
ORDERING GRAPH PRODUCTS OF GROUPS

I. M. CHISWELL

1. INTRODUCTION

Let Γ be a finite simple graph with vertex set V , so the edges may be taken to be un-
ordered pairs of distinct elements of V . Assume that, for every v ∈ V , there is assigned
a group Gv. The graph product GΓ is the quotient of the free product ∗v∈V Gv by the
normal subgroup generated by all [Gu,Gv] for which {u,v} is an edge. (As usual, [Gu,Gv]
means the subgroup generated by

{
x−1y−1xy | x ∈ Gu, y ∈ Gv

}
.) These groups were stud-

ied by E. R. Green in her thesis [6], and have since attracted considerable attention (see,
for example, [7] and the references cited there).

In this paper, it is shown that, if all Gv are right orderable, then GΓ is right orderable,
and if all Gv are (two-sided) orderable then GΓ is orderable. Recall that a right order on a
group G is a total order ≤ such that a≤ b and c ∈ G implies ac≤ bc. The strictly positive
cone is the set P := {g ∈ G | 1 < g}. It has the properties

PP⊆ P, G\{1}= P∪P−1 and P∩P−1 = /0.

Conversely, given a subset P of G satisfying these conditions, defining a < b to mean
ba−1 ∈ P gives a right order on G, with strictly positive cone P. A right order is called
a two-sided order (abbreviated to bi-order) if in addition it is a left order, that is, a ≤ b
and c ∈ G implies ca≤ cb. A necessary and sufficient condition for this is that the strictly
positive cone P is closed under conjugation: x−1Px⊆ P for all x ∈ G.

Some elementary facts about graph products will be used.
(1) If ∆ is a full subgraph of Γ with vertex set U , then G∆ embeds naturally in GΓ, and

there is a retraction ρΓ,∆ : GΓ→ G∆ such that xρΓ,∆ = x for x ∈ G∆ and xρΓ,∆ = 1
for all x ∈ G∆′, where ∆′ is the full subgraph of Γ with vertex set V \U .

(2) For any v ∈V , there is a decomposition

GΓ = (Gv×GE)∗GE GZ (∗)
where Z is the graph obtained by removing the vertex v and all edges incident with it
from Γ, and E is the full subgraph of Γ whose vertices are the vertices of Γ adjacent
to v (a full subgraph of Z).

To see (1), the inclusion map ∗v∈U Gv →∗v∈V Gv and the projection map ∗v∈V Gv →∗v∈U Gv (which is the identity on Gv for v ∈U and trivial on Gv for v 6∈U) induce ho-
momorphisms ι : G∆→ GΓ and ρ : GΓ→ G∆ with ι ρ = idG∆. Thus ι is injective and
ρΓ,∆ = ρ is the required retraction. To prove (2), there is an obvious map ∗v∈V Gv →

1
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(Gv×GE) ∗GE GZ, which induces a homomorphism GΓ→ (Gv×GE) ∗GE GZ, and the
inverse homomorphism can be defined using the universal property of free products with
amalgamation. It is also proved as part of [6, Lemma 3.20].

In particular, taking ∆ in (1) to have a single vertex, the groups Gv embed naturally in
GΓ and will be viewed as subgroups of GΓ.

In fact the result on right orderability can be easily proved using results in [2], and this
will be done immediately.

Theorem A. If all Gv are right orderable, then GΓ is right orderable, and if ∆ is any full
subgraph of Γ, then every right order on G∆ extends to a right order on GΓ.

Proof. The proof is by induction on n, the number of vertices of Γ. There is nothing to
prove if n≤ 1, otherwise choose a vertex v and use the decomposition (∗) in (2):

GΓ = (Gv×GE)∗GE GZ

where Z is the graph obtained by removing the vertex v and all edges incident with it from
Γ, and E is the full subgraph of Γ whose vertices are the vertices of Γ adjacent to v. By
induction, GZ is right orderable, and any right order on GE extends to a right order on GZ.
Since GE is a subgroup of GZ, it is right orderable, hence Gv×GE is right orderable and
any right order on GE extends to a right order on Gv×GE, because of the exact sequence

1−→ GE −→ Gv×GE
p−→Gv −→ 1

where p is projection onto the first coordinate. See, for example, [2, Lemma 2.1]. By [2,
Corollary 5.1], GΓ is right orderable.

Suppose ∆ is a full subgraph of Γ. If Γ = ∆, obviously every right order on G∆ extends
to GΓ, so assume ∆ 6= Γ, and choose a vertex v of Γ not in ∆. Let≤ be a right order on G∆.
In the decomposition (∗), ∆ is a full subgraph of Z, so by induction ≤ extends to a right
order on GZ, which induces a right order on GE by restriction. This right order extends
to a right order on Gv×GE, as observed above. By [2, Corollary 5.1], the right orders on
Gv×GE and GZ extend to a right order on GΓ. This order extends ≤, as required. �

To prove the analogous result on bi-ordering graph products, more work is needed. It
is a well-known theorem of Vinogradov [9] that free products of bi-orderable groups are
bi-orderable. However, given a family of bi-ordered groups with a total order on the index
set, a canonical way is needed to bi-order the free product of the family. This is dealt with
in the next section, and the result on bi-ordering graph products will be proved in the third
and final section.

2. ORDERING FREE PRODUCTS

To make precise the statement that free products of bi-ordered groups with a totally
ordered index set can be canonically ordered, a functor will be defined, from a certain
category G to the category O of bi-ordered groups and order-preserving homomorphisms.

The objects of G are pairs G = (G,{Gi | i ∈ I}) where G is a group, {Gi | i ∈ I} is a
family of bi-ordered subgroups of G, I is a totally ordered set and G =∗i∈I Gi. The set I
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is called the index set of G and Gi is called a free factor of G. Also, G is denoted by 〈G〉.
Use will be made of the projection map eG,i : 〈G〉 → Gi, for i ∈ I (the unique map which is
the identity on Gi and trivial on G j, for j ∈ I, j 6= i).

A G-morphism from G = (G,{Gi | i ∈ I}) toH= (H,
{

H j | j ∈ J
}
) is a pair

f= (λ ,{ fi | i ∈ I})

where λ : I→ J is an order isomorphism, and for each i∈ I, fi : Gi→Hiλ is an isomorphism
of bi-ordered groups. If g = (µ,

{
g j | j ∈ J

}
) : H→ K is a morphism, fg is defined to

be (λ µ,{ figiλ | i ∈ I}), and the identity morphism 1G is (idI,{idGi | i ∈ I}). Clearly this
makes G into a category.

Theorem 2.1. There is a functor Q : G→O such that, for every object (G,{Gi | i ∈ I}) of
G, the underlying group of (G,{Gi | i ∈ I})Q is G, and such that, for every morphism f=
(λ ,{ fi | i ∈ I}) from (G,{Gi | i ∈ I}) to (H,

{
H j | j ∈ J

}
), fQ is the isomorphism G→ H

whose restriction to Gi is fi composed with the inclusion map Hiλ → H.

The proof of Theorem 2.1 takes up the rest of this section. It is modelled on the method
of bi-ordering free groups given by Bergman ([1]). Given an object G = (G,{Gi | i ∈ I}) in
G, a bi-order needs to be defined on G. Before defining the order, an auxiliary construction
will be introduced.

Let l ∈ I, and let
L = 〈a−1Gia | a ∈ Gl, i ∈ I, i > l〉.

Then L =∗(i,a) a−1Gia, where a ∈Gl and i > l. To see this, if u = a−1
1 g1a1 . . .a−1

n gnan,
where a j ∈ Gl , g j ∈ Gi j , i j > l for 1≤ j ≤ n and (i j,a j) 6= (i j+1,a j+1) for 1≤ j < n, then
viewing this as a word in

⋃
i∈I Gi and cancelling / consolidating to obtain a reduced word,

the letters g j (1 ≤ j ≤ n) and the final letter an remain. This follows by induction on n.
Thus u 6= 1, hence L is a free product as claimed.

Bi-order a−1Gia by: a−1ga < a−1ha if and only if g < h in Gi. Then totally order the
index set Il := {i ∈ I | i > l}×Gl lexicographically: (i,a)< (i1,a1) if and only if i < i1 or
i = i1 and a < a1. This gives a new object in G, namely

Gl := (L,
{

G j | j ∈ Il
}
)

where, for j = (i,a) ∈ Il , G j = a−1Gia. Thus L = 〈Gl〉.
Take 1 6= g ∈ G and write g as a reduced word relative to the decomposition ∗i∈I Gi,

say g = g1 . . .gk, where g j ∈ Gi j . The length of g is defined to be k.
Let l = min{i j | 1 ≤ j ≤ k}; l will be denoted by gmG . Rewrite the expression for g as

g = a0b1a1 . . .an−1bnan, where b j ∈ Gl \ {1}, and a j ∈∗i>l Gi with a j 6= 1 for 1 ≤ j ≤
n−1, which in turn can be rewritten as

g = (b1 . . .bn)
n

∏
j=0

(b j+1 . . .bn)
−1a j(b j+1 . . .bn) = g′g∗
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where g′ = b1 . . .bn ∈ Gl and g∗ ∈ 〈Gl〉 (note that b j+1 . . .bn means 1 when j = n). This
decomposition is unique: if g = h′h∗, where h′ ∈Gl and h∗ ∈ 〈Gl〉, then ge = g′= h′, where
e = eG,l is the projection map, hence also g∗ = h∗.

Note that g∗ has shorter length relative to the free product decomposition of 〈Gl〉 than
k, the length of g relative to 〈G〉. (The second length equals the first length plus n, and
n 6= 0 by definition of l.) Therefore, a subset PG of 〈G〉 can be defined for all objects G of
G recursively, as follows. Let g ∈ 〈G〉, g 6= 1, and let l = gmG .
(1) If g′ 6= 1, then g ∈ PG if and only if g′ > 1 in the given bi-order on the free factor Gl .
(2) If g′ = 1, then g ∈ PG if and only if g∗ ∈ PGl .
Eventually, it will be shown that PG is the strictly positive cone for the required bi-

order on 〈G〉. Note that g−1mG = gmG , g−1 = (g′)−1(g′(g∗)−1(g′)−1) and (g′)−1 ∈ Gl ,
g′(g∗)−1(g′)−1 ∈ 〈Gl〉. Hence, if g′ 6= 1, then exactly one of g, g−1 ∈ PG . If g′ = 1, g = g∗,
g−1 = (g∗)−1 = (g−1)∗, and by induction on length, exactly one of g, g−1 ∈ PG . Thus
G\{1}= PG ∪P−1

G and PG ∩P−1
G = /0.

The next thing to show is that PGPG ⊆ PG , and to do so it is necessary to look at the
recursive definition in greater detail. Let G = (G,{Gi | i ∈ I}) be an object of G and let
i1 ∈ I. One can form Gi1 , with index set Ii1 . Given i2 ∈ Ii1 , the construction can be repeated,
obtaining (Gi1)i2 with index set (Ii1)i2 . Performing this operation n times (and omitting
parentheses) gives an object Gi1...in of G with index set Ii1...in .

Definition . A sequence of indices (i1, . . . , in) arising in this way is called a G-descent
sequence.

Note that the empty sequence is allowed as a G-descent sequence, the corresponding
object of G being G with index set I. Also, an initial subsequence (prefix) of a G-descent
sequence is also a G-descent sequence.

Remark 2.1. If (i1, . . . , in) is a G-descent sequence and i∈ Ii1...in then i= (i0,a1, . . . ,an) for
some i0 ∈ I and a1, . . . ,an ∈ 〈G〉, and the free factor Gi of Gi1...in is (a1 . . .an)

−1Gi0(a1 . . .an).
Moreover, the bi-order on Gi is given by: a−1ga < a−1ha if and only if g < h in Gi0 , where
a = a1 . . .an. This follows by induction on n. For later use, define, for 1≤ j ≤ n+1

i( j) := (i0,a1, . . . ,a j−1,1,a j, . . . ,an).

Definition. Let g ∈ 〈G〉. A G-descent sequence i = (i1, . . . , in) is discriminating for g if
there exists j, 1≤ j ≤ n such that
(1) g ∈ 〈Gi1...i j−1〉;
(2) i j = gmGi1...i j−1

;
(3) ge 6= 1, where e = eGi1...i j−1 , i j : 〈Gi1...i j−1〉 → Gi j is the projection map.

If (1)–(3) hold, i is said to be discriminating for g at j, and ge is called the i-signature of
g. This is justified because there is only one value of j such that i is discriminating for g at
j. To see this, take j as small as possible. Then by (3), g 6∈ 〈Gi1...i j〉, because all free factors
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of 〈Gi1...i j〉 have the form a−1Gka, where k ∈ Ii1...i j−i and k > i j, which are subgroups of
ker(e), hence 〈Gi1...i j〉 is a subgroup of ker(e). Since

〈G〉 ≥ 〈Gi1〉 ≥ . . .≥ 〈Gi1...in〉,

g 6∈ 〈Gi1...ip〉 for p≥ j. Thus the value of j is unique.

Definition. If i is discriminating for g at j, and ge > 1 in Gi j , g is called i-positive (where
Gi j has its bi-order as a free factor of Gi1...i j−1).

For g ∈ 〈G〉, g 6= 1, the definition of PG above will recursively construct a canonical
G-descent sequence i which is discriminating for g, and g ∈ PG if and only if g is i-positive.

Lemma 2.2. If i = (i1, . . . , in) is a G-descent sequence, 1 ≤ j ≤ n, i ∈ Ii1...i j−1 and i < i j,
then

(1) i( j) := (i1, . . . i j−1, i, i( j)
j , . . . , i( j)

n ) is also a G-descent sequence.
(2) If i is discriminating for g, then so is i( j), and the i-signature of g equals the i( j)-

signature of g.
(3) If g is i-positive, then g is i( j)-positive.

Proof. First, it will be shown that, for j ≤ l ≤ n,

(i) i( j)
l ∈ I

i1...i j−1ii( j)
j ...i( j)

l−1
;

(ii) if k ∈ Ii1...il , then k( j) ∈ I
i1...i j−1ii( j)

j ...i( j)
l

;

(iii) the map Ii1...il → I
i1...i j−1ii( j)

j ...i( j)
l

, k 7→ k( j) preserves the strict order on these sets.

This will be proved by induction on l. (It is implicit in (i) that (i1, . . . , i j−1, i, i
( j)
j , . . . , i( j)

l−1) is

a G-descent sequence, and it follows from (i) that (i1, . . . , i j−1, i, i
( j)
j , . . . , i( j)

l ) is a G-descent
sequence, so (ii) and (iii) make sense.) First note that, if k ∈ Ii1...il , then k = (m,a) for
some m ∈ Ii1...il−1 with m > il and a ∈ Gil . Also, k( j) = (m( j),a), and since i ∈ Ii1...i j−1 ,
(i1, . . . , i j−1, i) is a G-descent sequence.

Suppose l = j. Then i j ∈ Ii1...i j−1 and i j > i, 1 ∈ Gi, so i( j)
j = (i j,1) ∈ Ii1...i j−1i and

(i) holds in this case. If k = (m,a) ∈ Ii1...i j then m > i j, so m > i and similarly, m( j) =

(m,1) ∈ Ii1...i j−1i. Also, m( j) > (i j,1) = i( j)
j , and a ∈ Gi j = G

i( j)
j

, by Remark 2.1. Hence

k( j) ∈ I
i1...i j−1ii( j)

j
, and (ii) holds. Suppose also k1 = (m1,a1) ∈ Ii1...i j . By Remark 2.1, the

bi-order on Gi j as a free factor of Gi1...i j−1 is the same as its bi-order as the free factor G
i( j)

j

of Gi1...i j−1i. Thus if k < k1 then either m < m1, whence m( j) = (m,1)< (m1,1) = m( j)
1 and

so k( j) = (m( j),a)< (m( j)
1 ,a1) = k( j)

1 , or m = m1 and a < a1, whence m( j) = m( j)
1 and again

k( j) < k( j)
1 , hence (iii) holds.
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Now suppose l > j and (i)–(iii) hold for l− 1. Then by (ii) for the case l− 1, with
k = il , (i) holds for l. Suppose k ∈ Ii1...il and write k = (m,a) as above, with il < m. By the
induction hypothesis, m( j) ∈ I

i1...i j−1ii( j)
j ...i( j)

l−1
and in the order on this set, i( j)

l < m( j). Also,

Gil = G
i( j)
l

by Remark 2.1, and the bi-orders of this group as a free factor of Gi1...il−1 and

as a free factor of G
i1...i j−1ii( j)

j ...i( j)
l−1

are the same. It follows that k( j) ∈ I
i1...i j−1ii( j)

j ...i( j)
l

, so (ii)

holds for l. Suppose also k1 = (m1,a1) ∈ Ii1...il and k < k1. If m < m1 then by the induction
hypothesis m( j) < m( j)

1 , and the argument in the case l = j shows that k( j) < k( j)
1 (in the

case m = m1 and a < a1 as well), hence (iii) holds for l. This establishes (i), (ii) and (iii).
Part (1) of the lemma now follows from (i) (with j = n).
Suppose i is discriminating for g at l. If l < j then clearly i( j) is discriminating for g at l

and (2) and (3) hold in this case.
Suppose l = j. In the expression for g as a reduced word in the free factors of Gi1...i j−1 ,

say g = g1 . . .gp, let

K =
{

k ∈ Ii1...i j−1 | at least one of g1, . . . ,gp belongs to Gk
}

a finite subset of Ii1...i j−1 with least element i j. Hence if k ∈ K, k > i, so k( j) = (k,1) ∈
Ii1...i j−1i. By Remark 2.1, Gk = Gk( j) is also a free factor of Gi1...i j−1i. Also, the map K →
Ii1...i j−1i, k 7→ k( j) = (k,1) is order preserving, hence gmGi1...i j−1i = i( j)

j and gei j = ge
i( j)

j
,

where
ei j = eGi1...i j−1 , i j , e

i( j)
j
= eGi1...i j−1i, i

( j)
j
.

Thus i( j) is discriminating for g at j + 1 and (2) holds. By Remark 2.1, the bi-order on
Gi j as a free factor of Gi1...i j−1 is the same as its bi-order as the free factor G

i( j)
j

of Gi1...i j−1i,

hence (3) holds in this case.
Finally suppose l > j. If k∈ Ii1...il−1 then by (ii) of the claim, k( j) ∈ I

i1...i j−1ii( j)
j ...i( j)

l−1
and by

Remark 2.1, Gk = Gk( j) , so every free factor of Gi1...il−1 is a free factor of G
i1...i j−1ii( j)

j ...i( j)
l−1

. It

follows from (iii) that gmGi1...i j−1ii
( j)
j ...i( j)

l−1
= i( j)

l , and geil = ge
i( j)
l

, using similar abbreviations

for the projection maps to those in the previous case. Thus i( j) is discriminating for g at
l +1 and (2) holds. By Remark 2.1, the order on Gil as a free factor of Gi1...il−1 is the same
as its order as the free factor G

i( j)
l

of G
i1...i j−1ii( j)

j ...i( j)
l−1

, hence (3) holds. This completes the

proof. �

Lemma 2.3. Let i1 be a G-descent sequence discriminating for g, and let i2 be a G-descent
sequence discriminating for h. Then there is a G-descent sequence i such that
(1) i is discriminating for g and for h;
(2) the i-signature of g equals the i1-signature of g and the i-signature of h equals the

i2-signature of h;
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(3) if g is i1-positive, then g is i-positive and if h is i2-positive, then h is i-positive.

Proof. Put i1 = (i11, i12, . . . , i1m), i2 = (i21, i22, . . . , i2n) and suppose i1, i2 agree in the first
p places, where p≥ 0 and p is maximal subject to this.
Case 1. If p = m then i = i2 is the desired sequence, and if p = n then i = i1 is the desired
sequence.
Case 2. Otherwise, either i1,p+1 > i2,p+1 or i1,p+1 < i2,p+1. In the first case, replace i1 by

(i11, . . . , i1p, i2,p+1, i
(p+1)
1,p+1, . . . , i

(p+1)
1m ),

leaving i2 unchanged, and in the second case, replace i2 by

(i21, . . . , i2p, i1,p+1, i
(p+1)
2,p+1, . . . , i

(p+1)
2n )

without changing i1. By Lemma 2.2, the new sequences are G-descent sequences and it
suffices to prove the lemma for the new pair of sequences. The new sequences agree in
at least the first p+ 1 places, so this reduces the non-negative integer (m− p)+ (n− p).
Thus repetition of this procedure will terminate eventually in Case 1, giving the required
sequence. (In fact, it must terminate with two sequences of length at most m+n.) �

Corollary 2.4. If g ∈ 〈G〉 \ {1} and i is a G-descent sequence which is discriminating for
g, then the i-signature of g is independent of i. The following are equivalent:
(1) g ∈ PG;
(2) g is i-positive for some G-descent sequence i discriminating for g;
(3) g is i-positive for all G-descent sequences i discriminating for g.

Proof. This follows from Lemma 2.3, applied with g = h, and the observation preceding
Lemma 2.2. �

Corollary 2.5. If g, h ∈ PG then gh ∈ PG .

Proof. By Lemma 2.3 and Cor. 2.4, there is a G-descent sequence i such that both g and h
are i-positive. Suppose i = (i1, . . . , in), i is discriminating for g at l and discriminating for
h at p. Abbreviate eGi1...i j−1 , i j to ei j .

Case 1. p > l. Then g, h ∈ 〈Gi1...il−1〉, and h ∈ 〈Gi1...il〉 ⊆ ker(eil), so (gh)eil = geil > 1.
Also, hmGi1...il−1

≥ il , hence (gh)mGi1...il−1
≥ il , and since (gh)eil 6= 1, (gh)mGi1...il−1

= il .
Hence i is discriminating for gh at l and gh is i-positive, therefore gh ∈ PG .
Case 2. p < l. Similarly (gh)eip = heip > 1, i is discriminating for gh at p and gh is
i-positive, so gh ∈ PG .
Case 3. p = l. Then geip > 1, heip > 1, so (gh)eip = (geip)(heip)> 1, and (gh)mGi1...il−1

≥
ip. Again it follows that i is discriminating for gh at p and gh is i-positive, so gh ∈ PG . �

Thus PG is the strictly positive cone for a right order on 〈G〉, for all objects G of G.
The next step is to show that if f is a morphism in G, then the group isomorphism fQ is
order-preserving, equivalently, maps the strictly positive cone to the strictly positive cone.
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Lemma 2.6. Let G = (G,{Gi | i ∈ I}), H = (H,
{

H j | j ∈ J
}
) be objects of G, and let

f= (λ ,{ fi | i ∈ I}) be a morphism from G toH. Then PG(fQ)⊆ PH.

Proof. Firstly, for l ∈ I, f induces a morphism fl = (λl,{ fi′ | i′ ∈ Il}) from Gl to Hlλ ,
as follows. For (i,a) ∈ Il , where i ∈ I, i > l and a ∈ Gl , define (i,a)λl = (iλ ,a fl). It
is easily checked that λl : Il → Jlλ is an order-preserving bijection. For i′ = (i,a) ∈ Il ,
fi′ : a−1Gia→ (a fl)

−1Hiλ (a fl) is defined by a−1ga 7→ (a fl)
−1(g fi)(a fl). This is clearly

an isomorphism of bi-ordered groups, as fi is order-preserving.
Note that fi′ is fQ restricted to a−1Gla, and it follows that flQ is fQ restricted to 〈Gl〉. To

prove the lemma, it will be shown, by induction on n, that for all n and any morphism f=
(λ ,{ fi | i ∈ I}) of G, say from G = (G,{Gi | i ∈ I}) to H = (H,

{
H j | j ∈ J

}
), if g ∈ 〈G〉,

g 6= 1, has length n relative to the free product decomposition of G, then g ∈ PG implies
g(fQ) ∈ PH.

Assume then, that g has length n and g∈PG . Write g= g′g∗ as in the recursive definition,
so g′ ∈ Gl , g∗ ∈ 〈Gl〉, where l = gmG . Then

h := g(fQ) = (g′(fQ))(g∗(fQ))

= (g′ fl)(g∗(flQ))

and g′ fl ∈Hlλ , g∗(flQ)∈ 〈Hlλ 〉. Let g = g1 . . .gn be the expression of g as a reduced word
relative to the decomposition∗i∈I Gi, where gk ∈Gik . Then h = h1 . . .hn is the expression
of h as a reduced word relative to the decomposition ∗ j∈J H j, where hk = gk fik ∈ Hikλ .
Since λ is order-preserving, it follows that hmH = lλ . Therefore, h′ = g′ fl and h∗ =
g∗(flQ). Thus, if g′ 6= 1, then g′ > 1 in Gl , hence h′ > 1 in Hlλ , so h ∈ PH. If g′ = 1 then
h′ = 1 and g∗ has shorter length than g (relative to the free product decomposition of 〈Gl〉),
so by induction

g ∈ PG ⇒ g∗ ∈ PGl ⇒ h∗ = g∗(flQ) ∈ PHlλ ⇒ h ∈ PH.

This completes the proof. �

The final step is to show that PG is closed under conjugation, so is the strictly positive
cone for a bi-order on G; this will use the following remark.

Remark 2.2. Let G = (G,{Gi | i ∈ I}) be an object of G, let i ∈ I and suppose g ∈ 〈Gi〉.
Then g ∈ PG if and only if g ∈ PGi .

For let (i1, . . . , in) be a Gi-descent sequence which is discriminating for g at j, say. Then
(i, i1, . . . , in) is a G-descent sequence discriminating for g at j+ 1, with exactly the same
signature in the group Gi j , which is bi-ordered in the same way for both descent sequences.
By Cor. 2.4, g ∈ PG if and only if g ∈ PGi .

Lemma 2.7. Let G = (G,{Gi | i ∈ I}) be an object of G and let x∈ 〈G〉. Then x−1PGx⊆PG .

Proof. It will be shown that, for all G, all x ∈ 〈G〉 and all g∈ PG of length n, x−1gx ∈ PG , by
induction on n. Since 〈G〉 is generated by

⋃
i∈I Gi, it can be assumed that x ∈ Gi for some

i. Write g = g′g∗ as in the recursive definition, so g′ ∈ Gl , g∗ ∈ 〈Gl〉, where l = gmG .
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Case 1: i < l. Then g ∈ 〈Gi〉 =∗( j,a)∈Ii a−1G ja. Conjugation by x induces a morphism
f = (λ ,

{
f( j,a) | ( j,a) ∈ Ii

}
) : Gi→Gi, where ( j,a)λ = ( j,ax) and y f( j,a) = x−1yx for y ∈

G( j,a) = a−1G ja. By Remark 2.2 and Lemma 2.6,

g ∈ PG ⇒ g ∈ PGi ⇒ x−1gx = g(fQ) ∈ PGi ⇒ x−1gx ∈ PG
as required.
Case 2: i = l. If g′ 6= 1 then (x−1gx)′ = x−1g′x and (x−1gx)mG = l. Then g ∈ PG implies
g′ > 1 in Gi, so x−1g′x > 1 as Gi is bi-ordered, hence x−1gx ∈ PG by definition. Otherwise
g = g∗ ∈ 〈Gi〉, and as in the previous case, x−1gx ∈ PG .
Case 3: i > l. Then (x−1gx)′ = g′, so if g′ 6= 1 then x−1gx ∈ PG by definition. Otherwise,
g = g∗ ∈ PGl by definition, and x ∈ 〈Gl〉, so by induction x−1gx = (x−1gx)∗ ∈ PGl , hence
x−1gx ∈ PG by definition, since l = (x−1gx)mG .

This completes the inductive proof. �

Thus for an object G of G, GQ is 〈G〉with the bi-order having PG as strictly positive cone,
which has been shown to be a bi-order. It follows from Lemma 2.6 that if f is a morphism
then fQ is order-preserving. It is routine to check that Q satisfies the conditions for a
functor (it preserves multiplication and identity morphisms), so Theorem 2.1 is proved.

Note that, in the recursive definition of the order on 〈G〉, if g has length 1, then clause
(1) applies, hence the order on 〈G〉 extends the given orders on the free factors.

3. BI-ORDERING GRAPH PRODUCTS

Let GΓ be a graph product, let v be a vertex of Γ and consider the decomposition (∗) in
(2) of §1:

GΓ = (Gv×GE)∗GE GZ.
where Z is the graph obtained by removing the vertex v and all edges incident with it from
Γ, and E is the full subgraph of Γ whose vertices are the vertices of Γ adjacent to v.

Lemma 3.1. Let ρΓ,Z : GΓ→GZ be the retraction defined in §1, and let K be the kernel of
ρΓ,Z . Then K =∗g∈R gGvg−1, where R is any transversal for the cosets {gGE | g ∈ GZ}.

Proof. Corresponding to the decomposition (∗), let X be the usual Bass-Serre tree on which
GΓ acts ([8, Ch.I, §4, Theorem 7]). The vertex set is (GΓ/(Gv×GE))

∐
(GΓ/GZ) and the

edge set is (GΓ/GE)
∐
(GΓ/GE). Although these are disjoint unions, it will cause no

confusion to view the vertices and edges corresponding to GΓ/GE just as cosets. For
g ∈ GΓ, the directed edge gGE starts at g(Gv×GE) and ends at gGZ, and for each such
edge there is an oppositely oriented edge gGE. Thus (GΓ/GE) =

{
gGE | g ∈ GΓ

}
. The

action of GΓ on X (on the left) is via the usual action on cosets.
Now K acts on X by restriction, and the action is transitive on the vertices gGZ. For

GΓ = K oGZ (because ρΓ,Z is a retraction), so if g ∈ GΓ, g = kz for some (unique) k ∈ K
and z ∈ GZ, and gGZ = kGZ. The edges ending at the vertex GZ are the cosets gGE
for g ∈ GZ. If gGE, g1GE are two such distinct edges, then their endpoints g(Gv×GE),
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g1(Gv×GE) are in distinct K-orbits, hence so are the edges themselves. For if kg(Gv×
GE) = g1(Gv×GE), where k ∈ K, then g1 = kgae for some a ∈Gv and e ∈GE. Applying
ρΓ,Z to this, g1 = ge, so gGE = g1GE.

Therefore, if R is a transversal for GZ/GE, the set of edges
{

gGE, gGE | g ∈ R
}

is
the set of edges incident with GZ, and these edges, together with their endpoints, form a
fundamental domain T for the action of K on X , in the sense of [8, Ch.I, §4, Definition 7].
There is an associated tree of groups (K,T ) with K isomorphic to KT := lim

−→
(K,T ) (see

Ch. I, §4, Theorem 10 and the remarks preceding it in [8]).
The K-stabilizer of the common endpoint GZ of the edges of T is K ∩GZ = 1, and

the stabilizer of the edge gGE is K ∩ gGEg−1 = g(K ∩GE)g−1 = 1. The stabilizer of
g(Gv×GE) is

K∩g(Gv×GE)g−1 = g(K∩ (Gv×GE))g−1.

If k = ae, where k ∈ K, a ∈ Gv and e ∈ GE, then applying ρΓ,Z gives e = 1, so k ∈ Gv.
Hence the stabilizer of g(Gv×GE) is gGvg−1.

Therefore KT =∗g∈R gGvg−1 (cf Example (c), §4.4, Chapter I in [8], with A = 1) and
the lemma follows. �

Remark 3.1. If gGE = g1GE then gag−1 = g1ag−1
1 for all a ∈Gv, so gGvg−1 = g1Gvg−1

1 .
Thus changing the transversal in Lemma 3.1 does not change the decomposition of K,
and C :=

{
gGvg−1 | g ∈ GZ

}
=
{

gGvg−1 | g ∈ R
}

, for any transversal R. Conversely,
if gGvg−1 = g1Gvg−1

1 , where g, g1 ∈ GZ, then gGE = g1GE. This follows because if
xGvx−1 = Gv, where x ∈ GZ, then x ∈ GE by the normal form theorem for free products
with amalgamation.

Let ρZ,E : GZ→GE be the retraction defined in §1 and let L= ker(ρZ,E). Then GZ = Lo
GE, so R = L is a valid choice for R in Lemma 3.1 and L = L−1, hence K =∗l∈L l−1Gvl.

Suppose both GZ and Gv are bi-ordered. For l ∈ L, bi-order l−1Gvl by: l−1gl ≤ l−1g1l if
and only if g≤ g1 in Gv. As a subgroup of GZ, L is bi-ordered by restriction, in particular
is totally ordered. Therefore K := (K,

{
l−1Gvl | l ∈ L

}
) is an object of the category G.

Thus K =KQ is bi-ordered.
Also, GZ acts on C by conjugation, so for g ∈ GZ, l ∈ L, g−1(l−1Gvl)g = l−1

1 Gvl1 for
some unique l1 ∈ L, by Remark 3.1. The map λg : l 7→ l1 is a permutation of L, giving an
action of GΓ on L. That is, the map g 7→ λg is a homomorphism from GZ to the symmetric
group on L. Further, the map f g

l : l−1Gvl→ (lλg)
−1Gv(lλg), l−1xl 7→ (lλg)

−1x(lλg) is an
isomorphism of bi-ordered groups, and is conjugation by g, by Remark 3.1, because GE
commutes with Gv.

Lemma 3.2. In these circumstances, for all g∈GZ, fg := (λg,
{

f g
l | l ∈ L

}
) is a morphism

from K to K in G.

Proof. The only thing to check is that λg is order-preserving. Since GZ is generated by Gu,
where u runs through the vertices of Z, it suffices to show this when g ∈ Gu, where u is a
vertex of Z.
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Case 1. u is not a vertex of E. Then g ∈ L, so lλg = lg, for all l ∈ L, and l < l1 implies
lg < l1g because L is bi-ordered.
Case 2. u is a vertex of E. Then g commutes with all elements of Gv, so for l ∈ L,

g−1l−1Gvlg = (g−1l−1g)Gv(g−1lg)

and g−1lg ∈ L as L is normal in GZ. Hence lλg = g−1lg for all l ∈ L, and l < l1 implies
g−1lg < g−1l1g since GZ is bi-ordered. �

Theorem B. If Gv is bi-orderable, for all vertices v of Γ, then GΓ is bi-orderable, and if ∆

is a full subgraph of Γ, then any bi-order on G∆ extends to a bi-order on GΓ.

Proof. The proof is by induction on the number n of vertices of Γ, and there is nothing to
prove when n≤ 1, so assume n > 1. Choose a vertex v and consider the decomposition (∗)

GΓ = (Gv×GE)∗GE GZ.

By induction GZ can be bi-ordered, and K = ker(ρΓ,Z) can be bi-ordered (as KQ) as in
the discussion preceding Lemma 3.2. Since GΓ = KoGZ, the orders on K and GZ extend
to a right order on GΓ (see [2, Lemma 2.1]). To show that this right order is a bi-order,
it suffices to show that the bi-order on K is invariant under conjugation by elements of
GZ. But for g ∈ GZ, there is a morphism fg given by Lemma 3.2. Then fgQ is an order-
preserving automorphism of K, and is conjugation by g, since it acts on the free factors of
K as conjugation by g. Any bi-order on GZ can be extended in this way to a bi-order on
GΓ, and the last part of the theorem follows by induction (cf the proof of Theorem A). �

In Theorem B it was assumed that the graph Γ is finite, but it is possible to consider GΓ

when Γ is an infinite simple graph; the definition is the same and properties (1) and (2) of
graph products in §1 remain valid, as does Lemma 3.1.

Theorem C. Theorems A and B remain true if Γ is infinite.

Proof. If all Gv are bi-orderable, then it follows from Theorem B that GΓ is bi-orderable.
This is because bi-orderability is a local property: a group is bi-orderable if and only if
every finitely generated subgroup is bi-orderable, and a finitely generated subgroup of GΓ

is contained in G∆ for some finite full subgraph ∆ of Γ.
To obtain the second part of Theorem B when Γ is infinite requires a little more work.

Given a full subgraph ∆ of Γ, and a bi-order ≤ on G∆, let Ω be the set of all pairs (B,≤′),
where B is a full subgraph of Γ containing ∆ and ≤′ is a bi-order on GB extending ≤.
Partially order Ω by: (B1,≤1) ≤ (B2,≤2) if and only if B1 is a subgraph of B2 and ≤2
extends ≤1. Then (∆,≤) ∈Ω, and a non-empty chain in Ω has an upper bound (by taking
unions), so by Zorn’s Lemma Ω has a maximal element, say (Z,≤0). Suppose Z 6= Γ, and
choose a vertex v of Γ not in Z, and let Γ′ be the full subgraph of Γ whose vertices are
those of Z together with v. Let E be the full subgraph of Γ′ whose vertices are the vertices
of Γ adjacent to v, and let K = ker(ρΓ′,Z). Then GΓ′ = KoGZ, and arguing as in Theorem
B, ≤0 extends to a bi-order ≤′ on GΓ′. Thus (Γ′,≤′) ∈Ω, contradicting the maximality of
(Z,≤0). Hence ≤0 is an extension of ≤ to GΓ, as required.
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Similarly, right orderability is a local property, so if Γ is infinite and all Gv are right
orderable, then GΓ is right orderable by Theorem A. The second part of Theorem A is
also valid when Γ is infinite, using Zorn’s Lemma, replacing “bi-order” by “right order” in
the argument above. This works because a free product of right orderable groups is right
orderable (see, for example, [2, Corollary 5.11]), and an extension of right ordered groups
is right ordered ([2, Lemma 2.1]). Details are left to the reader. �

Another addition to Theorems A and B is the following.

Theorem D. Let GΓ be a graph product, where Γ is a (possibly infinite) simple graph.
(1) If Gv is right ordered, for all vertices v of Γ, then GΓ has a right order extending all
the given right orders on the groups Gv.
(2) If Gv is bi-ordered, for all vertices v of Γ, then GΓ has a bi-order extending all the
given bi-orders on the groups Gv.

Proof. The proof of (2) needs another argument using Zorn’s Lemma, considering pairs
(B,≤), where B is a full subgraph of Γ and≤ is a bi-order on GB extending the given right
order on Gv, for all vertices v of B. It works because, in Lemma 3.1, if Gv is bi-ordered
then K has a bi-order extending the bi-order on Gv, by the observation at the end of §2. Part
(1) can be proved by a similar argument. It works because a free product of right ordered
groups has a right order extending the orders on the free factors (again see [2, Corollary
5.11]). Once more, the details are left to the reader. �

A graph product with all vertex groups infinite cyclic is called a right-angled Artin group,
a free partially commutative group or a graph group. Theorem B generalises the known
result that these groups are bi-orderable (see [4], [5]). This special case also follows from
a result in the thesis of C. Droms ([3, Chapter III, Theorem 1.1]), that these groups are
residually torsion-free nilpotent.
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