pm ⊆ Pm+1.

Proof. Clearly G(0) ≤ G(1), hence P0 ⊆ P1 by Lemma 2.5, and it follows easily
by induction on m that G(m) ≤ G(m + 1) and Pm ⊆ Pm+1 for all m, using
Lemma 2.5. �

Let Pω :=
⋃∞
m=0 Pm. It follows easily from Lemma 4.1 that Pω is the positive

cone of a partial order on G, which will be denoted by ≤ω. This gives an object
of F,

G(ω) := (G, {Gλ | λ ∈ Λ} , {≤ωi | i ∈ N}),
where again ≤ω0 is the given order on Λ and for i ≥ 1, ≤ωi is ≤ω if si = 1, and
the reverse order to ≤ω if si = −1. It will be shown that Pω defines a total order
on G, so that, in fact, G(ω) is an object of F0.

If (λ0, λ1 . . .) is a G(m)-descent sequence, denote the index set of (G(m))λ0...λn

by
Λλ0...λn(m)

for 0 ≤ m ≤ ω. By equation 3.1, Λλ0...λn(m) = ∗λn<mn λGλ1...λn−1λ
λ0

, where

λ ∈ Λλ0...λn−1(m).
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Lemma 4.2. If λ = (λ0, λ1, . . .) is a G(ω)-descent sequence, then there exists
M ∈ N such that λ is a G(m)-descent sequence for all m ≥M .

Proof. First, it will be shown by induction on n that for all such G-descent se-
quences λ, (λ0, . . . , λn, 1, 1, . . .) is a G(m)-descent sequence for somem ∈ N. This
is clear for n = 0; assume it is true for n, and suppose that (λ0, . . . , λn, 1, 1, . . .)
is a G(m)-descent sequence. Then

λn+1 ∈ Λλ0...λn(ω) = ∗
λn<ωnλ

G
λ1...λn−1λ
λ0

where λ ∈ Λλ0...λn−1
(ω). so λn+1 can be written as λn+1 = α1 . . . αk, where

αi ∈ G
λ1...λn−1µi
λ0

for some µi such that λn <ωn µi and µi ∈ Λλ0...λn−1
(ω), so

(λ0, . . . , λn−1, µi, 1, 1 . . .) is a G(ω)-descent sequence. By the induction hypoth-
esis, (λ0, . . . , λn−1, µi, 1, 1 . . .) is a G(mi)-descent sequence for some mi ∈ N.
Also, since Pω =

⋃∞
i=0 Pi, it follows that λn <

ri
n µi for some ri ∈ N. Let

r := max {m1, . . . ,mk, r1, . . . , rk,m} .

By Lemma 3.1, (λ0, . . . , λn, 1, 1, . . .) is a G(r)-descent sequence, and for 1 ≤ i ≤
k, so is (λ0, . . . , λn−1, µi, 1, 1, . . .), hence µi ∈ Λλ0...λn−1(r). Since Pri ⊆ Pr,
λn <

r
n µi for 1 ≤ i ≤ k. Therefore,

λn+1 ∈ ∗
λn<rnλ

G
λ1...λn−1λ
λ0

(λ ∈ Λλ0...λn−1
(r))

= Λλ0...λn(r).

It follows that (λ0, . . . , λn+1, 1, 1, . . .) is a G(r)-descent sequence, completing the
inductive proof.

Now choose n large enough so that λ = (λ0, . . . , λn, 1, 1, . . .), and M ∈ N such
that this is a G(M)-descent sequence. Then by Lemma 3.1, λ is a G(m)-descent
sequence for all m ≥M . �

Corollary 4.3. If λ and µ are G(ω)-descent sequences and λ < µ in the lexi-
cographic order on G(ω)-descent sequences, then there exists M ∈ N such that,
for all m with m ≥ M , λ and µ are G(m)-descent sequences and λ < µ in the
lexicographic order on G(m)-descent sequences.

Proof. This follows easily from Lemma 4.2 and the fact that Pω =
⋃∞
m=0 Pm,

with Pm ⊆ Pm+1 for m ∈ N. �

Lemma 4.4. Let λ,λ1, . . . ,λn be G(m)-descent sequences, with m ∈ N, n ≥ 1,
{λ1, . . . ,λn} totally ordered, and λ > max {λ1, . . . ,λn} (in the lexicographic
order). Let g ∈ Gλ(0) with g > 1 and let gi ∈ Gλi(0) for 1 ≤ i ≤ n. Then

gλ1
1 . . . gλnn <m+1 gλ.
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Proof. It follows from Corollary 3.8 that {gλ1
1 , . . . , gλnn } is totally ordered by

≤m+1. Choose i so that gλii is the largest element of this set. Then

gλ1
1 . . . gλnn ≤m+1 (gni )λi

and again by Corollary 3.8, (gni )λi <m+1 gλ. �

Lemma 4.5. If two elements of G have compatible G(ω)-normal forms, then
they are ≤ω- comparable.

Proof. Let g, h have compatible G(ω)-normal forms, say

g = gλ1
1 . . . gλkk , h = hµ1

1 . . . hµll

where {λ1, . . . ,λk,µ1, . . . ,µl} is totally ordered. It will be shown by induction
on k + l that g, h are ≤ω-comparable. This is clear if k + l = 0, so assume
k + l > 0. If λ1 = µ1, let g′ = (h−1

1 g1)λ1gλ2
2 . . . gλkk , h′ = hµ2

2 . . . hµll ; then by
induction g′, h′ are ≤ω-comparable, hence so are g = hµ1

1 g′, h = hµ1

1 h′.
Therefore, without loss of generality, assume λ1 > µ1, or k ≥ 1 and l = 0. By

Lemma 4.2 and Corollary 4.3, there exists m ∈ N such that g = gλ1
1 . . . gλkk , h =

hµ1

1 . . . hµll are G(m)-normal forms.
Assume g1 > 1. Then by Lemma 4.4, (or by Corollary 3.8 if l = 0, k = 1)

hµ1

1 . . . hµll (g−1
k )λk . . . (g−1

2 )λ2 <m+1 gλ1
1

hence h <m+1 g, so h <ω g since Pm+1 ⊆ Pω.
If g1 < 1, then similarly

gλ2
2 . . . gλkk (h−1

l )µl . . . (h−1
1 )µ1 <m+1 (g−1

1 )λ1

and it follows that g <m+1 h, so g <ω h. �

Theorem 4.6. The order ≤ω is a total order on G.

Proof. By Lemma 4.5, the hypotheses of Proposition 3.5 apply to G(ω); take A
to be the set of G(ω)-descent sequences

{(λ, 1, 1, . . .) | λ ∈ Λ} .
This is totally ordered by the lexicographic order, because Λ is totally ordered,
being the original index set of the object G of G. Then

kA = {g1 . . . gk | for 1 ≤ i ≤ k, gi ∈ Gλi for some λi ∈ Λ}
so any two elements of G are in kA for sufficiently large k, and by Proposition
3.5, kA is totally ordered by ≤ω. Hence ≤ω is a total order. �

Thus G(ω) is an object of F0, hence PG(ω) is the positive cone for a total
order on G, by Lemma 2.4. One could try to continue the construction of Pm
for ordinals m > ω by defining Pω+1 = PG(ω), but the next corollary shows that
this gives nothing new.
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Corollary 4.7. Pω = PG(ω).

Proof. Clearly G(m) ≤ G(ω) for all m ∈ N, so Pm ⊆ PG(ω) for all m ∈ N by
Lemma 2.5, hence Pω ⊆ PG(ω). Since both Pω and PG(ω) are positive cones for
total orders on G, it follows that they are equal. �

Thus, given the object G = (G, {Gλ | λ ∈ Λ}) of the category G, an order
≤ω has been constructed on G. (As it stands, this does not give a proof of
Vinogradov’s Theorem, since it was necessary to use it in order to show that
P0 is the positive cone for a partial order on G. Even if an independent proof
could be given, it would result in a very elaborate proof of this theorem.) The
construction also depends on the sequence s, and to reflect this Pω will now be
denoted by Ps, and G(ω) by G(s).

Proposition 4.8. Suppose G = (G, {Gλ | λ ∈ Λ}) is an object of the category
G, Λ has at least two elements and all Gλ are non-trivial. If s = (s1, s2, . . .) and
s′ = (s′1, s

′
2 . . .) are sequences with si, s

′
i = ±1 and s 6= s′, then Ps 6= Ps′ .

Proof. Suppose sn 6= s′n with n as small as possible subject to this. Choose λ0 ∈
Λ such that λ0 < µ for some µ ∈ Λ. Then G(s)λ0

satisfies the same hypotheses as
G(s) (index set has at least two elements, all free factors non-trivial). Proceeding
inductively, there is a G(s)-descent sequence λ = (λ0, λ1, . . . λn−1, 1, . . .), such
that Gλ0...λn−1

(s) satisfies the same hypotheses as G(s). Then λ is also a G(s′)-
descent sequence, and Gλ0...λn−1(s) and Gλ0...λn−1(s′) have the same index set
and corresponding free factors (as ordered groups), but with different orderings
on the index set. (The two different orderings are reverse orderings.) By Remark
3.3, XGλ0...λn−1

(s) 6= XGλ0...λn−1
(s′), and by Remark 3.4, XG(s) 6= XG(s′). But by

Theorem 4.6, G(s) is an object of F0, so by Proposition 2.4 and Corollary 4.7,
Ps = PG(s) = XG(s), and similarly Ps′ = XG(s′), hence Ps 6= Ps′ . �
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