ORDERING GRAPH PRODUCTS OF GROUPS

I. M. CHISWELL

1. Introduction

Let Γ be a finite simple graph with vertex set V, so the edges may be taken to be unordered pairs of distinct elements of V. Assume that, for every $v \in V$, there is assigned a group G_{v}. The graph product $G \Gamma$ is the quotient of the free product $\mathcal{X}_{v \in V} G_{v}$ by the normal subgroup generated by all $\left[G_{u}, G_{v}\right]$ for which $\{u, v\}$ is an edge. (As usual, $\left[G_{u}, G_{v}\right]$ means the subgroup generated by $\left\{x^{-1} y^{-1} x y \mid x \in G_{u}, y \in G_{v}\right\}$.) These groups were studied by E. R. Green in her thesis [6], and have since attracted considerable attention (see, for example, [7] and the references cited there).

In this paper, it is shown that, if all G_{v} are right orderable, then $G \Gamma$ is right orderable, and if all G_{v} are (two-sided) orderable then $G \Gamma$ is orderable. Recall that a right order on a group G is a total order \leq such that $a \leq b$ and $c \in G$ implies $a c \leq b c$. The strictly positive cone is the set $P:=\{g \in G \mid 1<g\}$. It has the properties

$$
P P \subseteq P, G \backslash\{1\}=P \cup P^{-1} \text { and } P \cap P^{-1}=\emptyset
$$

Conversely, given a subset P of G satisfying these conditions, defining $a<b$ to mean $b a^{-1} \in P$ gives a right order on G, with strictly positive cone P. A right order is called a two-sided order (abbreviated to bi-order) if in addition it is a left order, that is, $a \leq b$ and $c \in G$ implies $c a \leq c b$. A necessary and sufficient condition for this is that the strictly positive cone P is closed under conjugation: $x^{-1} P x \subseteq P$ for all $x \in G$.

Some elementary facts about graph products will be used.
(1) If Δ is a full subgraph of Γ with vertex set U, then $G \Delta$ embeds naturally in $G \Gamma$, and there is a retraction $\rho_{\Gamma, \Delta}: G \Gamma \rightarrow G \Delta$ such that $x \rho_{\Gamma, \Delta}=x$ for $x \in G \Delta$ and $x \rho_{\Gamma, \Delta}=1$ for all $x \in G \Delta^{\prime}$, where Δ^{\prime} is the full subgraph of Γ with vertex set $V \backslash U$.
(2) For any $v \in V$, there is a decomposition

$$
\begin{equation*}
G \Gamma=\left(G_{v} \times G E\right) *_{G E} G Z \tag{*}
\end{equation*}
$$

where Z is the graph obtained by removing the vertex v and all edges incident with it from Γ, and E is the full subgraph of Γ whose vertices are the vertices of Γ adjacent to v (a full subgraph of Z).
To see (1), the inclusion map $\mathbb{*}_{v \in U} G_{v} \rightarrow \mathbb{*}_{v \in V} G_{v}$ and the projection map $\mathbb{*}_{v \in V} G_{v} \rightarrow$ $*_{v \in U} G_{v}$ (which is the identity on G_{v} for $v \in U$ and trivial on G_{v} for $v \notin U$) induce homomorphisms $\imath: G \Delta \rightarrow G \Gamma$ and $\rho: G \Gamma \rightarrow G \Delta$ with $\imath \rho=\operatorname{id}_{G \Delta}$. Thus \imath is injective and $\rho_{\Gamma, \Delta}=\rho$ is the required retraction. To prove (2), there is an obvious map $\mathcal{*}_{v \in V} G_{v} \rightarrow$
$\left(G_{v} \times G E\right) *_{G E} G Z$, which induces a homomorphism $G \Gamma \rightarrow\left(G_{v} \times G E\right) *_{G E} G Z$, and the inverse homomorphism can be defined using the universal property of free products with amalgamation. It is also proved as part of [6, Lemma 3.20].

In particular, taking Δ in (1) to have a single vertex, the groups G_{v} embed naturally in $G \Gamma$ and will be viewed as subgroups of $G \Gamma$.

In fact the result on right orderability can be easily proved using results in [2], and this will be done immediately.
Theorem A. If all G_{v} are right orderable, then $G \Gamma$ is right orderable, and if Δ is any full subgraph of Γ, then every right order on $G \Delta$ extends to a right order on $G \Gamma$.
Proof. The proof is by induction on n, the number of vertices of Γ. There is nothing to prove if $n \leq 1$, otherwise choose a vertex v and use the decomposition (*) in (2):

$$
G \Gamma=\left(G_{v} \times G E\right) *_{G E} G Z
$$

where Z is the graph obtained by removing the vertex v and all edges incident with it from Γ, and E is the full subgraph of Γ whose vertices are the vertices of Γ adjacent to v. By induction, $G Z$ is right orderable, and any right order on $G E$ extends to a right order on $G Z$. Since $G E$ is a subgroup of $G Z$, it is right orderable, hence $G_{v} \times G E$ is right orderable and any right order on $G E$ extends to a right order on $G_{v} \times G E$, because of the exact sequence

$$
1 \longrightarrow G E \longrightarrow G_{v} \times G E \xrightarrow{p} G_{v} \longrightarrow 1
$$

where p is projection onto the first coordinate. See, for example, [2, Lemma 2.1]. By [2, Corollary 5.1], $G \Gamma$ is right orderable.

Suppose Δ is a full subgraph of Γ. If $\Gamma=\Delta$, obviously every right order on $G \Delta$ extends to $G \Gamma$, so assume $\Delta \neq \Gamma$, and choose a vertex v of Γ not in Δ. Let \leq be a right order on $G \Delta$. In the decomposition $(*), \Delta$ is a full subgraph of Z, so by induction \leq extends to a right order on $G Z$, which induces a right order on $G E$ by restriction. This right order extends to a right order on $G_{v} \times G E$, as observed above. By [2, Corollary 5.1], the right orders on $G_{v} \times G E$ and $G Z$ extend to a right order on $G \Gamma$. This order extends \leq, as required.

To prove the analogous result on bi-ordering graph products, more work is needed. It is a well-known theorem of Vinogradov [9] that free products of bi-orderable groups are bi-orderable. However, given a family of bi-ordered groups with a total order on the index set, a canonical way is needed to bi-order the free product of the family. This is dealt with in the next section, and the result on bi-ordering graph products will be proved in the third and final section.

2. Ordering Free Products

To make precise the statement that free products of bi-ordered groups with a totally ordered index set can be canonically ordered, a functor will be defined, from a certain category \mathbf{G} to the category \mathbf{O} of bi-ordered groups and order-preserving homomorphisms.

The objects of \mathbf{G} are pairs $\mathcal{G}=\left(G,\left\{G_{i} \mid i \in I\right\}\right)$ where G is a group, $\left\{G_{i} \mid i \in I\right\}$ is a family of bi-ordered subgroups of G, I is a totally ordered set and $G=\mathcal{*}_{i \in I} G_{i}$. The set I
is called the index set of \mathcal{G} and G_{i} is called a free factor of \mathcal{G}. Also, G is denoted by $\langle\mathcal{G}\rangle$. Use will be made of the projection map $e_{\mathcal{G}, i}:\langle\mathcal{G}\rangle \rightarrow G_{i}$, for $i \in I$ (the unique map which is the identity on G_{i} and trivial on G_{j}, for $j \in I, j \neq i$).

A G-morphism from $\mathcal{G}=\left(G,\left\{G_{i} \mid i \in I\right\}\right)$ to $\mathcal{H}=\left(H,\left\{H_{j} \mid j \in J\right\}\right)$ is a pair

$$
\mathbf{f}=\left(\lambda,\left\{f_{i} \mid i \in I\right\}\right)
$$

where $\lambda: I \rightarrow J$ is an order isomorphism, and for each $i \in I, f_{i}: G_{i} \rightarrow H_{i \lambda}$ is an isomorphism of bi-ordered groups. If $\mathbf{g}=\left(\mu,\left\{g_{j} \mid j \in J\right\}\right): \mathcal{H} \rightarrow \mathcal{K}$ is a morphism, $\mathbf{f g}$ is defined to be $\left(\lambda \mu,\left\{f_{i} g_{i \lambda} \mid i \in I\right\}\right)$, and the identity morphism $1_{\mathcal{G}}$ is $\left(i d_{I},\left\{i d_{G_{i}} \mid i \in I\right\}\right)$. Clearly this makes \mathbf{G} into a category.

Theorem 2.1. There is a functor $Q: \mathbf{G} \rightarrow \mathbf{O}$ such that, for every object $\left(G,\left\{G_{i} \mid i \in I\right\}\right)$ of \mathbf{G}, the underlying group of $\left(G,\left\{G_{i} \mid i \in I\right\}\right) Q$ is G, and such that, for every morphism $\mathbf{f}=$ $\left(\lambda,\left\{f_{i} \mid i \in I\right\}\right)$ from $\left(G,\left\{G_{i} \mid i \in I\right\}\right)$ to $\left(H,\left\{H_{j} \mid j \in J\right\}\right)$, $\mathbf{f} Q$ is the isomorphism $G \rightarrow H$ whose restriction to G_{i} is f_{i} composed with the inclusion map $H_{i \lambda} \rightarrow H$.

The proof of Theorem 2.1 takes up the rest of this section. It is modelled on the method of bi-ordering free groups given by Bergman ([1]). Given an object $\mathcal{G}=\left(G,\left\{G_{i} \mid i \in I\right\}\right)$ in \mathbf{G}, a bi-order needs to be defined on G. Before defining the order, an auxiliary construction will be introduced.

Let $l \in I$, and let

$$
L=\left\langle a^{-1} G_{i} a \mid a \in G_{l}, i \in I, i>l\right\rangle .
$$

Then $L=\boldsymbol{*}_{(i, a)} a^{-1} G_{i} a$, where $a \in G_{l}$ and $i>l$. To see this, if $u=a_{1}^{-1} g_{1} a_{1} \ldots a_{n}^{-1} g_{n} a_{n}$, where $a_{j} \in G_{l}, g_{j} \in G_{i_{j}}, i_{j}>l$ for $1 \leq j \leq n$ and $\left(i_{j}, a_{j}\right) \neq\left(i_{j+1}, a_{j+1}\right)$ for $1 \leq j<n$, then viewing this as a word in $\bigcup_{i \in I} G_{i}$ and cancelling / consolidating to obtain a reduced word, the letters $g_{j}(1 \leq j \leq n)$ and the final letter a_{n} remain. This follows by induction on n. Thus $u \neq 1$, hence L is a free product as claimed.

Bi-order $a^{-1} G_{i} a$ by: $a^{-1} g a<a^{-1} h a$ if and only if $g<h$ in G_{i}. Then totally order the index set $I_{l}:=\{i \in I \mid i>l\} \times G_{l}$ lexicographically: $(i, a)<\left(i_{1}, a_{1}\right)$ if and only if $i<i_{1}$ or $i=i_{1}$ and $a<a_{1}$. This gives a new object in \mathbf{G}, namely

$$
\mathcal{G}_{l}:=\left(L,\left\{G_{j} \mid j \in I_{l}\right\}\right)
$$

where, for $j=(i, a) \in I_{l}, G_{j}=a^{-1} G_{i} a$. Thus $L=\left\langle\mathcal{G}_{l}\right\rangle$.
Take $1 \neq g \in G$ and write g as a reduced word relative to the decomposition $*_{i \in I} G_{i}$, say $g=g_{1} \ldots g_{k}$, where $g_{j} \in G_{i_{j}}$. The length of g is defined to be k.

Let $l=\min \left\{i_{j} \mid 1 \leq j \leq k\right\} ; l$ will be denoted by $g m_{\mathcal{G}}$. Rewrite the expression for g as $g=a_{0} b_{1} a_{1} \ldots a_{n-1} b_{n} a_{n}$, where $b_{j} \in G_{l} \backslash\{1\}$, and $a_{j} \in \mathcal{*}_{i>l} G_{i}$ with $a_{j} \neq 1$ for $1 \leq j \leq$ $n-1$, which in turn can be rewritten as

$$
g=\left(b_{1} \ldots b_{n}\right) \prod_{j=0}^{n}\left(b_{j+1} \ldots b_{n}\right)^{-1} a_{j}\left(b_{j+1} \ldots b_{n}\right)=g^{\prime} g^{*}
$$

where $g^{\prime}=b_{1} \ldots b_{n} \in G_{l}$ and $g^{*} \in\left\langle\mathcal{G}_{l}\right\rangle$ (note that $b_{j+1} \ldots b_{n}$ means 1 when $j=n$). This decomposition is unique: if $g=h^{\prime} h^{*}$, where $h^{\prime} \in G_{l}$ and $h^{*} \in\left\langle\mathcal{G}_{l}\right\rangle$, then $g e=g^{\prime}=h^{\prime}$, where $e=e_{\mathcal{G}, l}$ is the projection map, hence also $g^{*}=h^{*}$.

Note that g^{*} has shorter length relative to the free product decomposition of $\left\langle\mathcal{G}_{l}\right\rangle$ than k, the length of g relative to $\langle\mathcal{G}\rangle$. (The second length equals the first length plus n, and $n \neq 0$ by definition of l.) Therefore, a subset $P_{\mathcal{G}}$ of $\langle\mathcal{G}\rangle$ can be defined for all objects \mathcal{G} of \mathbf{G} recursively, as follows. Let $g \in\langle\mathcal{G}\rangle, g \neq 1$, and let $l=g m_{\mathcal{G}}$.
(1) If $g^{\prime} \neq 1$, then $g \in P_{\mathcal{G}}$ if and only if $g^{\prime}>1$ in the given bi-order on the free factor G_{l}.
(2) If $g^{\prime}=1$, then $g \in P_{\mathcal{G}}$ if and only if $g^{*} \in P_{\mathcal{G}_{l}}$.

Eventually, it will be shown that $P_{\mathcal{G}}$ is the strictly positive cone for the required biorder on $\langle\mathcal{G}\rangle$. Note that $g^{-1} m_{\mathcal{G}}=g m_{\mathcal{G}}, g^{-1}=\left(g^{\prime}\right)^{-1}\left(g^{\prime}\left(g^{*}\right)^{-1}\left(g^{\prime}\right)^{-1}\right)$ and $\left(g^{\prime}\right)^{-1} \in G_{l}$, $g^{\prime}\left(g^{*}\right)^{-1}\left(g^{\prime}\right)^{-1} \in\left\langle\mathcal{G}_{l}\right\rangle$. Hence, if $g^{\prime} \neq 1$, then exactly one of $g, g^{-1} \in P_{\mathcal{G}}$. If $g^{\prime}=1, g=g^{*}$, $g^{-1}=\left(g^{*}\right)^{-1}=\left(g^{-1}\right)^{*}$, and by induction on length, exactly one of $g, g^{-1} \in P_{\mathcal{G}}$. Thus $G \backslash\{1\}=P_{\mathcal{G}} \cup P_{\mathcal{G}}^{-1}$ and $P_{\mathcal{G}} \cap P_{\mathcal{G}}^{-1}=\emptyset$.

The next thing to show is that $P_{\mathcal{G}} P_{\mathcal{G}} \subseteq P_{\mathcal{G}}$, and to do so it is necessary to look at the recursive definition in greater detail. Let $\mathcal{G}=\left(G,\left\{G_{i} \mid i \in I\right\}\right)$ be an object of \mathbf{G} and let $i_{1} \in I$. One can form $\mathcal{G}_{i_{1}}$, with index set $I_{i_{1}}$. Given $i_{2} \in I_{i_{1}}$, the construction can be repeated, obtaining $\left(\mathcal{G}_{i_{1}}\right)_{i_{2}}$ with index set $\left(I_{i_{1}}\right)_{i_{2}}$. Performing this operation n times (and omitting parentheses) gives an object $\mathcal{G}_{i_{1} \ldots i_{n}}$ of \mathbf{G} with index set $I_{i_{1} \ldots i_{n}}$.
Definition. A sequence of indices $\left(i_{1}, \ldots, i_{n}\right)$ arising in this way is called a \mathcal{G}-descent sequence.

Note that the empty sequence is allowed as a \mathcal{G}-descent sequence, the corresponding object of \mathbf{G} being \mathcal{G} with index set I. Also, an initial subsequence (prefix) of a \mathcal{G}-descent sequence is also a \mathcal{G}-descent sequence.

Remark 2.1. If $\left(i_{1}, \ldots, i_{n}\right)$ is a \mathcal{G}-descent sequence and $i \in I_{i_{1} \ldots i_{n}}$ then $i=\left(i_{0}, a_{1}, \ldots, a_{n}\right)$ for some $i_{0} \in I$ and $a_{1}, \ldots, a_{n} \in\langle\mathcal{G}\rangle$, and the free factor G_{i} of $\mathcal{G}_{i_{1} \ldots i_{n}}$ is $\left(a_{1} \ldots a_{n}\right)^{-1} G_{i_{0}}\left(a_{1} \ldots a_{n}\right)$. Moreover, the bi-order on G_{i} is given by: $a^{-1} g a<a^{-1} h a$ if and only if $g<h$ in $G_{i_{0}}$, where $a=a_{1} \ldots a_{n}$. This follows by induction on n. For later use, define, for $1 \leq j \leq n+1$

$$
i^{(j)}:=\left(i_{0}, a_{1}, \ldots, a_{j-1}, 1, a_{j}, \ldots, a_{n}\right)
$$

Definition. Let $g \in\langle\mathcal{G}\rangle$. A \mathcal{G}-descent sequence $\mathbf{i}=\left(i_{1}, \ldots, i_{n}\right)$ is discriminating for g if there exists $j, 1 \leq j \leq n$ such that
(1) $g \in\left\langle\mathcal{G}_{i_{1} \ldots i_{j-1}}\right\rangle$;
(2) $i_{j}=g m_{\mathcal{G}_{i_{1} \ldots i_{j-1}}}$;
(3) $g e \neq 1$, where $e=e_{\mathcal{G}_{i_{1}, \ldots, i_{j-1}}, i_{j}}:\left\langle\mathcal{G}_{i_{1} \ldots i_{j-1}}\right\rangle \rightarrow G_{i_{j}}$ is the projection map.

If (1)-(3) hold, \mathbf{i} is said to be discriminating for g at j, and $g e$ is called the \mathbf{i}-signature of g. This is justified because there is only one value of j such that \mathbf{i} is discriminating for g at j. To see this, take j as small as possible. Then by (3), $g \notin\left\langle\mathcal{G}_{i_{1} \ldots i_{j}}\right\rangle$, because all free factors
of $\left\langle\mathcal{G}_{i_{1} \ldots i_{j}}\right\rangle$ have the form $a^{-1} G_{k} a$, where $k \in I_{i_{1} \ldots i_{j-i}}$ and $k>i_{j}$, which are subgroups of $\operatorname{ker}(e)$, hence $\left\langle\mathcal{G}_{i_{1} \ldots i_{j}}\right\rangle$ is a subgroup of $\operatorname{ker}(e)$. Since

$$
\langle\mathcal{G}\rangle \geq\left\langle\mathcal{G}_{i_{1}}\right\rangle \geq \ldots \geq\left\langle\mathcal{G}_{i_{1} \ldots i_{n}}\right\rangle,
$$

$g \notin\left\langle\mathcal{G}_{i_{1} \ldots i_{p}}\right\rangle$ for $p \geq j$. Thus the value of j is unique.
Definition. If \mathbf{i} is discriminating for g at j, and $g e>1$ in $G_{i_{j}}, g$ is called \mathbf{i}-positive (where $G_{i_{j}}$ has its bi-order as a free factor of $\mathcal{G}_{i_{1} \ldots i_{j-1}}$).

For $g \in\langle\mathcal{G}\rangle, g \neq 1$, the definition of $P_{\mathcal{G}}$ above will recursively construct a canonical \mathcal{G}-descent sequence \mathbf{i} which is discriminating for g, and $g \in P_{\mathcal{G}}$ if and only if g is \mathbf{i}-positive.

Lemma 2.2. If $\mathbf{i}=\left(i_{1}, \ldots, i_{n}\right)$ is a \mathcal{G}-descent sequence, $1 \leq j \leq n, i \in I_{i_{1} \ldots i_{j-1}}$ and $i<i_{j}$, then
(1) $\mathbf{i}^{(j)}:=\left(i_{1}, \ldots i_{j-1}, i, i_{j}^{(j)}, \ldots, i_{n}^{(j)}\right)$ is also a \mathcal{G}-descent sequence.
(2) If \mathbf{i} is discriminating for g, then so is $\mathbf{i}^{(j)}$, and the \mathbf{i}-signature of g equals the $\mathbf{i}^{(j)}$. signature of g.
(3) If g is \mathbf{i}-positive, then g is $\mathbf{i}^{(j)}$-positive.

Proof. First, it will be shown that, for $j \leq l \leq n$,
(i) $i_{l}^{(j)} \in I_{i_{1} \ldots i_{j-1} i_{j}^{(j)} \ldots i_{l-1}^{(j)}}$;
(ii) if $k \in I_{i_{1} \ldots i l}$, then $k^{(j)} \in I_{i_{1} \ldots i_{j-1} i i_{j}^{(j)} \ldots i_{l}^{(j)}}$;
(iii) the map $I_{i_{1} \ldots i_{l}} \rightarrow I_{i_{1} \ldots i_{j-1} i i_{j}^{(j)} \ldots i_{l}^{(j)}}, k \mapsto k^{(j)}$ preserves the strict order on these sets.

This will be proved by induction on l. (It is implicit in (i) that $\left(i_{1}, \ldots, i_{j-1}, i, i_{j}^{(j)}, \ldots, i_{l-1}^{(j)}\right)$ is a \mathcal{G}-descent sequence, and it follows from (i) that $\left(i_{1}, \ldots, i_{j-1}, i, i_{j}^{(j)}, \ldots, i_{l}^{(j)}\right)$ is a \mathcal{G}-descent sequence, so (ii) and (iii) make sense.) First note that, if $k \in I_{i_{1} \ldots i_{l}}$, then $k=(m, a)$ for some $m \in I_{i_{1} \ldots i_{l-1}}$ with $m>i_{l}$ and $a \in G_{i_{l}}$. Also, $k^{(j)}=\left(m^{(j)}, a\right)$, and since $i \in I_{i_{1} \ldots i_{j-1}}$, $\left(i_{1}, \ldots, i_{j-1}, i\right)$ is a \mathcal{G}-descent sequence.

Suppose $l=j$. Then $i_{j} \in I_{i_{1} \ldots i_{j-1}}$ and $i_{j}>i, 1 \in G_{i}$, so $i_{j}^{(j)}=\left(i_{j}, 1\right) \in I_{i_{1} \ldots i_{j-1} i}$ and (i) holds in this case. If $k=(m, a) \in I_{i_{1} \ldots i_{j}}$ then $m>i_{j}$, so $m>i$ and similarly, $m^{(j)}=$ $(m, 1) \in I_{i_{1} \ldots i_{j-1}}$. Also, $m^{(j)}>\left(i_{j}, 1\right)=i_{j}^{(j)}$, and $a \in G_{i_{j}}=G_{i_{j}^{(j)}}$, by Remark 2.1. Hence $k^{(j)} \in I_{i_{1} \ldots i_{j-1} i i_{j}^{(j)}}$, and (ii) holds. Suppose also $k_{1}=\left(m_{1}, a_{1}\right) \in I_{i_{1} \ldots i_{j}}$. By Remark 2.1, the bi-order on $G_{i_{j}}$ as a free factor of $\mathcal{G}_{i_{1} \ldots i_{j-1}}$ is the same as its bi-order as the free factor $G_{i_{j}^{(j)}}$ of $\mathcal{G}_{i_{1} \ldots i_{j-1}}$. Thus if $k<k_{1}$ then either $m<m_{1}$, whence $m^{(j)}=(m, 1)<\left(m_{1}, 1\right)=m_{1}^{(j)}$ and so $k^{(j)}=\left(m^{(j)}, a\right)<\left(m_{1}^{(j)}, a_{1}\right)=k_{1}^{(j)}$, or $m=m_{1}$ and $a<a_{1}$, whence $m^{(j)}=m_{1}^{(j)}$ and again $k^{(j)}<k_{1}^{(j)}$, hence (iii) holds.

Now suppose $l>j$ and (i)-(iii) hold for $l-1$. Then by (ii) for the case $l-1$, with $k=i_{l}$, (i) holds for l. Suppose $k \in I_{i_{1} \ldots i_{l}}$ and write $k=(m, a)$ as above, with $i_{l}<m$. By the induction hypothesis, $m^{(j)} \in I_{i_{1} \ldots i_{j-1} i i_{j}^{(j)} \ldots i_{l-1}^{(j)}}$ and in the order on this set, $i_{l}^{(j)}<m^{(j)}$. Also, $G_{i_{l}}=G_{i_{l}^{(j)}}$ by Remark 2.1, and the bi-orders of this group as a free factor of $\mathcal{G}_{i_{1} \ldots i_{l-1}}$ and as a free factor of $\mathcal{G}_{i_{1} \ldots i_{j-1} i i_{j}^{(j)} \ldots i_{l-1}^{(j)}}$ are the same. It follows that $k^{(j)} \in I_{i_{1} \ldots i_{j-1} i i_{j}^{(j)} \ldots i_{l}^{(j)}}$, so (ii) holds for l. Suppose also $k_{1}=\left(m_{1}, a_{1}\right) \in I_{i_{1} \ldots i_{l}}$ and $k<k_{1}$. If $m<m_{1}$ then by the induction hypothesis $m^{(j)}<m_{1}^{(j)}$, and the argument in the case $l=j$ shows that $k^{(j)}<k_{1}^{(j)}$ (in the case $m=m_{1}$ and $a<a_{1}$ as well), hence (iii) holds for l. This establishes (i), (ii) and (iii).

Part (1) of the lemma now follows from (i) (with $j=n$).
Suppose \mathbf{i} is discriminating for g at l. If $l<j$ then clearly $\mathbf{i}^{(j)}$ is discriminating for g at l and (2) and (3) hold in this case.

Suppose $l=j$. In the expression for g as a reduced word in the free factors of $\mathcal{G}_{i_{1} \ldots i_{j-1}}$, say $g=g_{1} \ldots g_{p}$, let

$$
K=\left\{k \in I_{i_{1} \ldots i_{j-1}} \mid \text { at least one of } g_{1}, \ldots, g_{p} \text { belongs to } G_{k}\right\}
$$

a finite subset of $I_{i_{1} \ldots i_{j-1}}$ with least element i_{j}. Hence if $k \in K, k>i$, so $k^{(j)}=(k, 1) \in$ $I_{i_{1} \ldots i_{j-1} i}$. By Remark 2.1, $G_{k}=G_{k^{(j)}}$ is also a free factor of $\mathcal{G}_{i_{1} \ldots i_{j-1} i}$. Also, the map $K \rightarrow$ $I_{i_{1} \ldots i_{j-1} i}, k \mapsto k^{(j)}=(k, 1)$ is order preserving, hence $g m_{\mathcal{G}_{i_{1} \ldots i_{j-1}}}=i_{j}^{(j)}$ and $g e_{i_{j}}=g e_{i_{j}^{(j)}}$, where

$$
e_{i_{j}}=e_{\mathcal{G}_{i_{1} \ldots i_{j-1}}, i_{j}}, \quad e_{i_{j}^{(j)}}=e_{\mathcal{G}_{i_{1}, \ldots i_{j-1}}, i_{j}^{(j)}} .
$$

Thus $\mathbf{i}^{(j)}$ is discriminating for g at $j+1$ and (2) holds. By Remark 2.1, the bi-order on $G_{i_{j}}$ as a free factor of $\mathcal{G}_{i_{1} \ldots i_{j-1}}$ is the same as its bi-order as the free factor $G_{i_{j}^{(j)}}$ of $\mathcal{G}_{i_{1} \ldots i_{j-1}}$, hence (3) holds in this case.

Finally suppose $l>j$. If $k \in I_{i_{1} \ldots i_{l-1}}$ then by (ii) of the claim, $k^{(j)} \in I_{i_{1} \ldots i_{j-1} i i_{j}^{(j)} \ldots i_{l-1}^{(j)}}$ and by Remark 2.1, $G_{k}=G_{k^{(j)}}$, so every free factor of $\mathcal{G}_{i_{1} \ldots i_{l-1}}$ is a free factor of $\mathcal{G}_{i_{1} \ldots i_{j-1} i i_{j}^{(j)} \ldots i_{l-1}^{(j)}}$. It follows from (iii) that $g m_{\mathcal{G}_{i_{1} \ldots i_{j-1} i i_{j}^{(j)} \ldots i_{l-1}^{(j)}}^{(j)}}=i_{l}^{(j)}$, and $g e_{i_{l}}=g e_{i_{l}^{(j)}}$, using similar abbreviations for the projection maps to those in the previous case. Thus $\mathbf{i}^{(j)}$ is discriminating for g at $l+1$ and (2) holds. By Remark 2.1, the order on $G_{i_{l}}$ as a free factor of $\mathcal{G}_{i_{1} \ldots i_{l-1}}$ is the same as its order as the free factor $G_{i_{l}^{(j)}}$ of $\mathcal{G}_{i_{1} \ldots i_{j-1} i i_{j}^{(j)} \ldots i_{l-1}^{(j)}}$, hence (3) holds. This completes the proof.

Lemma 2.3. Let \mathbf{i}_{1} be a \mathcal{G}-descent sequence discriminating for g, and let \mathbf{i}_{2} be a \mathcal{G}-descent sequence discriminating for h. Then there is a \mathcal{G}-descent sequence \mathbf{i} such that
(1) \mathbf{i} is discriminating for g and for h;
(2) the \mathbf{i}-signature of g equals the \mathbf{i}_{1}-signature of g and the \mathbf{i}-signature of h equals the \mathbf{i}_{2}-signature of h;
(3) if g is \mathbf{i}_{1}-positive, then g is \mathbf{i}-positive and if h is \mathbf{i}_{2}-positive, then h is \mathbf{i}-positive.

Proof. Put $\mathbf{i}_{1}=\left(i_{11}, i_{12}, \ldots, i_{1 m}\right), \mathbf{i}_{2}=\left(i_{21}, i_{22}, \ldots, i_{2 n}\right)$ and suppose $\mathbf{i}_{1}, \mathbf{i}_{2}$ agree in the first p places, where $p \geq 0$ and p is maximal subject to this.
Case 1. If $p=m$ then $\mathbf{i}=\mathbf{i}_{2}$ is the desired sequence, and if $p=n$ then $\mathbf{i}=\mathbf{i}_{1}$ is the desired sequence.
Case 2. Otherwise, either $i_{1, p+1}>i_{2, p+1}$ or $i_{1, p+1}<i_{2, p+1}$. In the first case, replace \mathbf{i}_{1} by

$$
\left(i_{11}, \ldots, i_{1 p}, i_{2, p+1}, i_{1, p+1}^{(p+1)}, \ldots, i_{1 m}^{(p+1)}\right)
$$

leaving \mathbf{i}_{2} unchanged, and in the second case, replace \mathbf{i}_{2} by

$$
\left(i_{21}, \ldots, i_{2 p}, i_{1, p+1}, i_{2, p+1}^{(p+1)}, \ldots, i_{2 n}^{(p+1)}\right)
$$

without changing \mathbf{i}_{1}. By Lemma 2.2 , the new sequences are \mathcal{G}-descent sequences and it suffices to prove the lemma for the new pair of sequences. The new sequences agree in at least the first $p+1$ places, so this reduces the non-negative integer $(m-p)+(n-p)$. Thus repetition of this procedure will terminate eventually in Case 1 , giving the required sequence. (In fact, it must terminate with two sequences of length at most $m+n$.)

Corollary 2.4. If $g \in\langle\mathcal{G}\rangle \backslash\{1\}$ and \mathbf{i} is a \mathcal{G}-descent sequence which is discriminating for g, then the \mathbf{i}-signature of g is independent of \mathbf{i}. The following are equivalent:
(1) $g \in P_{\mathcal{G}}$;
(2) g is \mathbf{i}-positive for some \mathcal{G}-descent sequence \mathbf{i} discriminating for g;
(3) g is \mathbf{i}-positive for all \mathcal{G}-descent sequences \mathbf{i} discriminating for g.

Proof. This follows from Lemma 2.3, applied with $g=h$, and the observation preceding Lemma 2.2.

Corollary 2.5. If $g, h \in P_{\mathcal{G}}$ then $g h \in P_{\mathcal{G}}$.
Proof. By Lemma 2.3 and Cor. 2.4, there is a \mathcal{G}-descent sequence \mathbf{i} such that both g and h are \mathbf{i}-positive. Suppose $\mathbf{i}=\left(i_{1}, \ldots, i_{n}\right), \mathbf{i}$ is discriminating for g at l and discriminating for h at p. Abbreviate $e_{\mathcal{G}_{i_{1} \ldots i_{j-1}}, i_{j}}$ to $e_{i_{j}}$.
Case 1. $p>l$. Then $g, h \in\left\langle\mathcal{G}_{i_{1} \ldots i_{l-1}}\right\rangle$, and $h \in\left\langle\mathcal{G}_{i_{1} \ldots i_{l}}\right\rangle \subseteq \operatorname{ker}\left(e_{i_{l}}\right)$, so $(g h) e_{i_{l}}=g e_{i_{l}}>1$. Also, $h m_{\mathcal{G}_{i_{1} \ldots i_{l-1}}} \geq i_{l}$, hence $(g h) m_{\mathcal{G}_{i_{1} \ldots i_{l-1}}} \geq i_{l}$, and since $(g h) e_{i_{l}} \neq 1$, $(g h) m_{\mathcal{G}_{i_{1} \ldots i_{l-1}}}=i_{l}$. Hence \mathbf{i} is discriminating for $g h$ at l and $g h$ is \mathbf{i}-positive, therefore $g h \in P_{\mathcal{G}}$.
Case 2. $p<l$. Similarly $(g h) e_{i_{p}}=h e_{i_{p}}>1$, \mathbf{i} is discriminating for $g h$ at p and $g h$ is i-positive, so $g h \in P_{\mathcal{G}}$.
Case 3. $p=l$. Then $g e_{i_{p}}>1$, $h e_{i_{p}}>1$, so $(g h) e_{i_{p}}=\left(g e_{i_{p}}\right)\left(h e_{i_{p}}\right)>1$, and $(g h) m_{\mathcal{G}_{i_{1} \ldots i_{l-1}}} \geq$ i_{p}. Again it follows that \mathbf{i} is discriminating for $g h$ at p and $g h$ is \mathbf{i}-positive, so $g h \in P_{\mathcal{G}}$.

Thus $P_{\mathcal{G}}$ is the strictly positive cone for a right order on $\langle\mathcal{G}\rangle$, for all objects \mathcal{G} of \mathbf{G}. The next step is to show that if \mathbf{f} is a morphism in \mathbf{G}, then the group isomorphism $\mathbf{f} Q$ is order-preserving, equivalently, maps the strictly positive cone to the strictly positive cone.

Lemma 2.6. Let $\mathcal{G}=\left(G,\left\{G_{i} \mid i \in I\right\}\right), \mathcal{H}=\left(H,\left\{H_{j} \mid j \in J\right\}\right)$ be objects of \mathbf{G}, and let $\mathbf{f}=\left(\lambda,\left\{f_{i} \mid i \in I\right\}\right)$ be a morphism from \mathcal{G} to \mathcal{H}. Then $P_{\mathcal{G}}(\mathbf{f} Q) \subseteq P_{\mathcal{H}}$.

Proof. Firstly, for $l \in I, \mathbf{f}$ induces a morphism $\mathbf{f}_{l}=\left(\lambda_{l},\left\{f_{i^{\prime}} \mid i^{\prime} \in I_{l}\right\}\right)$ from \mathcal{G}_{l} to $\mathcal{H}_{l \lambda}$, as follows. For $(i, a) \in I_{l}$, where $i \in I, i>l$ and $a \in G_{l}$, define $(i, a) \lambda_{l}=\left(i \lambda, a f_{l}\right)$. It is easily checked that $\lambda_{l}: I_{l} \rightarrow J_{l \lambda}$ is an order-preserving bijection. For $i^{\prime}=(i, a) \in I_{l}$, $f_{i^{\prime}}: a^{-1} G_{i} a \rightarrow\left(a f_{l}\right)^{-1} H_{i \lambda}\left(a f_{l}\right)$ is defined by $a^{-1} g a \mapsto\left(a f_{l}\right)^{-1}\left(g f_{i}\right)\left(a f_{l}\right)$. This is clearly an isomorphism of bi-ordered groups, as f_{i} is order-preserving.

Note that $f_{i^{\prime}}$ is $\mathbf{f} Q$ restricted to $a^{-1} G_{l} a$, and it follows that $\mathbf{f}_{l} Q$ is $\mathbf{f} Q$ restricted to $\left\langle\mathcal{G}_{l}\right\rangle$. To prove the lemma, it will be shown, by induction on n, that for all n and any morphism $\mathbf{f}=$ $\left(\lambda,\left\{f_{i} \mid i \in I\right\}\right)$ of \mathbf{G}, say from $\mathcal{G}=\left(G,\left\{G_{i} \mid i \in I\right\}\right)$ to $\mathcal{H}=\left(H,\left\{H_{j} \mid j \in J\right\}\right)$, if $g \in\langle\mathcal{G}\rangle$, $g \neq 1$, has length n relative to the free product decomposition of \mathcal{G}, then $g \in P_{\mathcal{G}}$ implies $g(f Q) \in P_{\mathcal{H}}$.

Assume then, that g has length n and $g \in P_{\mathcal{G}}$. Write $g=g^{\prime} g^{*}$ as in the recursive definition, so $g^{\prime} \in G_{l}, g^{*} \in\left\langle\mathcal{G}_{l}\right\rangle$, where $l=g m_{\mathcal{G}}$. Then

$$
\begin{aligned}
h:=g(\mathbf{f} Q) & =\left(g^{\prime}(\mathbf{f} Q)\right)\left(g^{*}(\mathbf{f} Q)\right) \\
& =\left(g^{\prime} f_{l}\right)\left(g^{*}\left(\mathbf{f}_{l} Q\right)\right)
\end{aligned}
$$

and $g^{\prime} f_{l} \in H_{l \lambda}, g^{*}\left(\mathbf{f}_{l} Q\right) \in\left\langle\mathcal{H}_{l \lambda}\right\rangle$. Let $g=g_{1} \ldots g_{n}$ be the expression of g as a reduced word relative to the decomposition $*_{i \in I} G_{i}$, where $g_{k} \in G_{i_{k}}$. Then $h=h_{1} \ldots h_{n}$ is the expression of h as a reduced word relative to the decomposition $*_{j \in J} H_{j}$, where $h_{k}=g_{k} f_{i_{k}} \in H_{i_{k} \lambda}$. Since λ is order-preserving, it follows that $h m_{\mathcal{H}}=l \lambda$. Therefore, $h^{\prime}=g^{\prime} f_{l}$ and $h^{*}=$ $g^{*}\left(\mathbf{f}_{l} Q\right)$. Thus, if $g^{\prime} \neq 1$, then $g^{\prime}>1$ in G_{l}, hence $h^{\prime}>1$ in $H_{l \lambda}$, so $h \in P_{\mathcal{H}}$. If $g^{\prime}=1$ then $h^{\prime}=1$ and g^{*} has shorter length than g (relative to the free product decomposition of $\left\langle\mathcal{G}_{l}\right\rangle$), so by induction

$$
g \in P_{\mathcal{G}} \Rightarrow g^{*} \in P_{\mathcal{G}_{l}} \Rightarrow h^{*}=g^{*}\left(\mathbf{f}_{l} Q\right) \in P_{\mathcal{H}_{l \lambda}} \Rightarrow h \in P_{\mathcal{H}} .
$$

This completes the proof.
The final step is to show that $P_{\mathcal{G}}$ is closed under conjugation, so is the strictly positive cone for a bi-order on \mathcal{G}; this will use the following remark.

Remark 2.2. Let $\mathcal{G}=\left(G,\left\{G_{i} \mid i \in I\right\}\right)$ be an object of \mathbf{G}, let $i \in I$ and suppose $g \in\left\langle\mathcal{G}_{i}\right\rangle$. Then $g \in P_{\mathcal{G}}$ if and only if $g \in P_{\mathcal{G}_{i}}$.

For let $\left(i_{1}, \ldots, i_{n}\right)$ be a \mathcal{G}_{i}-descent sequence which is discriminating for g at j, say. Then $\left(i, i_{1}, \ldots, i_{n}\right)$ is a \mathcal{G}-descent sequence discriminating for g at $j+1$, with exactly the same signature in the group $G_{i_{j}}$, which is bi-ordered in the same way for both descent sequences. By Cor. 2.4, $g \in P_{\mathcal{G}}$ if and only if $g \in P_{\mathcal{G}_{i}}$.

Lemma 2.7. Let $\mathcal{G}=\left(G,\left\{G_{i} \mid i \in I\right\}\right)$ be an object of \mathbf{G} and let $x \in\langle\mathcal{G}\rangle$. Then $x^{-1} P_{\mathcal{G}} x \subseteq P_{\mathcal{G}}$.
Proof. It will be shown that, for all \mathcal{G}, all $x \in\langle\mathcal{G}\rangle$ and all $g \in P_{\mathcal{G}}$ of length $n, x^{-1} g x \in P_{\mathcal{G}}$, by induction on n. Since $\langle\mathcal{G}\rangle$ is generated by $\bigcup_{i \in I} G_{i}$, it can be assumed that $x \in G_{i}$ for some i. Write $g=g^{\prime} g^{*}$ as in the recursive definition, so $g^{\prime} \in G_{l}, g^{*} \in\left\langle\mathcal{G}_{l}\right\rangle$, where $l=g m_{\mathcal{G}}$.

Case 1: $i<l$. Then $g \in\left\langle\mathcal{G}_{i}\right\rangle=\mathcal{*}_{(j, a) \in I_{i}} a^{-1} G_{j} a$. Conjugation by x induces a morphism $\mathbf{f}=\left(\lambda,\left\{f_{(j, a)} \mid(j, a) \in I_{i}\right\}\right): \mathcal{G}_{i} \rightarrow \mathcal{G}_{i}$, where $(j, a) \lambda=(j, a x)$ and $y f_{(j, a)}=x^{-1} y x$ for $y \in$ $G_{(j, a)}=a^{-1} G_{j} a$. By Remark 2.2 and Lemma 2.6,

$$
g \in P_{\mathcal{G}} \Rightarrow g \in P_{\mathcal{G}_{i}} \Rightarrow x^{-1} g x=g(\mathbf{f} Q) \in P_{\mathcal{G}_{i}} \Rightarrow x^{-1} g x \in P_{\mathcal{G}}
$$

as required.
Case 2: $i=l$. If $g^{\prime} \neq 1$ then $\left(x^{-1} g x\right)^{\prime}=x^{-1} g^{\prime} x$ and $\left(x^{-1} g x\right) m_{\mathcal{G}}=l$. Then $g \in P_{\mathcal{G}}$ implies $g^{\prime}>1$ in G_{i}, so $x^{-1} g^{\prime} x>1$ as G_{i} is bi-ordered, hence $x^{-1} g x \in P_{\mathcal{G}}$ by definition. Otherwise $g=g^{*} \in\left\langle\mathcal{G}_{i}\right\rangle$, and as in the previous case, $x^{-1} g x \in P_{\mathcal{G}}$.
Case 3: $i>l$. Then $\left(x^{-1} g x\right)^{\prime}=g^{\prime}$, so if $g^{\prime} \neq 1$ then $x^{-1} g x \in P_{\mathcal{G}}$ by definition. Otherwise, $g=g^{*} \in P_{\mathcal{G}_{l}}$ by definition, and $x \in\left\langle\mathcal{G}_{l}\right\rangle$, so by induction $x^{-1} g x=\left(x^{-1} g x\right)^{*} \in P_{\mathcal{G}_{l}}$, hence $x^{-1} g x \in P_{\mathcal{G}}$ by definition, since $l=\left(x^{-1} g x\right) m_{\mathcal{G}}$.

This completes the inductive proof.
Thus for an object \mathcal{G} of $\mathbf{G}, \mathcal{G} Q$ is $\langle\mathcal{G}\rangle$ with the bi-order having $P_{\mathcal{G}}$ as strictly positive cone, which has been shown to be a bi-order. It follows from Lemma 2.6 that if \mathbf{f} is a morphism then $\mathrm{f} Q$ is order-preserving. It is routine to check that Q satisfies the conditions for a functor (it preserves multiplication and identity morphisms), so Theorem 2.1 is proved.

Note that, in the recursive definition of the order on $\langle\mathcal{G}\rangle$, if g has length 1 , then clause (1) applies, hence the order on $\langle\mathcal{G}\rangle$ extends the given orders on the free factors.

3. Bi-ordering Graph Products

Let $G \Gamma$ be a graph product, let v be a vertex of Γ and consider the decomposition $(*)$ in (2) of $\S 1$:

$$
G \Gamma=\left(G_{v} \times G E\right) *_{G E} G Z
$$

where Z is the graph obtained by removing the vertex v and all edges incident with it from Γ, and E is the full subgraph of Γ whose vertices are the vertices of Γ adjacent to v.
Lemma 3.1. Let $\rho_{\Gamma, Z}: G \Gamma \rightarrow G Z$ be the retraction defined in $\S 1$, and let K be the kernel of $\rho_{\Gamma, Z}$. Then $K=*_{g \in R} g G_{\nu} g^{-1}$, where R is any transversal for the cosets $\{g G E \mid g \in G Z\}$.

Proof. Corresponding to the decomposition ($*$), let X be the usual Bass-Serre tree on which $G \Gamma$ acts ($\left[8\right.$, Ch.I, $\S 4$, Theorem 7]). The vertex set is $\left(G \Gamma /\left(G_{v} \times G E\right)\right) \amalg(G \Gamma / G Z)$ and the edge set is $(G \Gamma / G E) \amalg \overline{(G \Gamma / G E)}$. Although these are disjoint unions, it will cause no confusion to view the vertices and edges corresponding to $G \Gamma / G E$ just as cosets. For $g \in G \Gamma$, the directed edge $g G E$ starts at $g\left(G_{v} \times G E\right)$ and ends at $g G Z$, and for each such edge there is an oppositely oriented edge $\overline{g G E}$. Thus $\overline{(G \Gamma / G E)}=\{\overline{g G E} \mid g \in G \Gamma\}$. The action of $G \Gamma$ on X (on the left) is via the usual action on cosets.

Now K acts on X by restriction, and the action is transitive on the vertices $g G Z$. For $G \Gamma=K \rtimes G Z$ (because $\rho_{\Gamma, Z}$ is a retraction), so if $g \in G \Gamma, g=k z$ for some (unique) $k \in K$ and $z \in G Z$, and $g G Z=k G Z$. The edges ending at the vertex $G Z$ are the cosets $g G E$ for $g \in G Z$. If $g G E, g_{1} G E$ are two such distinct edges, then their endpoints $g\left(G_{v} \times G E\right)$,
$g_{1}\left(G_{v} \times G E\right)$ are in distinct K-orbits, hence so are the edges themselves. For if $k g\left(G_{v} \times\right.$ $G E)=g_{1}\left(G_{v} \times G E\right)$, where $k \in K$, then $g_{1}=k g a e$ for some $a \in G_{v}$ and $e \in G E$. Applying $\rho_{\Gamma, Z}$ to this, $g_{1}=g e$, so $g G E=g_{1} G E$.

Therefore, if R is a transversal for $G Z / G E$, the set of edges $\{g G E, \overline{g G E} \mid g \in R\}$ is the set of edges incident with $G Z$, and these edges, together with their endpoints, form a fundamental domain T for the action of K on X, in the sense of [8, Ch.I, $\S 4$, Definition 7]. There is an associated tree of groups (K, T) with K isomorphic to $K_{T}:=\underset{\longrightarrow}{\lim }(K, T)$ (see $\mathrm{Ch} . \mathrm{I}, \S 4$, Theorem 10 and the remarks preceding it in [8]).

The K-stabilizer of the common endpoint $G Z$ of the edges of T is $K \cap G Z=1$, and the stabilizer of the edge $g G E$ is $K \cap g G E g^{-1}=g(K \cap G E) g^{-1}=1$. The stabilizer of $g\left(G_{v} \times G E\right)$ is

$$
K \cap g\left(G_{v} \times G E\right) g^{-1}=g\left(K \cap\left(G_{v} \times G E\right)\right) g^{-1} .
$$

If $k=a e$, where $k \in K, a \in G_{v}$ and $e \in G E$, then applying $\rho_{\Gamma, Z}$ gives $e=1$, so $k \in G_{v}$. Hence the stabilizer of $g\left(G_{v} \times G E\right)$ is $g G_{v} g^{-1}$.

Therefore $K_{T}=\mathcal{*}_{g \in R} g G_{v} g^{-1}$ (cf Example (c), $\S 4.4$, Chapter I in [8], with $A=1$) and the lemma follows.

Remark 3.1. If $g G E=g_{1} G E$ then $g a g^{-1}=g_{1} a g_{1}^{-1}$ for all $a \in G_{v}$, so $g G_{v} g^{-1}=g_{1} G_{v} g_{1}^{-1}$. Thus changing the transversal in Lemma 3.1 does not change the decomposition of K, and $C:=\left\{g G_{v} g^{-1} \mid g \in G Z\right\}=\left\{g G_{\nu} g^{-1} \mid g \in R\right\}$, for any transversal R. Conversely, if $g G_{v} g^{-1}=g_{1} G_{v} g_{1}^{-1}$, where $g, g_{1} \in G Z$, then $g G E=g_{1} G E$. This follows because if $x G_{v} x^{-1}=G_{v}$, where $x \in G Z$, then $x \in G E$ by the normal form theorem for free products with amalgamation.

Let $\rho_{Z, E}: G Z \rightarrow G E$ be the retraction defined in $\S 1$ and let $L=\operatorname{ker}\left(\rho_{Z, E}\right)$. Then $G Z=L \rtimes$ $G E$, so $R=L$ is a valid choice for R in Lemma 3.1 and $L=L^{-1}$, hence $K=\mathcal{*}_{l \in L} l^{-1} G_{v} l$.

Suppose both $G Z$ and G_{v} are bi-ordered. For $l \in L$, bi-order $l^{-1} G_{v} l$ by: $l^{-1} g l \leq l^{-1} g_{1} l$ if and only if $g \leq g_{1}$ in G_{v}. As a subgroup of $G Z, L$ is bi-ordered by restriction, in particular is totally ordered. Therefore $\mathcal{K}:=\left(K,\left\{l^{-1} G_{\nu} l \mid l \in L\right\}\right)$ is an object of the category \mathbf{G}. Thus $K=\mathcal{K} Q$ is bi-ordered.

Also, $G Z$ acts on C by conjugation, so for $g \in G Z, l \in L, g^{-1}\left(l^{-1} G_{v} l\right) g=l_{1}^{-1} G_{v} l_{1}$ for some unique $l_{1} \in L$, by Remark 3.1. The map $\lambda_{g}: l \mapsto l_{1}$ is a permutation of L, giving an action of $G \Gamma$ on L. That is, the map $g \mapsto \lambda_{g}$ is a homomorphism from $G Z$ to the symmetric group on L. Further, the map $f_{l}^{g}: l^{-1} G_{v} l \rightarrow\left(l \lambda_{g}\right)^{-1} G_{v}\left(l \lambda_{g}\right), l^{-1} x l \mapsto\left(l \lambda_{g}\right)^{-1} x\left(l \lambda_{g}\right)$ is an isomorphism of bi-ordered groups, and is conjugation by g, by Remark 3.1, because $G E$ commutes with G_{v}.
Lemma 3.2. In these circumstances, for all $g \in G Z, \mathbf{f}_{g}:=\left(\lambda_{g},\left\{f_{l}^{g} \mid l \in L\right\}\right)$ is a morphism from \mathcal{K} to \mathcal{K} in \mathbf{G}.
Proof. The only thing to check is that λ_{g} is order-preserving. Since $G Z$ is generated by G_{u}, where u runs through the vertices of Z, it suffices to show this when $g \in G_{u}$, where u is a vertex of Z.

Case 1. u is not a vertex of E. Then $g \in L$, so $l \lambda_{g}=l g$, for all $l \in L$, and $l<l_{1}$ implies $l g<l_{1} g$ because L is bi-ordered.
Case 2. u is a vertex of E. Then g commutes with all elements of G_{v}, so for $l \in L$,

$$
g^{-1} l^{-1} G_{v} l g=\left(g^{-1} l^{-1} g\right) G_{v}\left(g^{-1} l g\right)
$$

and $g^{-1} l g \in L$ as L is normal in $G Z$. Hence $l \lambda_{g}=g^{-1} l g$ for all $l \in L$, and $l<l_{1}$ implies $g^{-1} l g<g^{-1} l_{1} g$ since $G Z$ is bi-ordered.
Theorem B. If G_{v} is bi-orderable, for all vertices v of Γ, then $G \Gamma$ is bi-orderable, and if Δ is a full subgraph of Γ, then any bi-order on $G \Delta$ extends to a bi-order on $G \Gamma$.

Proof. The proof is by induction on the number n of vertices of Γ, and there is nothing to prove when $n \leq 1$, so assume $n>1$. Choose a vertex v and consider the decomposition (*)

$$
G \Gamma=\left(G_{v} \times G E\right) *_{G E} G Z
$$

By induction $G Z$ can be bi-ordered, and $K=\operatorname{ker}\left(\rho_{\Gamma, Z}\right)$ can be bi-ordered (as $\mathcal{K} Q$) as in the discussion preceding Lemma 3.2. Since $G \Gamma=K \rtimes G Z$, the orders on K and $G Z$ extend to a right order on $G \Gamma$ (see [2, Lemma 2.1]). To show that this right order is a bi-order, it suffices to show that the bi-order on K is invariant under conjugation by elements of $G Z$. But for $g \in G Z$, there is a morphism \mathbf{f}_{g} given by Lemma 3.2. Then $\mathbf{f}_{g} Q$ is an orderpreserving automorphism of K, and is conjugation by g, since it acts on the free factors of K as conjugation by g. Any bi-order on $G Z$ can be extended in this way to a bi-order on $G \Gamma$, and the last part of the theorem follows by induction (cf the proof of Theorem A).

In Theorem B it was assumed that the graph Γ is finite, but it is possible to consider $G \Gamma$ when Γ is an infinite simple graph; the definition is the same and properties (1) and (2) of graph products in $\S 1$ remain valid, as does Lemma 3.1.

Theorem C. Theorems A and B remain true if Γ is infinite.

Proof. If all G_{v} are bi-orderable, then it follows from Theorem B that $G \Gamma$ is bi-orderable. This is because bi-orderability is a local property: a group is bi-orderable if and only if every finitely generated subgroup is bi-orderable, and a finitely generated subgroup of $G \Gamma$ is contained in $G \Delta$ for some finite full subgraph Δ of Γ.

To obtain the second part of Theorem B when Γ is infinite requires a little more work. Given a full subgraph Δ of Γ, and a bi-order \leq on $G \Delta$, let Ω be the set of all pairs $\left(B, \leq^{\prime}\right)$, where B is a full subgraph of Γ containing Δ and \leq^{\prime} is a bi-order on $G B$ extending \leq. Partially order Ω by: $\left(B_{1}, \leq_{1}\right) \leq\left(B_{2}, \leq_{2}\right)$ if and only if B_{1} is a subgraph of B_{2} and \leq_{2} extends \leq_{1}. Then $(\Delta, \leq) \in \Omega$, and a non-empty chain in Ω has an upper bound (by taking unions), so by Zorn's Lemma Ω has a maximal element, say (Z, \leq_{0}). Suppose $Z \neq \Gamma$, and choose a vertex v of Γ not in Z, and let Γ^{\prime} be the full subgraph of Γ whose vertices are those of Z together with v. Let E be the full subgraph of Γ^{\prime} whose vertices are the vertices of Γ adjacent to v, and let $K=\operatorname{ker}\left(\rho_{\Gamma^{\prime}, Z}\right)$. Then $G \Gamma^{\prime}=K \rtimes G Z$, and arguing as in Theorem B, \leq_{0} extends to a bi-order \leq^{\prime} on $G \Gamma^{\prime}$. Thus $\left(\Gamma^{\prime}, \leq^{\prime}\right) \in \Omega$, contradicting the maximality of $\left(Z, \leq_{0}\right)$. Hence \leq_{0} is an extension of \leq to $G \Gamma$, as required.

Similarly, right orderability is a local property, so if Γ is infinite and all G_{v} are right orderable, then $G \Gamma$ is right orderable by Theorem A. The second part of Theorem A is also valid when Γ is infinite, using Zorn's Lemma, replacing "bi-order" by "right order" in the argument above. This works because a free product of right orderable groups is right orderable (see, for example, [2, Corollary 5.11]), and an extension of right ordered groups is right ordered ([2, Lemma 2.1]). Details are left to the reader.

Another addition to Theorems A and B is the following.
Theorem D. Let $G \Gamma$ be a graph product, where Γ is a (possibly infinite) simple graph.
(1) If G_{v} is right ordered, for all vertices v of Γ, then $G \Gamma$ has a right order extending all the given right orders on the groups G_{v}.
(2) If G_{v} is bi-ordered, for all vertices v of Γ, then $G \Gamma$ has a bi-order extending all the given bi-orders on the groups G_{v}.

Proof. The proof of (2) needs another argument using Zorn's Lemma, considering pairs (B, \leq), where B is a full subgraph of Γ and \leq is a bi-order on $G B$ extending the given right order on G_{v}, for all vertices v of B. It works because, in Lemma 3.1, if G_{v} is bi-ordered then K has a bi-order extending the bi-order on G_{v}, by the observation at the end of $\S 2$. Part (1) can be proved by a similar argument. It works because a free product of right ordered groups has a right order extending the orders on the free factors (again see [2, Corollary 5.11]). Once more, the details are left to the reader.

A graph product with all vertex groups infinite cyclic is called a right-angled Artin group, a free partially commutative group or a graph group. Theorem B generalises the known result that these groups are bi-orderable (see [4], [5]). This special case also follows from a result in the thesis of C. Droms ([3, Chapter III, Theorem 1.1]), that these groups are residually torsion-free nilpotent.

References

[1] G. M. Bergman, "Specially ordered groups", Comm. Algebra 12 (1984), 2315-2333.
[2] V. V. Bludov and A. M. W. Glass, "Word problems, embeddings, and free products of right-ordered groups with amalgamated subgroup", Proc. Lond. Math. Soc. (3) 99 (2009), 585-608.
[3] C. Droms, Graph groups. Ph.D.Thesis, Syracuse University 1983.
[4] G. Duchamp and D. Krob, "The lower central series of the free partially commutative group", Semigroup Forum 45 (1992), 385-394.
[5] G. Duchamp and J.-Y. Thibon, "Simple orderings for free partially commutative groups", Internat. J. Algebra Comput. 2 (1992), 351-355.
[6] E. R. Green, Graph products of groups. Ph.D.Thesis, University of Leeds 1990
[7] D. G. Radcliffe, "Rigidity of graph products of groups," Algebr. Geom. Topol. 3 (2003), 1079-1088.
[8] J.-P. Serre, Trees. New York: Springer 1980.
[9] A. A. Vinogradov, "On the free product of ordered groups", Mat. Sb. (N.S.), 25(67) (1949), 163-168.

School of Mathematical Sciences
Queen Mary, University of London
Mile End Road
London E1 4NS, England.
Email: I.M.Chiswell@qmul.ac.uk

