
RIGHT ORDERABILITY AND GRAPHS OF GROUPS

I. M. CHISWELL

1. INTRODUCTION

In [1, Theorem A], a criterion for a free product with amalgamation to be right orderable
is given, in terms of families of right orders on the free factors. There is a corresponding
result for an HNN-extension with a single pair of associated subgroups, and these lead to
many interesting consequences. The purpose of this note is to give a generalisation to the
fundamental group of any graph of groups.

Recall that a group is called tree-free if it has an action on a Λ-tree, for some ordered
abelian group Λ, which is free and without inversions. At the end of Chapter 5 in [3] it
is asked whether or not all tree-free groups are orderable, or at least right-orderable. The
context is that groups in the class of locally fully residually free groups, a large class of
tree-free groups, are (two-sided) orderable. It was shown in [4] that tree-free groups are
unique product groups. Using results of Guirardel ([6]), the main result here can be used to
prove that, if Λ =Rn, n≥ 1, with the lexicographic order, then groups having a free action
without inversions on a Λ-tree are right orderable.

The notation used for graphs of groups is that in [4] [8, §§5.1 and 5.3, Ch.I], but with
some changes. The vertices and edges of a graph Y will be denoted by V (Y ), E(Y ) respec-
tively. Also in Definition (b) of fundamental group in [8, §5.1, Ch.I], the generator gy will
be denoted by qy (and e, f etc, rather than y, will be used for edges.) If (G,Y ) is a graph of
groups and T is a maximal tree of Y , π(G,Y,T ) will be used instead of π1(G,Y,T ). Thus
π(G,Y,T ) is the group with presentation

〈qe (e ∈ E(Y )), Gv (v ∈V (Y )) | rel(Gv), qeaeq−1
e = aē (a ∈ Ge,e ∈ E(Y )),

qeqē = 1 (e ∈ E(Y )),qe = 1 (e ∈ E(T ))〉
where a 7→ ae, Ge→Gt(e) is the monomorphism given by the graph of groups. Finally, the
tree constructed in [8, §5.3, Ch.I] is written as Ỹ (G,Y,T ) rather than X̃(G,Y,T ).

If (G,Y ) is a graph of groups and Y ′ is a connected subgraph of Y , the restriction of
(G,Y ) to Y ′ is denoted by (G|Y ′,Y ′). If T ′ is a maximal tree of Y ′ and T is an extension of
T ′ to a maximal tree of Y , then there is a canonical inclusion π(G|Y ′,Y ′,T ′)→ π(G,Y,T )
(see [5, Lemma 19, Ch. 8]). This applies in particular when Y ′ consists of a single vertex,
so the vertex groups embed canonically in π(G,Y,T ), and will be identified with their
images in π(G,Y,T ).

To conform with [8], mappings will be written on the left, and group actions on trees
will be left actions, although this is not the best convention when dealing with right orders.
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If G is a group acting on a set X , then for x ∈ X , stab(x), or stabG(x), if necessary, denotes
the stabilizer of x in G.

Some terminology concerning right orders, mostly taken from [1], but with some minor
changes, needs to be established. If ϕ : H → G is a monomorphism of groups, and ≤
is a right order on G, there is a right order ≤′ on H defined by: h1 ≤′ h2 if and only if
ϕ(h1) ≤ ϕ(h2). This is called the order induced by ≤ on H (via ϕ). This will mainly
be used when H is a subgroup of G and ϕ is the inclusion map, in which case ≤ is an
extension of ≤′.

If ≤ is a right order on a group H1, and ϕ : H1→ H2 is an isomorphism of groups, then
there is an induced right order on H2 via ϕ−1, which is denoted by ≤ϕ . Thus x ≤ϕ y⇐⇒
ϕ−1(x)≤ ϕ−1(y). The orders ≤, ≤ϕ , are called corresponding orders under ϕ .

A special case is when H1 is a subgroup of a group G, g ∈ G and H2 = g−1H1g, and ϕ

is defined by: ϕ(x) = g−1xg. In this case the order ≤ϕ is denoted by ≤g.

Definition. A set R of right orders on a group G is called normal (or G-invariant) if it is
non-empty and, for all g ∈ G and ≤ belonging toR, ≤g belongs toR.

Definition. Let G1, G2 be groups, let Hi be a subgroup of Gi and let ≤i be a right order
on Gi, for i = 1, 2. Suppose ϕ : H1 → H2 is an isomorphism. Then ϕ is compatible for
(≤1,≤2) if, for all h ∈ H1, 1≤1 h implies 1≤2 ϕ(h).

If Ri is a set of right orders on Gi, for i = 1, 2, then ϕ is compatible for (R1,R2) if for
all ≤1 inR1, there exists ≤2 inR2 such that ϕ is compatible for (≤1,≤2).

If ϕ is compatible for (≤1,≤2), then since these are linear orders, it follows that, for
all h ∈ H1, 1 ≤1 h if and only if 1 ≤2 ϕ(h); that is, the orders induced by ≤i on Hi are
corresponding orders under the isomorphism ϕ . Also, ϕ−1 is compatible for (≤2,≤1).

Also, the ideas of ultraproduct of orders and of D-order will be used, and the reader is
referred to [1] for the definition. Again from [1], a set R of right orders on a group G is
called U-closed if it is closed under ultraproducts of orders fromR, and D-invariant if it is
closed under taking D-orders determined by orders in R. Finally, R is called A-invariant
if it is normal, U-closed and D-invariant.

2. THE CASE OF A TREE OF GROUPS

The criterion for the fundamental group of a tree of groups to be right orderable uses the
following idea of compatibility, which applies to any graph of groups.

Definition. Let (G,Y ) be a graph of groups, and let ϕe : Ge→Gt(e) be the monomorphism
given by the graph of groups, for e ∈ E(Y ) (in the notation of [8], ϕe(a) = ae). For each
v∈V (Y ), let≤v be a right order on Gv. The family {≤v| v ∈V (Y )} is said to be compatible
for (G,Y ) if ϕeϕ

−1
ē (aē 7→ ae) is compatible for (≤o(e),≤t(e)), for all e ∈ E(Y ).

More generally, letRv be a set of right orders on Gv. The family {Rv | v ∈V (Y )} is said
to be compatible for (G,Y ) if ϕeϕ

−1
ē is compatible for (Ro(e),Rt(e)), for all e ∈ E(Y ).
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Definition. Let (G,Y ) be a graph of groups, and, for each v∈V (Y ), letRv be a set of right
orders on Gv. The family {Rv | v ∈V (Y )} is called normal if every Rv is a normal set of
right orders on Gv.

The next step is to note that Lemma 4.3 in [1] easily generalises to give the following
lemma.

Lemma 2.1. Let {Rv | v ∈V (Y )} be a normal, compatible family of sets of right orders
for a graph of groups (G,Y ). Then there is a compatible family of sets of right orders for
(G,Y ),

{
Rv | v ∈V (Y )

}
, such thatRv ⊆Rv andRv is A-invariant, for all v ∈V (Y ).

Proof. Let {{Rv,i | v ∈V (Y )} | i ∈ I} be the collection of all families of normal, compat-
ible sets of right orders for (G,Y ), indexed by some set I. Put Rv :=

⋃
i∈IRv,i. Then{

Rv | v ∈V (Y )
}

is plainly a normal, compatible family of sets of right orders for (G,Y ),
withRv ⊆Rv.

Suppose RU
v is the set of all ultraproducts of orders from Rv, for v ∈ V (Y ). From

the proof of [1, Lemma 4.3],
{
RU

v | v ∈V (Y )
}

is a normal, compatible family for (G,Y ),
henceRU

v ⊆Rv, for all v ∈V (Y ). ThereforeRv is U-closed.
Now let RD

v be the set of all D-orders arising from orders in Rv, for v ∈ V (Y ). From
the proof of [1, Lemma 4.3],

{
RD

v | v ∈V (Y )
}

is a normal, compatible family for (G,Y ),
hence RD

v ⊆ Rv, for all v ∈ V (Y ). Therefore Rv is D-invariant. Thus Rv is A-invariant,
for all v ∈V (Y ), and

{
Rv | v ∈V (Y )

}
is the required family. �

The criterion for a tree of groups can now be proved, starting with a finite tree, then
using this to obtain the general result. The next lemma is the main point at which input
from [1] is needed; the proof of Theorem A given there establishes the lemma in the case
that Y has one unoriented edge, and permits an inductive argument.

Lemma 2.2. Suppose Y is a finite tree, (G,Y ) is a graph of groups and {Rv | v ∈V (Y )}
is a normal, compatible family of sets of right orders for (G,Y ). Then π(G,Y,Y ) is right
orderable.

If≤v belongs toRv, for all v ∈V (Y ), and {≤v| v ∈V (Y )} is compatible for (G,Y ), then
there is a right order ≤ on π(G,Y,Y ) such that ≤ induces ≤v on Gv, for all v ∈V (Y ).

Proof. Let ϕe : Ge → Gt(e) be the monomorphism given by the graph of groups, for e ∈
E(Y ), and let π = π(G,Y,Y ). Assuming allRv are A-invariant, it will be shown that there
is an A-invariant setR of right orders on π satisfying
(1) the set of orders induced on Gv by the orders inR isRv, for all v ∈V (Y );
(2) if ≤v belongs to Rv, for all v ∈ V (Y ), and {≤v| v ∈V (Y )} is compatible for (G,Y ),

then there is a right order ≤ inR such that ≤ induces ≤v on Gv, for all v ∈V (Y ).
By Lemma 2.1, this is enough to prove the lemma. The proof is by induction on the

number of vertices of Y . If Y has one vertex, there is nothing to prove, otherwise let z
be a terminal vertex of Y , e, ē the edges incident with z, with t(e) = z, and Y ′ the subtree
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obtained by removing z, e and ē. Then (see [8, Example (b), §4.4, Ch. I])

π = Gz ∗Ge π(G|Y ′,Y ′,Y ′)

and Y ′ has one less vertex than Y . (The free product is formed using the monomorphisms
ϕe, and ϕē composed with the inclusion map Go(e)→ π(G|Y ′,Y ′,Y ′).) By induction, there
is an A-invariant set of right orders,R′, on π(G|Y ′,Y ′,Y ′) satisfying
(1)′ the set of orders induced on Gv by the orders inR′ isRv, for all v ∈V (Y ′);
(2)′ if≤v belongs toRv, for all v∈V (Y ′), and {≤v| v ∈V (Y ′)} is compatible for (G|′Y ,Y ′),

then there is a right order ≤′ inR′ such that ≤′ induces ≤v on Gv, for all v ∈V (Y ′).
In particular, the set of orders induced on Go(e) by orders in R′ is Ro(e). It follows
that ϕeϕ

−1
ē is compatible for (R′,Rv) and ϕēϕ−1

e is compatible for (Rv,R′). Further,
if {≤v| v ∈V (Y )} is as in (2), then (2)′ applies to {≤v| v ∈V (Y ′)}, to give an order ≤′ in
R′ such that ≤′ induces ≤v on Gv, for all v ∈V (Y ′).

From the proof of Theorem A in [1], there is an A-invariant set R of orders on π such
that

(a) the set of orders induced on Gz by the orders inR isRz;
(b) the set of orders induced on π(G|Y ′,Y ′,Y ′) by the orders inR isR′;
(c) if {≤v| v ∈V (Y )} is as in (2), then there is a right order ≤ in R such that ≤ induces
≤z on Gz, and ≤′ onR′.

It follows easily thatR satisfies (1) and (2), completing the induction. �

Lemma 2.3. Suppose (G,Y ) is a graph of groups, where Y is a tree, and {Rv | v ∈V (Y )} is
a normal, compatible family of right orders for (G,Y ). Then π(G,Y,Y ) is right orderable.

Let ≤v belong to Rv, for all v ∈ V (Y ) and assume {≤v| v ∈V (Y )} is compatible for
(G,Y ). Then there is a right order ≤ on π(G,Y,Y ), such that ≤ induces ≤v on Gv, for all
v ∈V (Y ).

Proof. Let π = π(G,Y,Y ); then π is generated by
⋃

v∈V (Y )Gv. Hence, if H is a finitely
generated subgroup of π , there is a finite subtree Y ′ of Y such that H is a subgroup of
π(G|Y ′,Y ′,Y ′). By Lemma 2.2, π(G|Y ′ ,Y ′,Y ′) is right orderable, hence so is H. It follows
that π is right orderable.

For the second part, let F be the set of all finite subtrees of Y . For Z ∈ F, let

aZ =
{

Z′ ∈ F | Z is a subtree of Z′
}
.

Then aZ 6= /0 as Z ∈ aZ . Also, if Z, Z′ ∈ F, then there is a finite subtree Z′′ of Y containing
both Z and Z′, so aZ ∩aZ′ ⊇ aZ′′ . Hence there is an ultrafilter U on F such that aZ ∈ U for
all Z ∈ F.

Using Lemma 2.2, for each Z ∈ F choose a right order ≤Z on π(G|Z,Z,Z) such that, for
all v ∈V (Z), ≤Z induces ≤v on Gv.

Let π̃ =∏Z∈F π(G|Z,Z,Z)/U , an ultraproduct of right ordered groups, so a right ordered
group via ≤U , the ultraproduct of the orders ≤Z , for Z ∈ F.



RIGHT ORDERABILITY AND GRAPHS OF GROUPS 5

Define φ : π −→ π̃ by φ(g) = [φZ(g)], the equivalence class of (φZ(g))Z∈F in π̃ , where

φZ(g) =

{
g if g ∈ π(G|Z,Z,Z)
1 otherwise.

If x, y ∈ π , choose Z0 ∈ F such that x, y ∈ π(G|Z0,Z0,Z0). Then

φZ(xy) = xy = φZ(x)φZ(y)

for all Z ∈ aZ0 . Since aZ0 ∈ U , φ(xy) = φ(x)φ(y), so φ is a group homomorphism.
Suppose φ(x) = 1; then φZ(x) = 1 for all Z ∈ A, where A is some element of U . Choose

Z0 ∈ F such that x ∈ π(G|Z0,Z0,Z0). Then aZ0 ∩A ∈ U , so is non-empty. Take Z ∈ aZ0 ∩A;
then φZ(x) = 1, and x ∈ π(G|Z,Z,Z), so φZ(x) = x. Hence x = 1 and so φ is an embedding,
and ≤U induces a right order on π via φ , denoted by ≤.

Let v ∈ V (Y ), and let x, y ∈ Gv. Choose Z0 ∈ F such that v ∈ V (Z0). Suppose x ≤v y;
then for all Z ∈ aZ0 ,

φZ(x) = x≤Z y = φZ(y)

and aZ0 ∈ U , so φ(x)≤U φ(y), that is, x≤ y.
Suppose x≤ y, so φ(x)≤U φ(y), hence there exists A ∈ U such that φZ(x)≤Z φZ(y) for

all Z ∈ A. Since aZ0 ∩A ∈ U , there exists Z ∈ aZ0 ∩A. Then Z0 is a subtree of Z, so x,
y ∈ π(G|Z,Z,Z), and x = φZ(x)≤Z φZ(y) = y. Since v ∈V (Z), the order≤Z induces≤v on
Gv, hence x≤v y. Thus ≤ induces ≤v on Gv, as required. �

3. THE GENERAL CASE AND APPLICATIONS

Assume (G,Y ) is a graph of groups and {Rv | v ∈V (Y )} is a normal, compatible family
of sets of right orders for (G,Y ). Let T be a maximal tree of Y and put π = π(G,Y,T ).
Choose an orientation A of Y and let Ỹ = Ỹ (G,Y,T ) be the canonical tree on which π acts,
formed using the orientation A. Recall ([8, §5.4, Ch. I]) that V (Ỹ ) =

∐
v∈V (Y )π/Gv, where

π/Gv = {gGv | g ∈ π}, and the action of π on V (Ỹ ) is given by the usual action on cosets
of a subgroup. For v ∈V (Y ), ṽ means the vertex corresponding to Gv in this disjoint union,
so stab(ṽ) = Gv. For e ∈ E(Y ), Ge

e denotes the image of Ge under the monomorphism
Ge→ Gt(e) given by the graph of groups, and E(Ỹ ) =

∐
e∈E(Y )π/G′e, where

G′e =

{
Gē

ē if e ∈ A
Ge

e if e 6∈ A

For e∈ E(Y ), ẽ is defined to be the edge corresponding to the coset G′e in the disjoint union
(care is needed as G′e = G′ē).

Let u ∈V (Ỹ ), so u = gṽ for some g ∈ π and v ∈V (Y ). For ≤ inRv, the right order≤g−1

on stab(u) = gGvg−1 is given by

a≤g−1
b⇐⇒ g−1ag≤ g−1bg (a, b ∈ stab(u)).
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The set Rv,g := {≤g−1 |≤ belongs toRv} is independent of the choice of g (in the coset

gGv). To see this, suppose g1 = gh, where h ∈ Gv, and ≤ is equal to ≤g−1

1 , where ≤1 is in
Rv. Then, for a, b ∈ stab(u),

a≤ b⇐⇒ g−1ag≤1 g−1bg

⇐⇒ hg−1
1 ag1h−1 ≤1 hg−1

1 bg1h−1

⇐⇒ g−1
1 ag1 ≤2 g−1

1 bg1

where ≤2 is ≤h
1, which is in Rv, because Rv is normal. Thus ≤ is equal to ≤g−1

1
2 , which

belongs to Rv,g1 , and so Rv,g ⊆ Rv,g1 . By symmetry, since g = g1h−1, Rv,g = Rv,g1 , as
claimed.

Thus it is legitimate to defineRu :=Rv,g.

Lemma 3.1. In this situation, the setRu is a normal set of right orders on stab(u), for all
u ∈V (Ỹ ).

Proof. Let u ∈ V (Ỹ ), so u = gṽ for some v ∈ V (Y ) and g ∈ π . Suppose h ∈ stab(u) =
gGvg−1, so h = gkg−1 for some k ∈ Gv, and suppose ≤ is inRu. Then ≤ is ≤g−1

1 for some
≤1 inRv. For a, b ∈ stab(u),

a≤h b⇐⇒ ha≤ hb

⇐⇒ g−1hag≤1 g−1hbg

⇐⇒ kg−1ag≤1 kg−1bg

⇐⇒ g−1ag≤2 g−1bg

where ≤2 is ≤k
1, which is in Rv as this is a normal set of right orders on Gv. Thus ≤h is

≤g−1

2 , which is inRu, henceRu is normal. �

Lemma 3.2. In the situation of Lemma 3.1, the identity map stab( f )→ stab( f ) is compat-
ible for (Ro( f ),Rt( f )), for all f ∈ E(Ỹ ).

Proof. Write f = gẽ, where g ∈ π and e ∈ E(Y ). There are two similar cases to consider.
Case 1: e ∈ A. Then (cf [8, §5.3, Ch. I])

t( f ) = gqet̃(e)

o( f ) = gõ(e)

stab( f ) = gGē
ēg−1.

Suppose≤ is inRo( f ). By definition, there is≤1 inRo(e) such that, for a, b∈ stab(o( f )) =
gGo(e)g−1,

a≤ b⇐⇒ g−1ag≤1 g−1bg.
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An element of stab( f ) has the form gcēg−1, where c ∈ Ge. For such c,

1≤ gcēg−1⇐⇒ 1≤1 cē

and, by assumption, there exists ≤2 inRt(e) such that

1≤1 cē⇐⇒ 1≤2 ce.

Let ≤3 be the right order ≤(gqe)
−1

2 in Rt( f ). Then 1 ≤2 ce implies 1 ≤3 gqeceq−1
e g−1 =

gcēg−1. Thus the identity map on stab( f ) is compatible for (≤,≤3).
Case 2: e 6∈ A. Then

t( f ) = gt̃(e)

o( f ) = gq−1
e õ(e)

stab( f ) = gGe
eg−1.

Suppose ≤ is in Ro( f ), so there exists ≤1 in Ro(e) such that, for a, b ∈ stab(o( f )) =
gq−1

e Go(e)qeg−1,

a≤ b⇐⇒ qeg−1agq−1
e ≤1 qeg−1bgq−1

e .

An element of stab( f ) has the form gceg−1, where c ∈ Ge. For such c,

1≤ gceg−1⇐⇒ 1≤1 qeceq−1
e = cē

and, by assumption, there exists ≤2 inRt(e) such that

1≤1 cē⇐⇒ 1≤2 ce.

Let ≤3 be the right order ≤g−1

2 in Rt( f ). Then 1 ≤2 ce implies 1 ≤3 gceg−1. Thus the
identity map on stab( f ) is compatible for (≤,≤3). The lemma follows. �

The main result can now be proved.

Theorem 3.3. Let (G,Y ) be a graph of groups, let T be a maximal tree of Y and let
π = π(G,Y,T ). Then π is right orderable if and only if there is a normal, compatible
family of sets of right orders {Rv | v ∈V (Y )} for (G,Y ).

Let ϕe : Ge→ Gt(e) be the monomorphism given by the graph of groups, for e ∈ E(Y ).
Suppose ≤v is a right order on Gv, for all v ∈ V (Y ). Then there is a common extension
of all the ≤v to a right order on π if and only if there is a normal, compatible family
{Rv | v ∈V (Y )} for (G,Y ) such that≤v is inRv for all v∈V (Y ), and ϕeϕ

−1
ē is compatible

for (≤o(e),≤t(e)), for all e ∈ E(T ).

Proof. Suppose π is right orderable and let R be the set of all right orders on π . For
v ∈ V (Y ), let Rv be the set of right orders on Gv induced by orders in R. Then Rv is
normal asR is.
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Let e ∈ E(Y ) and assume ≤ is in Ro(e). Let ≤π be one of its extensions belonging to
R. Then ≤qe

π is inR, and induces a right order on Gt(e) by restriction; denote this order by
≤e, so ≤e is inRt(e).

Then, for a ∈ Ge, 1 ≤ aē implies 1 ≤π aē = qeaeq−1
e , that is, 1 ≤qe

π ae, hence 1 ≤e ae.
It follows that ϕeϕ

−1
ē is compatible for (≤,≤e), and so {Rv | v ∈V (Y )} is compatible for

(G,Y ).
Suppose that ≤v is a right order on Gv, for all v ∈ V (Y ), and that there is a common

extension of all the ≤v to a right order ≤ on π . Then π is right orderable, so Rv, for
v ∈V (Y ), can be defined as above, and ≤v is inRv, for all v ∈V (Y ). If e ∈ E(T ), then for
a ∈ Ge,

1≤o(e) aē⇐⇒ 1≤ aē⇐⇒ 1≤ ae⇐⇒ 1≤t(e) ae

because in π , aē and ae are identified (the generator qe of π is 1). Hence ϕeϕ
−1
ē (aē 7→ ae)

is compatible for (≤o(e),≤t(e)).
Conversely, assume {Rv | v ∈V (Y )} is a normal, compatible family of sets of right or-

ders for (G,Y ). Let F be the free group on {qe | e ∈ A\E(T )}. Let θ : π −→ F be the
canonical epimorphism obtained by sending all elements of the vertex groups to 1, qe to qe,
for e ∈ A\E(T ), and qe to 1 for e ∈ E(T ). Note that F can be viewed as π(I,Y,T ), where
(I,Y ) is the graph of groups with all edge and vertex groups trivial. By [2, Lemma 7],
the quotient graph Z = Ỹ/ker(θ) is a tree (isomorphic to Ỹ (I,Y,T ), which is the universal
covering of the graph Y ). An associated graph of groups (K,Z), with ker(θ)∼= π(K,Z,Z),
as in [8, §5.4, Ch.I], will be constructed as follows.

First note that there is an injective graph map T → Ỹ , x 7→ x̃, whose image is therefore a
subtree T̃ of Ỹ . Further, pairwise distinct vertices or edges of T̃ are in different π-orbits, so
in different ker(θ)-orbits. Therefore, if p : Ỹ −→ Z is the projection map, its restriction to
T̃ is injective. By a simple modification of [8, §3.1, Proposition 14], there is a graph map
j : Z→ Ỹ with p j = idZ , and such that j maps p(T̃ ) isomorphically onto T̃ . For a vertex
or edge x of Z, put Kx = stabker(θ)( j(x)), and let the monomorphism ψe : Ke −→ Kt(e), for
e ∈ E(Z), be inclusion. This completes the construction of (K,Z), which is simpler than
the general construction in [8] because Z is a tree (cf [8, §4.5, Ch.I]).

The stabilizers of vertices for the action of G on Ỹ are conjugates of the vertex groups
of (G,Y ). Since ker(θ) is normal in π , it contains all these stabilizers, and so all the edge
stabilizers for the action of G. Thus stabker(θ)(x) = stabπ(x) for any edge or vertex x of Ỹ ,
so this can be unambiguously written as stab(x).

For u ∈ V (Ỹ ), define Ru to be the set of right orders in Lemma 3.1. Then, for z ∈
V (Z), put Rz = R j(z), a normal set of right orders on Kz. For e ∈ E(Z), ψeψ

−1
ē is the

identity map on Ke = stab( j(e)), so is compatible for (Ro(e),Rt(e)) by Lemma 3.2, since
Ro(e) =R j(o(e)) =Ro( j(e)), and similarly Rt(e) =Rt( j(e)). By Lemma 2.3, ker(θ) is right
orderable.

Next, let ≤v belong to Rv, for all v ∈ V (Y ), and assume that ϕeϕ
−1
ē is compatible for

(≤o(e),≤t(e)), for all e ∈ E(T ). A right order ≤u inRu will be defined for every u ∈V (Ỹ ),
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such that, for all f ∈ E(Ỹ ), id : stab( f )→ stab( f ) is compatible for (≤o( f ),≤t( f )). For

ṽ∈V (T̃ ), let≤ṽ be≤v, an element ofRṽ =Rv. If ẽ∈E(T̃ ), so e∈E(T ), then o(ẽ) = õ(e),
hence ≤o(ẽ)=≤o(e), and similarly ≤t(ẽ)=≤t(e). Since, for a ∈ Ge, ae and aē are identified
in π , it follows that id : stab(ẽ)→ stab(ẽ) is compatible for (≤o(ẽ),≤t(ẽ)). (If e ∈ A then
stab(ẽ) = Gē

ē and if e 6∈ A then stab(ẽ) = Ge
e.)

Now define ≤u for all u ∈ V (Ỹ ) by induction on the distance in Ỹ from T̃ to u. If this
distance is n > 0, there is a unique edge f ∈ E(Ỹ ) such that t( f ) = u and o( f ) has distance
(n− 1) from T̃ ; assume ≤o( f ) has been defined. Since, by Lemma 3.2, id : stab( f )→
stab( f ) is compatible for (Ro( f ),Rt( f )), ≤u can be chosen to be an element ofRt( f ) =Ru
such that id : stab( f )→ stab( f ) is compatible for (≤o( f ),≤u) (and so for (≤u,≤o( f ))).

For z ∈V (Z), define ≤z to be ≤ j(z), an element ofRz. Then for e ∈ E(Z), ψeψ
−1
ē is the

identity map on stab( j(e)), so is compatible for (≤o( j(e)),≤t( j(e))). But o( j(e)) = j(o(e)),
t( j(e)) = j(t(e)), so ψeψ

−1
ē is compatible for (≤o(e),≤t(e)). By Lemma 2.3, there is a right

order ≤ on ker(θ) which induces ≤z on Kz, for all z ∈V (Z).
For v ∈V (Y ), if z = p(ṽ), then ≤z is by definition ≤ j(z), j(z) = ṽ and by definition, ≤ṽ

is ≤v. That is, ≤z is equal to ≤v. Hence ≤ induces ≤v on Gv = Kz, for all v ∈V (Y ).
There is an exact sequence

1−→ ker(θ)−→ π
θ−→F −→ 1.

Since F is free, it is right orderable, hence so is π , and any right order on ker(θ) extends
to a right order on π (see eg [1, Lemma 2.1]). The theorem follows. �

There are several consequences of this theorem along the lines of §5 in [1]; just three
will be given.

Corollary 3.4. Let (G,Y ) be a graph of groups, let T be a maximal tree of Y and let
π = π(G,Y,T ). Suppose that Gv is right orderable, for all v ∈ V (Y ), and that every right
order on Ge

e extends to a right order on Gt(e), for all e ∈ E(Y ). Then π is right orderable.
Let ϕe : Ge → Gt(e) be the monomorphism given by the graph of groups. If ≤v is a

right order on Gv, for every v ∈ V (Y ), and ϕeϕ
−1
ē is compatible for (≤o(e),≤t(e)), for all

e ∈ E(T ), then there is a common extension of the ≤v to a right order on π .

Proof. For v ∈V (Y ), letRv be the set of all right orders on Gv, a normal set of right orders
on Gv. Suppose e ∈ E(Y ), and ≤ is in Ro(e). Define a right order ≤′ on Ge

e by: a ≤′ b
if and only if ϕēϕ−1

e (a) ≤ ϕēϕ−1
e (b). By assumption ≤′ extends to a right order on Gt(e),

which is inRt(e). it follows that ϕeϕ
−1
ē is compatible for (Ro(e),Rt(e)). The corollary now

follows from Theorem 3.3. �

The next corollary is immediate from Corollary 3.4.
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Corollary 3.5. Let (G,Y ) be a graph of groups, let T be a maximal tree of Y and let
π = π(G,Y,T ). Suppose that ≤v is a right order on Gv, for all v ∈V (Y ), and that Ge

e is a
convex subgroup of Gt(e), for all e ∈ E(Y ). Then π is right orderable.

Let ϕe : Ge → Gt(e) be the monomorphism given by the graph of groups. If ϕeϕ
−1
ē is

compatible for (≤o(e),≤t(e)), for all e ∈ E(T ), then there is a common extension of the ≤v
to a right order on π . �

Corollary 3.6. Let (G,Y ) be a graph of groups, let T be a maximal tree of Y and let
π = π(G,Y,T ). Assume Gv is right orderable, for all v ∈ V (Y ), and Ge is cyclic, for all
e ∈ E(Y ). Then π is right orderable.

Let ϕe : Ge→ Gt(e) be the monomorphism given by the graph of groups. If ≤v is a right
order on Gv, for all v ∈V (Y ), and ϕeϕ

−1
ē is compatible for (≤o(e),≤t(e)), for all e ∈ E(T ),

then there is a common extension of the ≤v to a right order on π .

Proof. There is exactly one right order on the trivial group, and exactly two on the infinite
cyclic group, which are reverses of each other, so this follows from Corollary 3.4. �

Corollary 3.6 generalises Corollary 5.3 and Corollary 6.7 in [1]. Corollary 3.4 can also
be used to prove the following, which is Theorem 2.12 in [4].

Theorem 3.7. Let (G,Y ) be a graph of groups, and let T be a maximal tree of Y . For
v ∈V (Y ), let Zv = 〈Ge

e | e ∈ E(Y ) and t(e) = v〉. Assume
(1) Ge

e is central in Gt(e), for all e ∈ E(Y );
(2) for all v ∈V (Y ), Zv and Zv/Ge

e, for all e ∈ E(Y ) such that t(e) = v, are torsion-free;
(3) Gv/Zv is right orderable, for all v ∈V (Y ).

Then π(G,Y,T ) is right orderable.

Proof. Let e ∈ E(Y ); since Zt(e)/Ge
e is torsion-free abelian, it is (two-sided) orderable.

There is an exact sequence

1−→ Ge
e −→ Zt(e) −→ Zt(e)/Ge

e −→ 1

hence any right order on Ge
e extends to a right order on Zt(e) (see [1, Lemma 2.1]). For any

v ∈V (Y ), Zv is torsion-free abelian, so orderable, and there is an exact sequence

1−→ Zv −→ Gv −→ Gv/Zv −→ 1.

Since Gv/Zv is right orderable, so is Gv, and any right order on Zv extends to a right order
on Gv, again by [1, Lemma 2.1]. By Corollary 3.4, π(G,Y,T ) is right orderable. �

The final applications are to group actions on Λ-trees, where Λ is a totally ordered
abelian group. The theory of Λ-trees is discussed in [3], and some relevant points will
be recalled here. A Λ-tree is a special kind of metric space (X ,d), where the metric
d takes values in Λ. The axioms are given in [3, §1, Chapter 2]. They imply that,
for every x, y ∈ X , there is a unique isometry α : [0,c]→ X with α(0) = x, α(c) = y,
where c = d(x,y). Here, [0,c] = {a ∈ Λ | 0≤ a≤ c}, and the metric d′ on Λ is given by
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d′(a,b) = |a−b| := max{a−b,b−a}. The image of α is denoted by [x,y] and is called a
segment.

Isometries from X onto X are of three different kinds; elliptic (have a fixed point), inver-
sions (g is an inversion if g has no fixed point but g2 does), and hyperbolic. A hyperbolic
isometry has an axis, which is metrically isomorphic to a convex subset of Λ, on which it
acts as a translation. If g is a hyperbolic isometry, `(g) is defined to be the amplitude of
the translation on its axis, and if g is elliptic or an inversion, `(g) is defined to be 0. Thus
`(g) ∈ Λ, and is called the hyperbolic length of g. (See [3, Chapter 3].)

Actions of groups on Λ-trees will be by isometries. Thus a group G acts freely and
without inversions on a Λ-tree if and only if every g∈G\{1} acts as a hyperbolic isometry,
equivalently, `(g)> 0 for all g∈G, g 6= 1. If Λ is divisible, any action is necessarily without
inversions (see criterion (iv) in Lemma 1.2, Chapter 3 in [3]).

The following is now an easy consequence of results in [6].

Theorem 3.8. Suppose a group G acts freely on an Rn-tree, where Rn has the lexicographic
order. Then G is right orderable.

Proof. Since a group is right orderable if and only if every finitely generated subgroup
is right orderable, it suffices to show this under the extra hypothesis that G is finitely
generated, and this will be done by induction on n. For n= 1, all groups acting freely on R-
trees are (two-sided) orderable. See Proposition 5.13, Chapter 5, and the remarks following
it in [3]. Now assume it is true for (n− 1), and let G be a finitely generated group acting
freely on an Rn-tree. By Grushko’s Theorem, G is a free product of (finitely many) finitely
generated freely indecomposable groups, and a free product of right orderable groups is
right orderable; this is well-known and a special case of Corollary 3.6 (cf [1, Corollary
5.11]). Thus it can be assumed that G is freely indecomposable. By [6, Theorem 7.1], G
is the fundamental group of a finite graph of groups with cyclic edge groups, where each
vertex group is finitely generated and has a free action on an Rn−1-tree. By induction the
vertex groups are right orderable, so by Corollary 3.6, G is right orderable. �

Remark. In Theorem 3.8, there is no need to specify the left or right lexicographic order
on Rn as these give isomorphic ordered abelian groups.

Corollary 3.9. Suppose a group G acts freely and without inversions on a Λ-tree, where Λ

has only finitely many convex subgroups. Then G is right orderable.

Proof. Since Λ has finitely many convex subgroups, it is isomorphic, as ordered abelian
group, to Λ1⊕ . . .⊕Λn, with the lexicographic order, where each Λi is a subgroup of R.
See, for example, Theorem 1.2 and the proof of Lemma 1.6 in [3, Chapter 1]. Thus Λ can
be assumed to be a subgroup of Rn.

Now `(g)> 0 for all g ∈ G with g 6= 1, where `(g) is the hyperbolic length of g. By [3,
Lemma 2.1, Chapter 3], G acts freely on the Rn-tree Rn⊗Λ X , so G is right orderable by
Theorem 3.8. �
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The corollary applies when Λ is a finitely generated ordered abelian group (see the re-
marks preceding Lemma 1.6 in [3]). A special case is when Λ = Zn with the lexicographic
order. For a discussion of groups acting freely and without inversions on a Zn-tree, see [7];
in particular, §3 contains examples of such groups when n = 2.

This can be extended a little further. Recall that, if {Λi | i ∈ I} is a family of (totally)
ordered abelian groups and I is linearly ordered, then

⊕
i∈I Λi is an ordered abelian group

via the right lexicographic order. Thus a = (ai)i∈I > 0 if ai0 > 0, where i0 is the greatest
element of {i ∈ I | ai 6= 0}. This applies to the additive group of the polynomial ring R[t]
in one variable, which is

⊕
i≥0 Λi, where Λi = Rt i ∼= R, a direct sum of countably many

copies of R. Note that Rn, with the right lexicographic order, may be viewed as a convex
subgroup (the set of polynomials of degree at most n−1) and R[t] =

⋃
n≥1Rn, an ascending

union.

Corollary 3.10. If G acts freely on an R[t]-tree, then G is right orderable.

Proof. It suffices to show this when G is finitely generated. Let (X ,d) be an R[t]-tree on
which G acts freely, let x0 ∈ X and let g1, . . . ,gk be a finite generating set for G. If g ∈ G,
then g = ge1

i1 . . .g
em
im for some m≥ 1, where e j =±1 and i j ∈ {1, . . . ,k} for 1≤ j≤m. Then

by the triangle inequality

d(x0,gx0)≤ d(x0,g
e1
i1 x0)+d(ge1

i1 x0,g
e1
i1 ge2

i2 x0)+ . . .+d(ge1
i1 . . .g

em−1
im−1

x0,gx0)

= d(x0,g
e1
i1 x0)+d(x0,g

e2
i2 x0)+ . . .+d(x0,g

em
im x0)

= d(x0,gi1x0)+d(x0,gi2x0)+ . . .+d(x0,gimx0).

There exists n such that d(x0,g1x0), . . . ,d(x0,gkx0) all belong to Rn. Since Rn is a convex
subgroup, it follows that d(x0,gx0) ∈ Rn, hence d(x0,y) ∈ Rn for all y in the segment
[x0,gx0], and all g ∈ G.

The subtree Y spanned by the G-orbit of x0 is
⋃

g∈G[x0,gx0] (see the definition preceding
Lemma 1.8, Chapter 2 in [3]), and is G-invariant. If y, z ∈ Y then d(y,z) ≤ d(x0,y) +
d(x0,z), hence d(y,z) ∈ Rn. Thus Y is an Rn-tree on which G acts freely, so G is right
orderable by Theorem 3.8. �
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