ORDERING GRAPH PRODUCTS OF GROUPS

I. M. CHISWELL

1. INTRODUCTION

Let Γ be a finite simple graph with vertex set V, so the edges may be taken to be unordered pairs of distinct elements of V. Assume that, for every $v \in V$, there is assigned a group G_v . The graph product $G\Gamma$ is the quotient of the free product $\bigstar_{v \in V} G_v$ by the normal subgroup generated by all $[G_u, G_v]$ for which $\{u, v\}$ is an edge. (As usual, $[G_u, G_v]$ means the subgroup generated by $\{x^{-1}y^{-1}xy \mid x \in G_u, y \in G_v\}$.) These groups were studied by E. R. Green in her thesis [6], and have since attracted considerable attention (see, for example, [7] and the references cited there).

In this paper, it is shown that, if all G_v are right orderable, then $G\Gamma$ is right orderable, and if all G_v are (two-sided) orderable then $G\Gamma$ is orderable. Recall that a right order on a group G is a total order \leq such that $a \leq b$ and $c \in G$ implies $ac \leq bc$. The *strictly positive cone* is the set $P := \{g \in G \mid 1 < g\}$. It has the properties

$$PP \subseteq P, G \setminus \{1\} = P \cup P^{-1} \text{ and } P \cap P^{-1} = \emptyset.$$

Conversely, given a subset *P* of *G* satisfying these conditions, defining a < b to mean $ba^{-1} \in P$ gives a right order on *G*, with strictly positive cone *P*. A right order is called a two-sided order (abbreviated to *bi-order*) if in addition it is a left order, that is, $a \le b$ and $c \in G$ implies $ca \le cb$. A necessary and sufficient condition for this is that the strictly positive cone *P* is closed under conjugation: $x^{-1}Px \subseteq P$ for all $x \in G$.

Some elementary facts about graph products will be used.

- (1) If Δ is a full subgraph of Γ with vertex set U, then $G\Delta$ embeds naturally in $G\Gamma$, and there is a retraction $\rho_{\Gamma,\Delta} : G\Gamma \to G\Delta$ such that $x\rho_{\Gamma,\Delta} = x$ for $x \in G\Delta$ and $x\rho_{\Gamma,\Delta} = 1$ for all $x \in G\Delta'$, where Δ' is the full subgraph of Γ with vertex set $V \setminus U$.
- (2) For any $v \in V$, there is a decomposition

$$G\Gamma = (G_v \times GE) *_{GE} GZ \tag{(*)}$$

where Z is the graph obtained by removing the vertex v and all edges incident with it from Γ , and E is the full subgraph of Γ whose vertices are the vertices of Γ adjacent to v (a full subgraph of Z).

To see (1), the inclusion map $*_{v \in U} G_v \to *_{v \in V} G_v$ and the projection map $*_{v \in V} G_v \to *_{v \in U} G_v$ (which is the identity on G_v for $v \in U$ and trivial on G_v for $v \notin U$) induce homomorphisms $\iota : G\Delta \to G\Gamma$ and $\rho : G\Gamma \to G\Delta$ with $\iota \rho = \mathrm{id}_{G\Delta}$. Thus ι is injective and $\rho_{\Gamma,\Delta} = \rho$ is the required retraction. To prove (2), there is an obvious map $*_{v \in V} G_v \to$

 $(G_v \times GE) *_{GE} GZ$, which induces a homomorphism $G\Gamma \rightarrow (G_v \times GE) *_{GE} GZ$, and the inverse homomorphism can be defined using the universal property of free products with amalgamation. It is also proved as part of [6, Lemma 3.20].

In particular, taking Δ in (1) to have a single vertex, the groups G_v embed naturally in $G\Gamma$ and will be viewed as subgroups of $G\Gamma$.

In fact the result on right orderability can be easily proved using results in [2], and this will be done immediately.

Theorem A. If all G_v are right orderable, then $G\Gamma$ is right orderable, and if Δ is any full subgraph of Γ , then every right order on $G\Delta$ extends to a right order on $G\Gamma$.

Proof. The proof is by induction on *n*, the number of vertices of Γ . There is nothing to prove if $n \le 1$, otherwise choose a vertex *v* and use the decomposition (*) in (2):

$$G\Gamma = (G_v \times GE) *_{GE} GZ$$

where Z is the graph obtained by removing the vertex v and all edges incident with it from Γ , and E is the full subgraph of Γ whose vertices are the vertices of Γ adjacent to v. By induction, GZ is right orderable, and any right order on GE extends to a right order on GZ. Since GE is a subgroup of GZ, it is right orderable, hence $G_v \times GE$ is right orderable and any right order on GE extends to a right orderable and any right order on $G_v \times GE$, because of the exact sequence

$$1 \longrightarrow GE \longrightarrow G_v \times GE \xrightarrow{p} G_v \longrightarrow 1$$

where p is projection onto the first coordinate. See, for example, [2, Lemma 2.1]. By [2, Corollary 5.1], $G\Gamma$ is right orderable.

Suppose Δ is a full subgraph of Γ . If $\Gamma = \Delta$, obviously every right order on $G\Delta$ extends to $G\Gamma$, so assume $\Delta \neq \Gamma$, and choose a vertex v of Γ not in Δ . Let \leq be a right order on $G\Delta$. In the decomposition (*), Δ is a full subgraph of Z, so by induction \leq extends to a right order on GZ, which induces a right order on GE by restriction. This right order extends to a right order on $G_v \times GE$, as observed above. By [2, Corollary 5.1], the right orders on $G_v \times GE$ and GZ extend to a right order on $G\Gamma$. This order extends \leq , as required.

To prove the analogous result on bi-ordering graph products, more work is needed. It is a well-known theorem of Vinogradov [9] that free products of bi-orderable groups are bi-orderable. However, given a family of bi-ordered groups with a total order on the index set, a canonical way is needed to bi-order the free product of the family. This is dealt with in the next section, and the result on bi-ordering graph products will be proved in the third and final section.

2. Ordering Free Products

To make precise the statement that free products of bi-ordered groups with a totally ordered index set can be canonically ordered, a functor will be defined, from a certain category \mathbf{G} to the category \mathbf{O} of bi-ordered groups and order-preserving homomorphisms.

The objects of **G** are pairs $\mathcal{G} = (G, \{G_i \mid i \in I\})$ where G is a group, $\{G_i \mid i \in I\}$ is a family of bi-ordered subgroups of G, I is a totally ordered set and $G = \bigstar_{i \in I} G_i$. The set I

is called the *index set* of \mathcal{G} and G_i is called a *free factor* of \mathcal{G} . Also, G is denoted by $\langle \mathcal{G} \rangle$. Use will be made of the *projection map* $e_{\mathcal{G},i} : \langle \mathcal{G} \rangle \to G_i$, for $i \in I$ (the unique map which is the identity on G_i and trivial on G_j , for $j \in I$, $j \neq i$).

A **G**-morphism from $\mathcal{G} = (G, \{G_i \mid i \in I\})$ to $\mathcal{H} = (H, \{H_j \mid j \in J\})$ is a pair

$$\mathbf{f} = (\boldsymbol{\lambda}, \{f_i \mid i \in I\})$$

where $\lambda : I \to J$ is an order isomorphism, and for each $i \in I$, $f_i : G_i \to H_{i\lambda}$ is an isomorphism of bi-ordered groups. If $\mathbf{g} = (\mu, \{g_j \mid j \in J\}) : \mathcal{H} \to \mathcal{K}$ is a morphism, \mathbf{fg} is defined to be $(\lambda \mu, \{f_i g_{i\lambda} \mid i \in I\})$, and the identity morphism $\mathcal{1}_{\mathcal{G}}$ is $(id_I, \{id_{G_i} \mid i \in I\})$. Clearly this makes **G** into a category.

Theorem 2.1. There is a functor $Q : \mathbf{G} \to \mathbf{O}$ such that, for every object $(G, \{G_i \mid i \in I\})$ of \mathbf{G} , the underlying group of $(G, \{G_i \mid i \in I\})Q$ is G, and such that, for every morphism $\mathbf{f} = (\lambda, \{f_i \mid i \in I\})$ from $(G, \{G_i \mid i \in I\})$ to $(H, \{H_j \mid j \in J\})$, $\mathbf{f}Q$ is the isomorphism $G \to H$ whose restriction to G_i is f_i composed with the inclusion map $H_{i\lambda} \to H$.

The proof of Theorem 2.1 takes up the rest of this section. It is modelled on the method of bi-ordering free groups given by Bergman ([1]). Given an object $\mathcal{G} = (G, \{G_i \mid i \in I\})$ in **G**, a bi-order needs to be defined on *G*. Before defining the order, an auxiliary construction will be introduced.

Let $l \in I$, and let

$$L = \langle a^{-1}G_i a \mid a \in G_l, i \in I, i > l \rangle.$$

Then $L = \bigstar_{(i,a)} a^{-1}G_i a$, where $a \in G_l$ and i > l. To see this, if $u = a_1^{-1}g_1a_1 \dots a_n^{-1}g_na_n$, where $a_j \in G_l$, $g_j \in G_{i_j}$, $i_j > l$ for $1 \le j \le n$ and $(i_j, a_j) \ne (i_{j+1}, a_{j+1})$ for $1 \le j < n$, then viewing this as a word in $\bigcup_{i \in I} G_i$ and cancelling / consolidating to obtain a reduced word, the letters g_j $(1 \le j \le n)$ and the final letter a_n remain. This follows by induction on n. Thus $u \ne 1$, hence L is a free product as claimed.

Bi-order $a^{-1}G_i a$ by: $a^{-1}ga < a^{-1}ha$ if and only if g < h in G_i . Then totally order the index set $I_l := \{i \in I \mid i > l\} \times G_l$ lexicographically: $(i, a) < (i_1, a_1)$ if and only if $i < i_1$ or $i = i_1$ and $a < a_1$. This gives a new object in **G**, namely

$$\mathcal{G}_l := (L, \left\{ G_j \mid j \in I_l \right\})$$

where, for $j = (i, a) \in I_l$, $G_j = a^{-1}G_i a$. Thus $L = \langle \mathcal{G}_l \rangle$.

Take $1 \neq g \in G$ and write g as a reduced word relative to the decomposition $\bigstar_{i \in I} G_i$, say $g = g_1 \dots g_k$, where $g_j \in G_{i_j}$. The *length* of g is defined to be k.

Let $l = \min\{i_j \mid 1 \le j \le k\}$; *l* will be denoted by $gm_{\mathcal{G}}$. Rewrite the expression for *g* as $g = a_0b_1a_1...a_{n-1}b_na_n$, where $b_j \in G_l \setminus \{1\}$, and $a_j \in \bigstar_{i>l}G_i$ with $a_j \ne 1$ for $1 \le j \le n-1$, which in turn can be rewritten as

$$g = (b_1 \dots b_n) \prod_{j=0}^n (b_{j+1} \dots b_n)^{-1} a_j (b_{j+1} \dots b_n) = g' g^*$$

where $g' = b_1 \dots b_n \in G_l$ and $g^* \in \langle \mathcal{G}_l \rangle$ (note that $b_{j+1} \dots b_n$ means 1 when j = n). This decomposition is unique: if $g = h'h^*$, where $h' \in G_l$ and $h^* \in \langle \mathcal{G}_l \rangle$, then ge = g' = h', where $e = e_{\mathcal{G},l}$ is the projection map, hence also $g^* = h^*$.

Note that g^* has shorter length relative to the free product decomposition of $\langle \mathcal{G}_l \rangle$ than k, the length of g relative to $\langle \mathcal{G} \rangle$. (The second length equals the first length plus n, and $n \neq 0$ by definition of l.) Therefore, a subset $P_{\mathcal{G}}$ of $\langle \mathcal{G} \rangle$ can be defined for all objects \mathcal{G} of **G** recursively, as follows. Let $g \in \langle \mathcal{G} \rangle$, $g \neq 1$, and let $l = gm_{\mathcal{G}}$.

(1) If $g' \neq 1$, then $g \in P_{\mathcal{G}}$ if and only if g' > 1 in the given bi-order on the free factor G_l . (2) If g' = 1, then $g \in P_{\mathcal{G}}$ if and only if $g^* \in P_{\mathcal{G}_l}$.

Eventually, it will be shown that $P_{\mathcal{G}}$ is the strictly positive cone for the required biorder on $\langle \mathcal{G} \rangle$. Note that $g^{-1}m_{\mathcal{G}} = gm_{\mathcal{G}}$, $g^{-1} = (g')^{-1}(g'(g^*)^{-1}(g')^{-1})$ and $(g')^{-1} \in G_l$, $g'(g^*)^{-1}(g')^{-1} \in \langle \mathcal{G}_l \rangle$. Hence, if $g' \neq 1$, then exactly one of g, $g^{-1} \in P_{\mathcal{G}}$. If g' = 1, $g = g^*$, $g^{-1} = (g^*)^{-1} = (g^{-1})^*$, and by induction on length, exactly one of g, $g^{-1} \in P_{\mathcal{G}}$. Thus $G \setminus \{1\} = P_{\mathcal{G}} \cup P_{\mathcal{G}}^{-1}$ and $P_{\mathcal{G}} \cap P_{\mathcal{G}}^{-1} = \emptyset$.

The next thing to show is that $P_{\mathcal{G}}P_{\mathcal{G}} \subseteq P_{\mathcal{G}}$, and to do so it is necessary to look at the recursive definition in greater detail. Let $\mathcal{G} = (G, \{G_i \mid i \in I\})$ be an object of **G** and let $i_1 \in I$. One can form \mathcal{G}_{i_1} , with index set I_{i_1} . Given $i_2 \in I_{i_1}$, the construction can be repeated, obtaining $(\mathcal{G}_{i_1})_{i_2}$ with index set $(I_{i_1})_{i_2}$. Performing this operation *n* times (and omitting parentheses) gives an object $\mathcal{G}_{i_1...i_n}$ of **G** with index set $I_{i_1...i_n}$.

Definition. A sequence of indices (i_1, \ldots, i_n) arising in this way is called a *G*-descent sequence.

Note that the empty sequence is allowed as a \mathcal{G} -descent sequence, the corresponding object of **G** being \mathcal{G} with index set *I*. Also, an initial subsequence (prefix) of a \mathcal{G} -descent sequence is also a \mathcal{G} -descent sequence.

Remark 2.1. If (i_1, \ldots, i_n) is a \mathcal{G} -descent sequence and $i \in I_{i_1 \ldots i_n}$ then $i = (i_0, a_1, \ldots, a_n)$ for some $i_0 \in I$ and $a_1, \ldots, a_n \in \langle \mathcal{G} \rangle$, and the free factor G_i of $\mathcal{G}_{i_1 \ldots i_n}$ is $(a_1 \ldots a_n)^{-1} \mathcal{G}_{i_0}(a_1 \ldots a_n)$. Moreover, the bi-order on G_i is given by: $a^{-1}ga < a^{-1}ha$ if and only if g < h in G_{i_0} , where $a = a_1 \ldots a_n$. This follows by induction on n. For later use, define, for $1 \le j \le n+1$

 $i^{(j)} := (i_0, a_1, \dots, a_{j-1}, 1, a_j, \dots, a_n).$

Definition. Let $g \in \langle \mathcal{G} \rangle$. A \mathcal{G} -descent sequence $\mathbf{i} = (i_1, \dots, i_n)$ is *discriminating for g* if there exists $j, 1 \leq j \leq n$ such that

(1) $g \in \langle \mathcal{G}_{i_1...i_{j-1}} \rangle$; (2) $i_j = gm_{\mathcal{G}_{i_1...i_{j-1}}}$; (3) $g e \neq 1$, where $e = e_{\mathcal{G}_{i_1...i_{j-1}}, i_j} : \langle \mathcal{G}_{i_1...i_{j-1}} \rangle \to G_{i_j}$ is the projection map.

If (1)–(3) hold, **i** is said to be discriminating for g at j, and ge is called the **i**-signature of g. This is justified because there is only one value of j such that **i** is discriminating for g at j. To see this, take j as small as possible. Then by (3), $g \notin \langle \mathcal{G}_{i_1...i_j} \rangle$, because all free factors

of $\langle \mathcal{G}_{i_1...i_j} \rangle$ have the form $a^{-1}G_k a$, where $k \in I_{i_1...i_{j-i}}$ and $k > i_j$, which are subgroups of $\ker(e)$, hence $\langle \mathcal{G}_{i_1...i_i} \rangle$ is a subgroup of $\ker(e)$. Since

$$\langle \mathcal{G} \rangle \geq \langle \mathcal{G}_{i_1} \rangle \geq \ldots \geq \langle \mathcal{G}_{i_1 \ldots i_n} \rangle,$$

 $g \notin \langle \mathcal{G}_{i_1...i_p} \rangle$ for $p \geq j$. Thus the value of j is unique.

Definition. If **i** is discriminating for g at j, and ge > 1 in G_{i_j} , g is called **i**-positive (where G_{i_i} has its bi-order as a free factor of $\mathcal{G}_{i_1...i_{i-1}}$).

For $g \in \langle \mathcal{G} \rangle$, $g \neq 1$, the definition of $P_{\mathcal{G}}$ above will recursively construct a canonical \mathcal{G} -descent sequence i which is discriminating for g, and $g \in P_{\mathcal{G}}$ if and only if g is i-positive.

Lemma 2.2. If $\mathbf{i} = (i_1, \dots, i_n)$ is a \mathcal{G} -descent sequence, $1 \leq j \leq n$, $i \in I_{i_1 \dots i_{j-1}}$ and $i < i_j$, then

- (1) $\mathbf{i}^{(j)} := (i_1, \dots, i_{j-1}, i, i_i^{(j)}, \dots, i_n^{(j)})$ is also a \mathcal{G} -descent sequence.
- (2) If **i** is discriminating for g, then so is $\mathbf{i}^{(j)}$, and the **i**-signature of g equals the $\mathbf{i}^{(j)}$ signature of g.
- (3) If g is i-positive, then g is $i^{(j)}$ -positive.

Proof. First, it will be shown that, for $j \le l \le n$,

- (i) $i_l^{(j)} \in I_{i_1 \dots i_{j-1} i i_j^{(j)} \dots i_{l-1}^{(j)}};$ (ii) if $k \in I_{i_1 \dots i_l}$, then $k^{(j)} \in I_{i_1 \dots i_{j-1} i i_j^{(j)} \dots i_l^{(j)}};$

(iii) the map $I_{i_1...i_l} \to I_{i_1...i_{i-1}ii_i^{(j)}...i_l^{(j)}}, k \mapsto k^{(j)}$ preserves the strict order on these sets.

This will be proved by induction on *l*. (It is implicit in (i) that $(i_1, \ldots, i_{j-1}, i, i_j^{(j)}, \ldots, i_{l-1}^{(j)})$ is a \mathcal{G} -descent sequence, and it follows from (i) that $(i_1, \ldots, i_{j-1}, i, i_j^{(j)}, \ldots, i_l^{(j)})$ is a \mathcal{G} -descent sequence, so (ii) and (iii) make sense.) First note that, if $k \in I_{i_1...i_l}$, then k = (m, a) for some $m \in I_{i_1...i_{l-1}}$ with $m > i_l$ and $a \in G_{i_l}$. Also, $k^{(j)} = (m^{(j)}, a)$, and since $i \in I_{i_1...i_{j-1}}$, (i_1,\ldots,i_{j-1},i) is a \mathcal{G} -descent sequence.

Suppose l = j. Then $i_j \in I_{i_1...i_{j-1}}$ and $i_j > i$, $1 \in G_i$, so $i_j^{(j)} = (i_j, 1) \in I_{i_1...i_{j-1}i}$ and (i) holds in this case. If $k = (m, a) \in I_{i_1...i_j}$ then $m > i_j$, so m > i and similarly, $m^{(j)} =$ $(m,1) \in I_{i_1...i_{j-1}i}$. Also, $m^{(j)} > (i_j,1) = i_j^{(j)}$, and $a \in G_{i_j} = G_{i_j}^{(j)}$, by Remark 2.1. Hence $k^{(j)} \in I_{i_1...i_{j-1}ii_j^{(j)}}$, and (ii) holds. Suppose also $k_1 = (m_1, a_1) \in I_{i_1...i_j}$. By Remark 2.1, the bi-order on G_{i_j} as a free factor of $\mathcal{G}_{i_1...i_{j-1}}$ is the same as its bi-order as the free factor $G_{i_i^{(j)}}$ of $\mathcal{G}_{i_1...i_{j-1}i}$. Thus if $k < k_1$ then either $m < m_1$, whence $m^{(j)} = (m, 1) < (m_1, 1) = m_1^{(j)}$ and so $k^{(j)} = (m^{(j)}, a) < (m_1^{(j)}, a_1) = k_1^{(j)}$, or $m = m_1$ and $a < a_1$, whence $m^{(j)} = m_1^{(j)}$ and again $k^{(j)} < k_1^{(j)}$, hence (iii) holds.

Now suppose l > j and (i)–(iii) hold for l - 1. Then by (ii) for the case l - 1, with $k = i_l$, (i) holds for l. Suppose $k \in I_{i_1...i_l}$ and write k = (m, a) as above, with $i_l < m$. By the induction hypothesis, $m^{(j)} \in I_{i_1...i_{j-1}ii_j^{(j)}...i_{l-1}^{(j)}}$ and in the order on this set, $i_l^{(j)} < m^{(j)}$. Also, $G_{i_l} = G_{i_l^{(j)}}$ by Remark 2.1, and the bi-orders of this group as a free factor of $\mathcal{G}_{i_1...i_{j-1}ii_j^{(j)}...i_{l-1}^{(j)}}$ are the same. It follows that $k^{(j)} \in I_{i_1...i_{j-1}ii_j^{(j)}...i_l^{(j)}}$, so (ii) holds for l. Suppose also $k_1 = (m_1, a_1) \in I_{i_1...i_l}$ and $k < k_1$. If $m < m_1$ then by the induction hypothesis $m^{(j)} < m_1^{(j)}$, and the argument in the case l = j shows that $k^{(j)} < k_1^{(j)}$ (in the case $m = m_1$ and $a < a_1$ as well), hence (iii) holds for l. This establishes (i), (ii) and (iii). Part (1) of the lemma now follows from (i) (with j = n).

Suppose **i** is discriminating for g at l. If l < j then clearly $\mathbf{i}^{(j)}$ is discriminating for g at l and (2) and (3) hold in this case.

Suppose l = j. In the expression for g as a reduced word in the free factors of $\mathcal{G}_{i_1...i_{j-1}}$, say $g = g_1 \dots g_p$, let

$$K = \left\{ k \in I_{i_1 \dots i_{j-1}} \mid \text{at least one of } g_1, \dots, g_p \text{ belongs to } G_k \right\}$$

a finite subset of $I_{i_1...i_{j-1}}$ with least element i_j . Hence if $k \in K$, k > i, so $k^{(j)} = (k, 1) \in I_{i_1...i_{j-1}i}$. By Remark 2.1, $G_k = G_{k^{(j)}}$ is also a free factor of $\mathcal{G}_{i_1...i_{j-1}i}$. Also, the map $K \to I_{i_1...i_{j-1}i}$, $k \mapsto k^{(j)} = (k, 1)$ is order preserving, hence $gm_{\mathcal{G}_{i_1...i_{j-1}i}} = i_j^{(j)}$ and $ge_{i_j} = ge_{i_j^{(j)}}$, where

$$e_{i_j} = e_{\mathcal{G}_{i_1...i_{j-1}}, i_j}, \quad e_{i_j^{(j)}} = e_{\mathcal{G}_{i_1...i_{j-1}, i_j^{(j)}}, i_j^{(j)}}.$$

Thus $\mathbf{i}^{(j)}$ is discriminating for g at j+1 and (2) holds. By Remark 2.1, the bi-order on G_{i_j} as a free factor of $\mathcal{G}_{i_1...i_{j-1}}$ is the same as its bi-order as the free factor $G_{i_j}^{(j)}$ of $\mathcal{G}_{i_1...i_{j-1}i}$, hence (3) holds in this case.

Finally suppose l > j. If $k \in I_{i_1...i_{l-1}}$ then by (ii) of the claim, $k^{(j)} \in I_{i_1...i_{j-1}ii_j^{(j)}...i_{l-1}^{(j)}}$ and by Remark 2.1, $G_k = G_{k^{(j)}}$, so every free factor of $\mathcal{G}_{i_1...i_{l-1}}$ is a free factor of $\mathcal{G}_{i_1...i_{j-1}ii_j^{(j)}...i_{l-1}^{(j)}}$. It follows from (iii) that $gm_{\mathcal{G}_{i_1...i_{j-1}i}i_j^{(j)}...i_{l-1}^{(j)}} = i_l^{(j)}$, and $ge_{i_l} = ge_{i_l^{(j)}}$, using similar abbreviations for the projection maps to those in the previous case. Thus $\mathbf{i}^{(j)}$ is discriminating for g at l+1 and (2) holds. By Remark 2.1, the order on G_{i_l} as a free factor of $\mathcal{G}_{i_1...i_{l-1}}$ is the same as its order as the free factor $G_{i_l^{(j)}}$ of $\mathcal{G}_{i_1...i_{l-1}ii_j^{(j)}...i_{l-1}^{(j)}}$, hence (3) holds. This completes the

proof.

Lemma 2.3. Let \mathbf{i}_1 be a \mathcal{G} -descent sequence discriminating for g, and let \mathbf{i}_2 be a \mathcal{G} -descent sequence discriminating for h. Then there is a \mathcal{G} -descent sequence \mathbf{i} such that

- (1) **i** *is discriminating for g and for h;*
- (2) the **i**-signature of g equals the \mathbf{i}_1 -signature of g and the **i**-signature of h equals the \mathbf{i}_2 -signature of h;

(3) if g is \mathbf{i}_1 -positive, then g is \mathbf{i} -positive and if h is \mathbf{i}_2 -positive, then h is \mathbf{i} -positive.

Proof. Put $\mathbf{i}_1 = (i_{11}, i_{12}, \dots, i_{1m})$, $\mathbf{i}_2 = (i_{21}, i_{22}, \dots, i_{2n})$ and suppose \mathbf{i}_1 , \mathbf{i}_2 agree in the first p places, where $p \ge 0$ and p is maximal subject to this.

Case 1. If p = m then $\mathbf{i} = \mathbf{i}_2$ is the desired sequence, and if p = n then $\mathbf{i} = \mathbf{i}_1$ is the desired sequence.

Case 2. Otherwise, either $i_{1,p+1} > i_{2,p+1}$ or $i_{1,p+1} < i_{2,p+1}$. In the first case, replace \mathbf{i}_1 by

$$(i_{11},\ldots,i_{1p},i_{2,p+1},i_{1,p+1}^{(p+1)},\ldots,i_{1m}^{(p+1)}),$$

leaving \mathbf{i}_2 unchanged, and in the second case, replace \mathbf{i}_2 by

$$(i_{21},\ldots,i_{2p},i_{1,p+1},i_{2,p+1}^{(p+1)},\ldots,i_{2n}^{(p+1)})$$

without changing i_1 . By Lemma 2.2, the new sequences are \mathcal{G} -descent sequences and it suffices to prove the lemma for the new pair of sequences. The new sequences agree in at least the first p + 1 places, so this reduces the non-negative integer (m - p) + (n - p). Thus repetition of this procedure will terminate eventually in Case 1, giving the required sequence. (In fact, it must terminate with two sequences of length at most m+n.)

Corollary 2.4. If $g \in \langle \mathcal{G} \rangle \setminus \{1\}$ and **i** is a \mathcal{G} -descent sequence which is discriminating for *g*, then the **i**-signature of *g* is independent of **i**. The following are equivalent:

- (1) $g \in P_{\mathcal{G}}$;
- (2) g is **i**-positive for some *G*-descent sequence **i** discriminating for g;
- (3) g is i-positive for all G-descent sequences i discriminating for g.

Proof. This follows from Lemma 2.3, applied with g = h, and the observation preceding Lemma 2.2.

Corollary 2.5. *If* g, $h \in P_G$ *then* $gh \in P_G$.

Proof. By Lemma 2.3 and Cor. 2.4, there is a \mathcal{G} -descent sequence **i** such that both g and h are **i**-positive. Suppose $\mathbf{i} = (i_1, \dots, i_n)$, **i** is discriminating for g at l and discriminating for h at p. Abbreviate $e_{\mathcal{G}_{i_1\dots i_{j-1}}, i_j}$ to e_{i_j} .

Case 1. p > l. Then $g, h \in \langle \mathcal{G}_{i_1 \dots i_{l-1}} \rangle$, and $h \in \langle \mathcal{G}_{i_1 \dots i_l} \rangle \subseteq \ker(e_{i_l})$, so $(gh)e_{i_l} = ge_{i_l} > 1$. Also, $hm_{\mathcal{G}_{i_1 \dots i_{l-1}}} \ge i_l$, hence $(gh)m_{\mathcal{G}_{i_1 \dots i_{l-1}}} \ge i_l$, and since $(gh)e_{i_l} \ne 1$, $(gh)m_{\mathcal{G}_{i_1 \dots i_{l-1}}} = i_l$. Hence **i** is discriminating for gh at l and gh is **i**-positive, therefore $gh \in P_{\mathcal{G}}$.

Case 2. p < l. Similarly $(gh)e_{i_p} = he_{i_p} > 1$, **i** is discriminating for gh at p and gh is **i**-positive, so $gh \in P_{\mathcal{G}}$.

Case 3. p = l. Then $ge_{i_p} > 1$, $he_{i_p} > 1$, so $(gh)e_{i_p} = (ge_{i_p})(he_{i_p}) > 1$, and $(gh)m_{\mathcal{G}_{i_1...i_{l-1}}} \ge i_p$. Again it follows that **i** is discriminating for gh at p and gh is **i**-positive, so $gh \in P_{\mathcal{G}}$. \Box

Thus $P_{\mathcal{G}}$ is the strictly positive cone for a right order on $\langle \mathcal{G} \rangle$, for all objects \mathcal{G} of **G**. The next step is to show that if **f** is a morphism in **G**, then the group isomorphism **f***Q* is order-preserving, equivalently, maps the strictly positive cone to the strictly positive cone.

Lemma 2.6. Let $\mathcal{G} = (G, \{G_i \mid i \in I\}), \ \mathcal{H} = (H, \{H_j \mid j \in J\})$ be objects of **G**, and let $\mathbf{f} = (\lambda, \{f_i \mid i \in I\})$ be a morphism from \mathcal{G} to \mathcal{H} . Then $P_{\mathcal{G}}(\mathbf{f}Q) \subseteq P_{\mathcal{H}}$.

Proof. Firstly, for $l \in I$, f induces a morphism $f_l = (\lambda_l, \{f_{i'} \mid i' \in I_l\})$ from \mathcal{G}_l to $\mathcal{H}_{l\lambda}$, as follows. For $(i,a) \in I_l$, where $i \in I$, i > l and $a \in G_l$, define $(i,a)\lambda_l = (i\lambda, af_l)$. It is easily checked that $\lambda_l : I_l \to J_{l\lambda}$ is an order-preserving bijection. For $i' = (i,a) \in I_l$, $f_{i'} : a^{-1}G_ia \to (af_l)^{-1}H_{i\lambda}(af_l)$ is defined by $a^{-1}ga \mapsto (af_l)^{-1}(gf_i)(af_l)$. This is clearly an isomorphism of bi-ordered groups, as f_i is order-preserving.

Note that $f_{i'}$ is fQ restricted to $a^{-1}G_la$, and it follows that f_lQ is fQ restricted to $\langle \mathcal{G}_l \rangle$. To prove the lemma, it will be shown, by induction on n, that for all n and any morphism $\mathbf{f} = (\lambda, \{f_i \mid i \in I\})$ of \mathbf{G} , say from $\mathcal{G} = (G, \{G_i \mid i \in I\})$ to $\mathcal{H} = (H, \{H_j \mid j \in J\})$, if $g \in \langle \mathcal{G} \rangle$, $g \neq 1$, has length n relative to the free product decomposition of \mathcal{G} , then $g \in P_{\mathcal{G}}$ implies $g(\mathbf{f}Q) \in P_{\mathcal{H}}$.

Assume then, that g has length n and $g \in P_{\mathcal{G}}$. Write $g = g'g^*$ as in the recursive definition, so $g' \in G_l$, $g^* \in \langle \mathcal{G}_l \rangle$, where $l = gm_{\mathcal{G}}$. Then

$$h := g(\mathbf{f}Q) = (g'(\mathbf{f}Q))(g^*(\mathbf{f}Q))$$
$$= (g'f_l)(g^*(\mathbf{f}_lQ))$$

and $g'f_l \in H_{l\lambda}$, $g^*(\mathbf{f}_l Q) \in \langle \mathcal{H}_{l\lambda} \rangle$. Let $g = g_1 \dots g_n$ be the expression of g as a reduced word relative to the decomposition $\mathbf{*}_{i \in I} G_i$, where $g_k \in G_{i_k}$. Then $h = h_1 \dots h_n$ is the expression of h as a reduced word relative to the decomposition $\mathbf{*}_{j \in J} H_j$, where $h_k = g_k f_{i_k} \in H_{i_k\lambda}$. Since λ is order-preserving, it follows that $hm_{\mathcal{H}} = l\lambda$. Therefore, $h' = g'f_l$ and $h^* = g^*(\mathbf{f}_l Q)$. Thus, if $g' \neq 1$, then g' > 1 in G_l , hence h' > 1 in $H_{l\lambda}$, so $h \in P_{\mathcal{H}}$. If g' = 1 then h' = 1 and g^* has shorter length than g (relative to the free product decomposition of $\langle \mathcal{G}_l \rangle$), so by induction

$$g \in P_{\mathcal{G}} \Rightarrow g^* \in P_{\mathcal{G}_l} \Rightarrow h^* = g^*(\mathbf{f}_l Q) \in P_{\mathcal{H}_{l\lambda}} \Rightarrow h \in P_{\mathcal{H}}.$$

This completes the proof.

The final step is to show that $P_{\mathcal{G}}$ is closed under conjugation, so is the strictly positive cone for a bi-order on \mathcal{G} ; this will use the following remark.

Remark 2.2. Let $\mathcal{G} = (G, \{G_i \mid i \in I\})$ be an object of **G**, let $i \in I$ and suppose $g \in \langle \mathcal{G}_i \rangle$. Then $g \in P_{\mathcal{G}}$ if and only if $g \in P_{\mathcal{G}_i}$.

For let (i_1, \ldots, i_n) be a \mathcal{G}_i -descent sequence which is discriminating for g at j, say. Then (i, i_1, \ldots, i_n) is a \mathcal{G} -descent sequence discriminating for g at j + 1, with exactly the same signature in the group G_{i_j} , which is bi-ordered in the same way for both descent sequences. By Cor. 2.4, $g \in P_{\mathcal{G}}$ if and only if $g \in P_{\mathcal{G}_i}$.

Lemma 2.7. Let $\mathcal{G} = (G, \{G_i \mid i \in I\})$ be an object of **G** and let $x \in \langle \mathcal{G} \rangle$. Then $x^{-1}P_{\mathcal{G}}x \subseteq P_{\mathcal{G}}$.

Proof. It will be shown that, for all \mathcal{G} , all $x \in \langle \mathcal{G} \rangle$ and all $g \in P_{\mathcal{G}}$ of length $n, x^{-1}gx \in P_{\mathcal{G}}$, by induction on n. Since $\langle \mathcal{G} \rangle$ is generated by $\bigcup_{i \in I} G_i$, it can be assumed that $x \in G_i$ for some i. Write $g = g'g^*$ as in the recursive definition, so $g' \in G_l, g^* \in \langle \mathcal{G}_l \rangle$, where $l = gm_{\mathcal{G}}$.

Case 1: i < l. Then $g \in \langle \mathcal{G}_i \rangle = \bigstar_{(j,a) \in I_i} a^{-1} G_j a$. Conjugation by *x* induces a morphism $\mathbf{f} = (\lambda, \{f_{(j,a)} \mid (j,a) \in I_i\}) : \mathcal{G}_i \to \mathcal{G}_i$, where $(j,a)\lambda = (j,ax)$ and $yf_{(j,a)} = x^{-1}yx$ for $y \in G_{(j,a)} = a^{-1}G_j a$. By Remark 2.2 and Lemma 2.6,

$$g \in P_{\mathcal{G}} \Rightarrow g \in P_{\mathcal{G}_i} \Rightarrow x^{-1}gx = g(\mathbf{f}Q) \in P_{\mathcal{G}_i} \Rightarrow x^{-1}gx \in P_{\mathcal{G}}$$

as required.

Case 2: i = l. If $g' \neq 1$ then $(x^{-1}gx)' = x^{-1}g'x$ and $(x^{-1}gx)m_{\mathcal{G}} = l$. Then $g \in P_{\mathcal{G}}$ implies g' > 1 in G_i , so $x^{-1}g'x > 1$ as G_i is bi-ordered, hence $x^{-1}gx \in P_{\mathcal{G}}$ by definition. Otherwise $g = g^* \in \langle \mathcal{G}_i \rangle$, and as in the previous case, $x^{-1}gx \in P_{\mathcal{G}}$.

Case 3: i > l. Then $(x^{-1}gx)' = g'$, so if $g' \neq 1$ then $x^{-1}gx \in P_{\mathcal{G}}$ by definition. Otherwise, $g = g^* \in P_{\mathcal{G}_l}$ by definition, and $x \in \langle \mathcal{G}_l \rangle$, so by induction $x^{-1}gx = (x^{-1}gx)^* \in P_{\mathcal{G}_l}$, hence $x^{-1}gx \in P_{\mathcal{G}}$ by definition, since $l = (x^{-1}gx)m_{\mathcal{G}}$.

This completes the inductive proof.

Thus for an object \mathcal{G} of \mathbf{G} , $\mathcal{G}Q$ is $\langle \mathcal{G} \rangle$ with the bi-order having $P_{\mathcal{G}}$ as strictly positive cone, which has been shown to be a bi-order. It follows from Lemma 2.6 that if \mathbf{f} is a morphism then $\mathbf{f}Q$ is order-preserving. It is routine to check that Q satisfies the conditions for a functor (it preserves multiplication and identity morphisms), so Theorem 2.1 is proved.

Note that, in the recursive definition of the order on $\langle \mathcal{G} \rangle$, if g has length 1, then clause (1) applies, hence the order on $\langle \mathcal{G} \rangle$ extends the given orders on the free factors.

3. **BI-ORDERING GRAPH PRODUCTS**

Let $G\Gamma$ be a graph product, let v be a vertex of Γ and consider the decomposition (*) in (2) of §1:

$$G\Gamma = (G_v \times GE) *_{GE} GZ.$$

where Z is the graph obtained by removing the vertex v and all edges incident with it from Γ , and E is the full subgraph of Γ whose vertices are the vertices of Γ adjacent to v.

Lemma 3.1. Let $\rho_{\Gamma,Z}$: $G\Gamma \to GZ$ be the retraction defined in §1, and let K be the kernel of $\rho_{\Gamma,Z}$. Then $K = \bigstar_{g \in R} gG_v g^{-1}$, where R is any transversal for the cosets $\{gGE \mid g \in GZ\}$.

Proof. Corresponding to the decomposition (*), let *X* be the usual Bass-Serre tree on which $G\Gamma$ acts ([8, Ch.I, §4, Theorem 7]). The vertex set is $(G\Gamma/(G_v \times GE)) \coprod (G\Gamma/GZ)$ and the edge set is $(G\Gamma/GE) \coprod (\overline{G\Gamma/GE})$. Although these are disjoint unions, it will cause no confusion to view the vertices and edges corresponding to $G\Gamma/GE$ just as cosets. For $g \in G\Gamma$, the directed edge gGE starts at $g(G_v \times GE)$ and ends at gGZ, and for each such edge there is an oppositely oriented edge \overline{gGE} . Thus $(\overline{G\Gamma/GE}) = \{\overline{gGE} \mid g \in G\Gamma\}$. The action of $G\Gamma$ on X (on the left) is via the usual action on cosets.

Now *K* acts on *X* by restriction, and the action is transitive on the vertices gGZ. For $G\Gamma = K \rtimes GZ$ (because $\rho_{\Gamma,Z}$ is a retraction), so if $g \in G\Gamma$, g = kz for some (unique) $k \in K$ and $z \in GZ$, and gGZ = kGZ. The edges ending at the vertex *GZ* are the cosets gGE for $g \in GZ$. If gGE, g_1GE are two such distinct edges, then their endpoints $g(G_v \times GE)$,

 $g_1(G_v \times GE)$ are in distinct *K*-orbits, hence so are the edges themselves. For if $kg(G_v \times GE) = g_1(G_v \times GE)$, where $k \in K$, then $g_1 = kgae$ for some $a \in G_v$ and $e \in GE$. Applying $\rho_{\Gamma,Z}$ to this, $g_1 = ge$, so $gGE = g_1GE$.

Therefore, if *R* is a transversal for GZ/GE, the set of edges $\{gGE, \overline{gGE} \mid g \in R\}$ is the set of edges incident with *GZ*, and these edges, together with their endpoints, form a fundamental domain *T* for the action of *K* on *X*, in the sense of [8, Ch.I, §4, Definition 7]. There is an associated tree of groups (K,T) with *K* isomorphic to $K_T := \lim_{K \to T} (K,T)$ (see Ch. I, §4, Theorem 10 and the remarks preceding it in [8]).

The *K*-stabilizer of the common endpoint GZ of the edges of *T* is $K \cap GZ = 1$, and the stabilizer of the edge gGE is $K \cap gGEg^{-1} = g(K \cap GE)g^{-1} = 1$. The stabilizer of $g(G_v \times GE)$ is

$$K \cap g(G_v \times GE)g^{-1} = g(K \cap (G_v \times GE))g^{-1}$$

If k = ae, where $k \in K$, $a \in G_v$ and $e \in GE$, then applying $\rho_{\Gamma,Z}$ gives e = 1, so $k \in G_v$. Hence the stabilizer of $g(G_v \times GE)$ is gG_vg^{-1} .

Therefore $K_T = \bigstar_{g \in R} g G_v g^{-1}$ (cf Example (c), §4.4, Chapter I in [8], with A = 1) and the lemma follows.

Remark 3.1. If $gGE = g_1GE$ then $gag^{-1} = g_1ag_1^{-1}$ for all $a \in G_v$, so $gG_vg^{-1} = g_1G_vg_1^{-1}$. Thus changing the transversal in Lemma 3.1 does not change the decomposition of K, and $C := \{gG_vg^{-1} | g \in GZ\} = \{gG_vg^{-1} | g \in R\}$, for any transversal R. Conversely, if $gG_vg^{-1} = g_1G_vg_1^{-1}$, where $g, g_1 \in GZ$, then $gGE = g_1GE$. This follows because if $xG_vx^{-1} = G_v$, where $x \in GZ$, then $x \in GE$ by the normal form theorem for free products with amalgamation.

Let $\rho_{Z,E}$: $GZ \to GE$ be the retraction defined in §1 and let $L = \text{ker}(\rho_{Z,E})$. Then $GZ = L \rtimes GE$, so R = L is a valid choice for R in Lemma 3.1 and $L = L^{-1}$, hence $K = \bigstar_{l \in L} l^{-1}G_{v}l$.

Suppose both *GZ* and *G_v* are bi-ordered. For $l \in L$, bi-order $l^{-1}G_v l$ by: $l^{-1}gl \leq l^{-1}g_1 l$ if and only if $g \leq g_1$ in *G_v*. As a subgroup of *GZ*, *L* is bi-ordered by restriction, in particular is totally ordered. Therefore $\mathcal{K} := (K, \{l^{-1}G_v l \mid l \in L\})$ is an object of the category **G**. Thus $K = \mathcal{K}Q$ is bi-ordered.

Also, GZ acts on C by conjugation, so for $g \in GZ$, $l \in L$, $g^{-1}(l^{-1}G_{\nu}l)g = l_1^{-1}G_{\nu}l_1$ for some unique $l_1 \in L$, by Remark 3.1. The map $\lambda_g : l \mapsto l_1$ is a permutation of L, giving an action of $G\Gamma$ on L. That is, the map $g \mapsto \lambda_g$ is a homomorphism from GZ to the symmetric group on L. Further, the map $f_l^g : l^{-1}G_{\nu}l \to (l\lambda_g)^{-1}G_{\nu}(l\lambda_g), l^{-1}xl \mapsto (l\lambda_g)^{-1}x(l\lambda_g)$ is an isomorphism of bi-ordered groups, and is conjugation by g, by Remark 3.1, because GEcommutes with G_{ν} .

Lemma 3.2. In these circumstances, for all $g \in GZ$, $\mathbf{f}_g := (\lambda_g, \{f_l^g \mid l \in L\})$ is a morphism from \mathcal{K} to \mathcal{K} in \mathbf{G} .

Proof. The only thing to check is that λ_g is order-preserving. Since *GZ* is generated by G_u , where *u* runs through the vertices of *Z*, it suffices to show this when $g \in G_u$, where *u* is a vertex of *Z*.

Case 1. *u* is not a vertex of *E*. Then $g \in L$, so $l\lambda_g = lg$, for all $l \in L$, and $l < l_1$ implies $lg < l_1g$ because *L* is bi-ordered.

Case 2. *u* is a vertex of *E*. Then *g* commutes with all elements of G_v , so for $l \in L$,

$$g^{-1}l^{-1}G_{\nu}lg = (g^{-1}l^{-1}g)G_{\nu}(g^{-1}lg)$$

and $g^{-1}lg \in L$ as L is normal in GZ. Hence $l\lambda_g = g^{-1}lg$ for all $l \in L$, and $l < l_1$ implies $g^{-1}lg < g^{-1}l_1g$ since GZ is bi-ordered.

Theorem B. If G_v is bi-orderable, for all vertices v of Γ , then $G\Gamma$ is bi-orderable, and if Δ is a full subgraph of Γ , then any bi-order on $G\Delta$ extends to a bi-order on $G\Gamma$.

Proof. The proof is by induction on the number *n* of vertices of Γ , and there is nothing to prove when $n \le 1$, so assume n > 1. Choose a vertex *v* and consider the decomposition (*)

$$G\Gamma = (G_{\nu} \times GE) *_{GE} GZ$$

By induction *GZ* can be bi-ordered, and $K = \ker(\rho_{\Gamma,Z})$ can be bi-ordered (as $\mathcal{K}Q$) as in the discussion preceding Lemma 3.2. Since $G\Gamma = K \rtimes GZ$, the orders on *K* and *GZ* extend to a right order on $G\Gamma$ (see [2, Lemma 2.1]). To show that this right order is a bi-order, it suffices to show that the bi-order on *K* is invariant under conjugation by elements of *GZ*. But for $g \in GZ$, there is a morphism f_g given by Lemma 3.2. Then f_gQ is an orderpreserving automorphism of *K*, and is conjugation by *g*, since it acts on the free factors of *K* as conjugation by *g*. Any bi-order on *GZ* can be extended in this way to a bi-order on $G\Gamma$, and the last part of the theorem follows by induction (cf the proof of Theorem A). \Box

In Theorem B it was assumed that the graph Γ is finite, but it is possible to consider $G\Gamma$ when Γ is an infinite simple graph; the definition is the same and properties (1) and (2) of graph products in §1 remain valid, as does Lemma 3.1.

Theorem C. Theorems A and B remain true if Γ is infinite.

Proof. If all G_v are bi-orderable, then it follows from Theorem B that $G\Gamma$ is bi-orderable. This is because bi-orderability is a local property: a group is bi-orderable if and only if every finitely generated subgroup is bi-orderable, and a finitely generated subgroup of $G\Gamma$ is contained in $G\Delta$ for some finite full subgraph Δ of Γ .

To obtain the second part of Theorem B when Γ is infinite requires a little more work. Given a full subgraph Δ of Γ , and a bi-order \leq on $G\Delta$, let Ω be the set of all pairs (B, \leq') , where *B* is a full subgraph of Γ containing Δ and \leq' is a bi-order on *GB* extending \leq . Partially order Ω by: $(B_1, \leq_1) \leq (B_2, \leq_2)$ if and only if B_1 is a subgraph of B_2 and \leq_2 extends \leq_1 . Then $(\Delta, \leq) \in \Omega$, and a non-empty chain in Ω has an upper bound (by taking unions), so by Zorn's Lemma Ω has a maximal element, say (Z, \leq_0) . Suppose $Z \neq \Gamma$, and choose a vertex v of Γ not in Z, and let Γ' be the full subgraph of Γ whose vertices are those of Z together with v. Let E be the full subgraph of Γ' whose vertices are the vertices of Γ adjacent to v, and let $K = \ker(\rho_{\Gamma',Z})$. Then $G\Gamma' = K \rtimes GZ$, and arguing as in Theorem B, \leq_0 extends to a bi-order \leq' on $G\Gamma'$. Thus $(\Gamma', \leq') \in \Omega$, contradicting the maximality of (Z, \leq_0) . Hence \leq_0 is an extension of \leq to $G\Gamma$, as required.

Similarly, right orderability is a local property, so if Γ is infinite and all G_v are right orderable, then $G\Gamma$ is right orderable by Theorem A. The second part of Theorem A is also valid when Γ is infinite, using Zorn's Lemma, replacing "bi-order" by "right order" in the argument above. This works because a free product of right orderable groups is right orderable (see, for example, [2, Corollary 5.11]), and an extension of right ordered groups is right ordered ([2, Lemma 2.1]). Details are left to the reader.

Another addition to Theorems A and B is the following.

Theorem D. Let $G\Gamma$ be a graph product, where Γ is a (possibly infinite) simple graph.

(1) If G_v is right ordered, for all vertices v of Γ , then $G\Gamma$ has a right order extending all the given right orders on the groups G_v .

(2) If G_v is bi-ordered, for all vertices v of Γ , then $G\Gamma$ has a bi-order extending all the given bi-orders on the groups G_v .

Proof. The proof of (2) needs another argument using Zorn's Lemma, considering pairs (B, \leq) , where *B* is a full subgraph of Γ and \leq is a bi-order on *GB* extending the given right order on G_v , for all vertices *v* of *B*. It works because, in Lemma 3.1, if G_v is bi-ordered then *K* has a bi-order extending the bi-order on G_v , by the observation at the end of §2. Part (1) can be proved by a similar argument. It works because a free product of right ordered groups has a right order extending the orders on the free factors (again see [2, Corollary 5.11]). Once more, the details are left to the reader.

A graph product with all vertex groups infinite cyclic is called a right-angled Artin group, a free partially commutative group or a graph group. Theorem B generalises the known result that these groups are bi-orderable (see [4], [5]). This special case also follows from a result in the thesis of C. Droms ([3, Chapter III, Theorem 1.1]), that these groups are residually torsion-free nilpotent.

REFERENCES

- [1] G. M. Bergman, "Specially ordered groups", Comm. Algebra 12 (1984), 2315–2333.
- [2] V. V. Bludov and A. M. W. Glass, "Word problems, embeddings, and free products of right-ordered groups with amalgamated subgroup", Proc. Lond. Math. Soc. (3) 99 (2009), 585–608.
- [3] C. Droms, Graph groups. Ph.D. Thesis, Syracuse University 1983.
- [4] G. Duchamp and D. Krob, "The lower central series of the free partially commutative group", *Semigroup Forum* **45** (1992), 385-394.
- [5] G. Duchamp and J.-Y. Thibon, "Simple orderings for free partially commutative groups", Internat. J. Algebra Comput. 2 (1992), 351-355.
- [6] E. R. Green, Graph products of groups. Ph.D. Thesis, University of Leeds 1990.
- [7] D. G. Radcliffe, "Rigidity of graph products of groups," Algebr. Geom. Topol. 3 (2003), 1079-1088.
- [8] J.-P. Serre, Trees. New York: Springer 1980.
- [9] A. A. Vinogradov, "On the free product of ordered groups", Mat. Sb. (N.S.), 25(67) (1949), 163-168.

12

School of Mathematical Sciences Queen Mary, University of London Mile End Road London E1 4NS, England.

Email: I.M.Chiswell@qmul.ac.uk