RIGHT ORDERABILITY AND GRAPHS OF GROUPS

I. M. CHISWELL

1. INTRODUCTION

In [1, Theorem A], a criterion for a free product with amalgamation to be right orderable
is given, in terms of families of right orders on the free factors. There is a corresponding
result for an HNN-extension with a single pair of associated subgroups, and these lead to
many interesting consequences. The purpose of this note is to give a generalisation to the
fundamental group of any graph of groups.

Recall that a group is called tree-free if it has an action on a A-tree, for some ordered
abelian group A, which is free and without inversions. At the end of Chapter 5 in [3] it
is asked whether or not all tree-free groups are orderable, or at least right-orderable. The
context is that groups in the class of locally fully residually free groups, a large class of
tree-free groups, are (two-sided) orderable. It was shown in [4] that tree-free groups are
unique product groups. Using results of Guirardel ([6]), the main result here can be used to
prove that, if A =R”", n > 1, with the lexicographic order, then groups having a free action
without inversions on a A-tree are right orderable.

The notation used for graphs of groups is that in [4] [8, §§5.1 and 5.3, Ch.I], but with
some changes. The vertices and edges of a graph Y will be denoted by V(Y ), E(Y') respec-
tively. Also in Definition (b) of fundamental group in [8, §5.1, Ch.I], the generator g, will
be denoted by g, (and e, f etc, rather than y, will be used for edges.) If (G,Y) is a graph of
groups and T is a maximal tree of Y, 7(G,Y,T) will be used instead of 7;(G,Y,T). Thus
n(G,Y,T) is the group with presentation

(ge (e€ E(Y)), G, (veV(Y)) | rel(G,), qeaeq;1 =da° (a€G,ecE(Y)),
qeqe =1 (e €E(Y)),q. =1 (e € E(T)))
where a — a“, Ge — Gy(,) is the monomorphism given by the graph of groups. Finally, the

tree constructed in [8, §5.3, Ch.I] is written as ¥ (G, Y, T) rather than X (G, Y, T).

If (G,Y) is a graph of groups and Y’ is a connected subgraph of Y, the restriction of
(G,Y) to Y’ is denoted by (G|y:,Y’). If T’ is a maximal tree of Y’ and T is an extension of
T’ to a maximal tree of Y, then there is a canonical inclusion 7(Gly,Y',T") — n(G,Y,T)
(see [5, Lemma 19, Ch. 8]). This applies in particular when Y’ consists of a single vertex,
so the vertex groups embed canonically in 7(G,Y,T), and will be identified with their
images in 7(G,Y,T).

To conform with [8], mappings will be written on the left, and group actions on trees

will be left actions, although this is not the best convention when dealing with right orders.
1
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If G is a group acting on a set X, then for x € X, stab(x), or stabg(x), if necessary, denotes
the stabilizer of x in G.

Some terminology concerning right orders, mostly taken from [1], but with some minor
changes, needs to be established. If ¢ : H — G is a monomorphism of groups, and <
is a right order on G, there is a right order <’ on H defined by: hy <’ hy if and only if
¢©(h1) < @(hy). This is called the order induced by < on H (via ¢). This will mainly
be used when H is a subgroup of G and ¢ is the inclusion map, in which case < is an
extension of <’.

If <1is aright order on a group Hj, and ¢ : H] — H; is an isomorphism of groups, then
there is an induced right order on H, via ¢!, which is denoted by <?. Thus x <? y <=
¢ 1(x) < @~ 1(y). The orders <, <?, are called corresponding orders under .

A special case is when H is a subgroup of a group G, g € G and H, = g~ 'H, g, and ¢
is defined by: @(x) = g~ 'xg. In this case the order <? is denoted by <%.

Definition. A set R of right orders on a group G is called normal (or G-invariant) if it is
non-empty and, for all g € G and < belonging to R, <& belongs to R.

Definition. Let G, G, be groups, let H; be a subgroup of G; and let <; be a right order
on G;, for i =1, 2. Suppose ¢ : Hy — H; is an isomorphism. Then ¢ is compatible for
(Sl; Sz) if,forallhe Hi, 1 < h implies 1<, (p(h)

If R,; is a set of right orders on G;, for i = 1, 2, then ¢ is compatible for (R, R) if for
all <; in R, there exists <, in R, such that ¢ is compatible for (<, <5).

If ¢ is compatible for (<, <,), then since these are linear orders, it follows that, for
all h € Hy, 1 <y hif and only if 1 <; ¢(h); that is, the orders induced by <; on H; are
corresponding orders under the isomorphism ¢. Also, ¢! is compatible for (<o, <1).

Also, the ideas of ultraproduct of orders and of D-order will be used, and the reader is
referred to [1] for the definition. Again from [1], a set R of right orders on a group G is
called i-closed if it is closed under ultraproducts of orders from R, and D-invariant if it is
closed under taking D-orders determined by orders in R. Finally, R is called A-invariant
if it is normal, {-closed and D-invariant.

2. THE CASE OF A TREE OF GROUPS

The criterion for the fundamental group of a tree of groups to be right orderable uses the
following idea of compatibility, which applies to any graph of groups.

Definition. Let (G,Y) be a graph of groups, and let ¢, : G, — G () be the monomorphism
given by the graph of groups, for ¢ € E(Y) (in the notation of [8], ¢.(a) = a). For each
veV(Y),let <, be aright order on G,. The family {<,| v € V(Y)} is said to be compatible
for (G,Y) if @.@, ! (a° — a°) is compatible for (Zo(e)> Si(e))> forall e € E(Y).

More generally, let R, be a set of right orders on G,. The family {R, | v € V(Y)} is said
to be compatible for (G,Y) if @@, ' is compatible for (Ro(e)s Ri(e))s for all e € E(Y).
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Definition. Let (G,Y) be a graph of groups, and, for each v € V(Y), let R, be a set of right
orders on G,. The family {R, |v € V(Y)} is called normal if every R, is a normal set of
right orders on G,.

The next step is to note that Lemma 4.3 in [1] easily generalises to give the following
lemma.

Lemma 2.1. Let {R,|v €V (Y)} be a normal, compatible family of sets of right orders
for a graph of groups (G,Y). Then there is a compatible family of sets of right orders for
(G,)Y), {RV lve V(Y)}, such that R, C R, and R, is A-invariant, for all v € V(Y).

Proof. Let {{R,;|veV(Y)}|ieI} be the collection of all families of normal, compat-
ible sets of right orders for (G,Y), indexed by some set I. Put R, := U;c;Rv;. Then
{R,|veV(Y)} is plainly a normal, compatible family of sets of right orders for (G,Y),
with R, C R,.

Suppose RY is the set of all ultraproducts of orders from R,, for v € V(Y). From
the proof of [1, Lemma 4.3], {RY | v € V(Y)} is a normal, compatible family for (G,Y),
hence RY C R,, for all v € V(Y). Therefore R, is {-closed.

Now let RY be the set of all D-orders arising from orders in R,, for v € V(Y). From
the proof of [1, Lemma 4.3], {RY | v € V(Y)} is a normal, compatible family for (G,Y),
hence R? C R,, for all v € V(Y). Therefore R, is D-invariant. Thus R, is A-invariant,
forallv e V(Y),and {R, | v € V(Y)} is the required family. O

The criterion for a tree of groups can now be proved, starting with a finite tree, then
using this to obtain the general result. The next lemma is the main point at which input
from [1] 1s needed; the proof of Theorem A given there establishes the lemma in the case
that Y has one unoriented edge, and permits an inductive argument.

Lemma 2.2. Suppose Y is a finite tree, (G,Y) is a graph of groups and {R, |ve V(Y)}
is a normal, compatible family of sets of right orders for (G,Y). Then n(G,Y,Y) is right
orderable.

If <, belongs to R, forallv e V(Y), and {<,|v € V(Y)} is compatible for (G,Y), then
there is a right order < on ©(G,Y,Y) such that < induces <, on Gy, forallv € V(Y).

Proof. Let @, : G, — Gy(,) be the monomorphism given by the graph of groups, for e €
E(Y), and let 7 = n(G,Y,Y). Assuming all R, are A-invariant, it will be shown that there
is an A-invariant set R of right orders on 7 satisfying

(1) the set of orders induced on G, by the orders in R is R, forall v € V(Y);
(2) if <, belongs to R,, forall ve V(Y), and {<,|v € V(Y)} is compatible for (G,Y),
then there is a right order < in R such that < induces <, on G,, forall v e V(Y).
By Lemma 2.1, this is enough to prove the lemma. The proof is by induction on the

number of vertices of Y. If Y has one vertex, there is nothing to prove, otherwise let z
be a terminal vertex of Y, e, the edges incident with z, with #(e) =z, and Y ' the subtree
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obtained by removing z, e and é. Then (see [8, Example (b), §4.4, Ch. I])
= G G, ©(Gly,Y',Y’)

and Y’ has one less vertex than Y. (The free product is formed using the monomorphisms
., and @; composed with the inclusion map G,y — 7(Gly,Y’,Y’).) By induction, there
is an A-invariant set of right orders, R', on 7(G|y:,Y’,Y’) satisfying

(1)’ the set of orders induced on G, by the orders in R" is R, forall v € V(Y);
(2) if <, belongs to R,, forallv € V(Y’), and {<,| v € V(Y’)} is compatible for (G|}, Y’),
then there is a right order <’ in R’ such that <" induces <, on G,, for all v € V(Y’).

In particular, the set of orders induced on G, by orders in R’ is Roe)- It follows

that @, ! is compatible for (R’,R,) and @,¢, ' is compatible for (R,,R’). Further,
if {<,|veV(Y)}is asin (2), then (2) applies to {<,| v € V(Y’)}, to give an order <’ in
R’ such that <" induces <, on G,, for all v € V(Y’).

From the proof of Theorem A in [1], there is an A-invariant set R of orders on 7 such
that

(a) the set of orders induced on G, by the orders in R is R;

(b) the set of orders induced on 7(G|y:,Y’,Y’) by the orders in R is R;

(c) if {<,|veV(Y)} is as in (2), then there is a right order < in R such that < induces
<,on G, and <’ on R/.

It follows easily that R satisfies (1) and (2), completing the induction. [

Lemma 2.3. Suppose (G,Y) is a graph of groups, whereY is atree, and {R, |ve V(Y)} is
a normal, compatible family of right orders for (G,Y). Then n(G,Y,Y) is right orderable.

Let <, belong to R,, for all v e V(Y) and assume {<,|v € V(Y)} is compatible for
(G,Y). Then there is a right order < on (G,Y,Y), such that < induces <, on G,, for all
veV(y).

Proof. Let ©# = 7(G,Y,Y); then 7 is generated by U,y (y)Gy. Hence, if H is a finitely
generated subgroup of 7, there is a finite subtree Y’ of Y such that H is a subgroup of
n(Gly,Y',Y"). By Lemma 2.2, (Gly,Y',Y’) is right orderable, hence so is H. It follows
that 7 is right orderable.

For the second part, let I be the set of all finite subtrees of Y. For Z € JF, let

az={Z' € F|Zisasubtree of Z'} .

Then azy # 0 as Z € az. Also, if Z, Z' € F, then there is a finite subtree Z” of Y containing
both Z and Z’, so azNay O azr. Hence there is an ultrafilter 2/ on J such that az € U for
allZ e J.

Using Lemma 2.2, for each Z € F choose a right order <z on n(G|z,Z,Z) such that, for
allv € V(Z), <z induces <, on G,,.

Let # =[Ize5 7(G|z,Z,Z) /U, an ultraproduct of right ordered groups, so a right ordered
group via <y, the ultraproduct of the orders <z, for Z € J.
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Define ¢ : 1 — 7 by ¢(g) = [¢z(g)], the equivalence class of (¢z(g))zc in &, where

g iftgen(Glz,Z2,Z
0z(g) = .( | )
1 otherwise.

If x, y € m, choose Zy € F such that x, y € ©(Glz,,Zo,Zo). Then

Oz(xy) = xy = ¢z(x)dz(y)

for all Z € ay,. Since az, € U, ¢(xy) = ¢(x)9(y), so ¢ is a group homomorphism.

Suppose ¢ (x) = 1; then ¢z(x) = 1 for all Z € A, where A is some element of /. Choose
Zy € F such that x € ©(G|z,,Zy,Zy). Then az,NA € U, so is non-empty. Take Z € az, NA;
then ¢z(x) =1, and x € ©(G|z,Z,Z), so ¢z(x) = x. Hence x = 1 and so ¢ is an embedding,
and <;; induces a right order on 7 via ¢, denoted by <.

Letve V(Y), and let x, y € G,. Choose Zy € F such that v € V(Z). Suppose x <, y;
then for all Z € ag,,

Pz(x) =x <zy=¢z(y)
and az, €U, so ¢(x) <y ¢(y), thatis, x <.

Suppose x <y, so ¢(x) <y ¢(y), hence there exists A € U such that ¢z(x) <z ¢z(y) for
all Z € A. Since az, NA € U, there exists Z € az,NA. Then Z is a subtree of Z, so x,
y€n(G|z,Z,Z), and x = ¢z(x) <z ¢z(y) =y. Since v € V(Z), the order <z induces <,, on
G,, hence x <, y. Thus < induces <, on G,, as required. O

3. THE GENERAL CASE AND APPLICATIONS

Assume (G,Y) is a graph of groups and {R, | v € V(Y)} is a normal, compatible family
of sets of right orders for (G,Y). Let T be a maximal tree of Y and put ©# = n(G,Y,T).
Choose an orientation A of ¥ and let Y =¥ (G,Y,T) be the canonical tree on which 7 acts,
formed using the orientation A. Recall ([8, §5.4, Ch. I) that V(Y) = ey (y)7/Gy, where

n/G, = {gG, | g € 7}, and the action of 7 on V(Y) is given by the usual action on cosets
of a subgroup. For v € V(Y), ¥ means the vertex corresponding to G, in this disjoint union,
so stab(7) = G,. For e € E(Y), G¢ denotes the image of G, under the monomorphism

Ge — Gy(,) given by the graph of groups, and EY)= HeeE(y) /G, where

/ G¢ ifecA
Go=19 o .
G, ifedA

Fore € E(Y), € is defined to be the edge corresponding to the coset G/, in the disjoint union
(care is needed as G, = G%).

LetucV(Y), sou=gvforsome g € wandv e V(Y). For <inR,, the right order <8
on stab(u) = gG,g~ ! is given by

a §g71 b= g lag<g'bg (a,b e stab(u)).
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The set R, := {ng1 |< belongs to R, } is independent of the choice of g (in the coset

-1
gG,). To see this, suppose g1 = gh, where h € G,, and < is equal to Sf , where <j is in
R,. Then, for a, b € stab(u),

a<b<e=g lag<; g 'bg
— hgflaglh*l <1 hgflbglff1
= g, 'ag1 <2 8, 'bgi
-1
where <, is gﬁl, which is in R, because R, is normal. Thus < is equal to §§1 , which
belongs to Ry, and so R, , € R,,,. By symmetry, since g = glh_l, Rig=TRyg,, as

claimed.
Thus it is legitimate to define R, := R,.

Lemma 3.1. In this situation, the set R, is a normal set of right orders on stab(u), for all

ueV(y).

Proof. Let u € V(Y), so u = gv for some v € V(Y) and g € m. Suppose h € stab(u) =

—1
gGvg*I, soh = gkg*1 for some k € G,, and suppose < is in R,. Then < is Sf for some
<yinR,. For a, b € stab(u),

a<"b= ha<hb
g 'hag < g 'hbg
= kg 'ag <i kg 'bg
=g lag<rg 'bg
where <, is <K, which is in R, as this is a normal set of right orders on G,. Thus <" is
§§_1 , which is in 'R, hence R, is normal. 0

Lemma 3.2. In the situation of Lemma 3.1, the identity map stab(f) — stab(f) is compat-
ible for (R (), Ry(p)), for all f € E(Y).

Proof. Write f = gé, where g € w and e € E(Y). There are two similar cases to consider.
Case 1: ¢ € A. Then (cf [8, §5.3, Ch. I])

—

t(f) = gqet(e)
o(f) =go(e)
stab(f) = gGog ™.
Suppose <isin R, s). By definition, there is < in R, such that, for a, b € stab(o(f)) =
8Go8

a<b<=g lag<,g 'bg.
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1

An element of stab( f) has the form gc?g~!, where ¢ € G,. For such c,

1<gfgle=1<
and, by assumption, there exists <, in Rt(e) such that
1§1CE<:> 1 Szce.

-1
Let <3 be the right order Sggqe) in R;(r). Then 1 <5 ¢* implies 1 <3 gq.cq, g =

gc®g~!. Thus the identity map on stab( f) is compatible for (<, <3).
Case 2: ¢ ¢ A. Then

1(f) = gt(e)
o(f) = g4, ' o(e)
stab(f) = 8Gig ™.

Suppose < is in R, (), so there exists < in R, such that, for a, b € stab(o(f)) =

84, 'Gye)qe8 "

a<b<— qeg’lagq;l <i qegflbgqgl-

1

An element of stab(f) has the form gc¢g™", where ¢ € G,. For such c,

e

1<gcfg™ ' = 1< q.c%q, =¢
and, by assumption, there exists <, in R, such that
1< Ce_<:>1§206.

Let <3 be the right order Sg_l in Ry(r). Then 1 <, ¢* implies 1 <3 gcg~!. Thus the
identity map on stab(f) is compatible for (<, <3). The lemma follows. O

The main result can now be proved.

Theorem 3.3. Let (G,Y) be a graph of groups, let T be a maximal tree of Y and let
= n(G,Y,T). Then w is right orderable if and only if there is a normal, compatible
family of sets of right orders {R, | v € V(Y)} for (G,Y).

Let @ : G — Gy() be the monomorphism given by the graph of groups, for e € E(Y).
Suppose <, is a right order on G,, for all v € V(Y). Then there is a common extension
of all the <, to a right order on T if and only if there is a normal, compatible family
{R,|veV(Y)}for (G,Y) suchthat <, is in R, for allv € V(Y), and @@, ' is compatible
Jor (<o(e), Zt(e)), for all e € E(T).

Proof. Suppose 7 is right orderable and let R be the set of all right orders on 7. For
veV(Y), let R, be the set of right orders on G, induced by orders in R. Then R, is
normal as R is.
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Let e € E(Y) and assume < is in Ro(e)- Let <z be one of its extensions belonging to
R. Then g?; is in R, and induces a right order on Gt(e) by restriction; denote this order by
<e, 80 <1810 Ry ().

Then, for a € G,, 1 < a° implies 1 < a® = g.a°q; ", that is, 1 <% a¢, hence 1 <, a*.
It follows that @, ¢, ! is compatible for (<,<,), and so {R, | v € V(¥)} is compatible for
(G,Y).

Suppose that <, is a right order on G,, for all v € V(Y), and that there is a common
extension of all the <, to a right order < on w. Then 7 is right orderable, so R,, for
v € V(Y), can be defined as above, and <, isin R,, forallve V(Y). If e € E(T), then for
a€G,,

1§0<e)aé<:> 1 §a5<:>1§a€<:>1§t(e)ae

because in 7, a® and a® are identified (the generator ¢, of 7 is 1). Hence Qe Q; ! (@ — a®)
is compatible for (<), <y(e))-

Conversely, assume {R, | v € V(Y)} is a normal, compatible family of sets of right or-
ders for (G,Y). Let F be the free group on {g, | e € A\E(T)}. Let 6 : 1 — F be the
canonical epimorphism obtained by sending all elements of the vertex groups to 1, g, to ge,
fore € A\ E(T), and g, to 1 for e € E(T). Note that F can be viewed as ©(1,Y,T), where
(1,Y) is the graph of groups with all edge and vertex groups trivial. By [2, Lemma 7],
the quotient graph Z = ¥ /ker() is a tree (isomorphic to ¥ (1, Y, T), which is the universal
covering of the graph Y). An associated graph of groups (K, Z), with ker(0) = n(K,Z,Z),
as in [8, §5.4, Ch.I], will be constructed as follows.

First note that there is an injective graph map 7" — Y, x— X, whose image is therefore a
subtree T of Y. Further, pairwise distinct vertices or edges of T are in different m-orbits, so
in different ker(0)-orbits. Therefore, if p : Y —> Zis the projection map, its restriction to
T is injective. By a simple modification of [8, §3.1, Proposition 14], there is a graph map
jiZ— Y with pj = idz, and such that j maps p(f) isomorphically onto T. For a vertex
or edge x of Z, put K, = staby.(g)(j(x)), and let the monomorphism v, : K, — K, for
e € E(Z), be inclusion. This completes the construction of (K,Z), which is simpler than
the general construction in [8] because Z is a tree (cf [8, §4.5, Ch.I]).

The stabilizers of vertices for the action of G on Y are conjugates of the vertex groups
of (G,Y). Since ker(0) is normal in 7, it contains all these stabilizers, and so all the edge
stabilizers for the action of G. Thus staby.(g)(x) = stabz (x) for any edge or vertex x of Y,
so this can be unambiguously written as stab(x).

For u € V(?) define R, to be the set of right orders in Lemma 3.1. Then, for z €
V(Z), put R; = Rj(;), a normal set of right orders on K,. For e € E(Z), vy, ! s the
identity map on K, = stab(j(e)), so is compatible for (R, Ry(c)) by Lemma 3.2, since
Ro(e) = Rj(o(e)) = Ro(j(e))» and similarly R,y = R;(j(c))- By Lemma 2.3, ker(6) is right
orderable.

Next, let <, belong to R,, for all v € V(Y), and assume that @, @, Uis compatible for

(Zo(e)s Si(e))s forall e € E(T'). A right order <, in R,, will be defined for every u € V(Y),
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such that, for all f € E(Y), id : stab(f) — stab(f) is compatible for (<, (s, <;(y)). For

veV(T),let <;be <,,anelementof Ry =R,. Ifée€ E(T),soe € E(T), theno(é) =o(e),
hence <, =<,(), and similarly <;5=<;(,). Since, for a € G, a° and a® are identified
in 7, it follows that id : stab(&) — stab(€) is compatible for (<,z), <;(¢)). (If € € A then
stab(é) = G¢ and if e ¢ A then stab(é) = G¢.)

Now define <, for all u € V(Y) by induction on the distance in ¥ from T to u. If this
distance is 1 > 0, there is a unique edge f € E(Y) such that 7(f) = u and o(f) has distance
(n—1) from T; assume <,(f) has been defined. Since, by Lemma 3.2, id : stab(f) —
stab(f) is compatible for (Ro(r) Ra( f)), <u can be chosen to be an element of R; () =Ry
such that id : stab(f) — stab(f) is compatible for (<, (), <y) (and so for (<y, <,(5)))-

For z € V(Z), define <; to be <), an element of R;. Then for e € E(Z), vy, ! is the
identity map on stab(j(e)), so is compatible for (<, (j(c)), <r(j(e)))- Buto(j(e)) = j(o(e)),
t(j(e)) = j(t(e)), so Wy, ! is compatible for (Zo(e)s <t(e))- By Lemma 2.3, there is a right
order < on ker(6) which induces <; on K, for all z € V(Z).

Forv € V(Y), if z= p(¥), then < is by definition <), j(z) = ¥ and by definition, <;
is <,. That is, <, is equal to <,. Hence < induces <, on G, = K_, forallv € V(Y).

There is an exact sequence

1 — ker(6) — T-5%F — 1.

Since F is free, it is right orderable, hence so is 7, and any right order on ker(6) extends
to a right order on 7 (see eg [1, Lemma 2.1]). The theorem follows. 0

There are several consequences of this theorem along the lines of §5 in [1]; just three
will be given.

Corollary 3.4. Let (G,Y) be a graph of groups, let T be a maximal tree of Y and let
= n(G,Y,T). Suppose that G, is right orderable, for all v € V(Y), and that every right
order on Gg extends to a right order on Gy, for all e € E (Y). Then = is right orderable.

Let @ : Ge — Gy(o) be the monomorphism given by the graph of groups. If <, is a
right order on G,, for every v € V(Y), and @@, ' is compatible for (Zo(e)> St(e))> for all
e € E(T), then there is a common extension of the <, to a right order on T.

Proof. Forv e V(Y), let R, be the set of all right orders on G, a normal set of right orders
on G,. Suppose ¢ € E(Y), and < is in R,,). Define a right order <"on G¢by: a<'b
if and only if @,¢, ! (a) < @;¢, ' (b). By assumption <’ extends to a right order on Gi(e)s
which is in R, (). it follows that @, ¢, !'is compatible for (Ro(e)s Ri(e))- The corollary now
follows from Theorem 3.3. 0J

The next corollary is immediate from Corollary 3.4.



10 I. M. CHISWELL

Corollary 3.5. Let (G,Y) be a graph of groups, let T be a maximal tree of Y and let
w=n(G,Y,T). Suppose that <, is a right order on G,, for all v € V(Y), and that G¢ is a
convex subgroup of Gy(,), for all e € E (Y). Then 7 is right orderable.

Let @ : Ge — Gy(,) be the monomorphism given by the graph of groups. If @@, Uis
compatible for (<,(,), <)), for all e € E(T), then there is a common extension of the <,
to a right order on T. 0

Corollary 3.6. Let (G,Y) be a graph of groups, let T be a maximal tree of Y and let
n=n(G,Y,T). Assume G, is right orderable, for all v € V(Y), and G, is cyclic, for all
e € E(Y). Then m is right orderable.

Let @, : Ge — Gy(,) be the monomorphism given by the graph of groups. If <, is a right
order on G, for all v € V(Y), and 9.9, ' is compatible for (Zo(e)s <i(e))s forall e € E(T),
then there is a common extension of the <, to a right order on T.

Proof. There is exactly one right order on the trivial group, and exactly two on the infinite
cyclic group, which are reverses of each other, so this follows from Corollary 3.4. 0

Corollary 3.6 generalises Corollary 5.3 and Corollary 6.7 in [1]. Corollary 3.4 can also
be used to prove the following, which is Theorem 2.12 in [4].

Theorem 3.7. Let (G,Y) be a graph of groups, and let T be a maximal tree of Y. For
veV(Y), letZ,= (G| e € E(Y) and t(e) = V). Assume
(1) G is central in Gt(e),for alle c E(Y);
(2) forallveV(Y), Z, and Z,/GS, for all e € E(Y) such that t(e) = v, are torsion-free;
(3) G,/Z, is right orderable, for allv € V(Y ).
Then n(G,Y,T) is right orderable.

Proof. Let e € E(Y); since Z,)/Gg is torsion-free abelian, it is (two-sided) orderable.
There is an exact sequence

1] — Gg —>Zt(e) —>Zt(e)/Gz — 1

hence any right order on Gg extends to a right order on Z;(, (see [1, Lemma 2.1]). For any
veV(Y), Z, is torsion-free abelian, so orderable, and there is an exact sequence

l—2,—G,—G,/Z, — 1.

Since G, /Z, is right orderable, so is G,, and any right order on Z, extends to a right order
on G,, again by [1, Lemma 2.1]. By Corollary 3.4, ©(G,Y,T) is right orderable. O

The final applications are to group actions on A-trees, where A is a totally ordered
abelian group. The theory of A-trees is discussed in [3], and some relevant points will
be recalled here. A A-tree is a special kind of metric space (X,d), where the metric
d takes values in A. The axioms are given in [3, §1, Chapter 2]. They imply that,
for every x, y € X, there is a unique isometry « : [0,c] — X with a(0) = x, a(c) =y,
where ¢ = d(x,y). Here, [0,c] = {a € A| 0 <a <c}, and the metric d’ on A is given by
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d'(a,b) = |a—b| := max{a — b,b —a}. The image of « is denoted by [x,y] and is called a
segment.

Isometries from X onto X are of three different kinds; elliptic (have a fixed point), inver-
sions (g is an inversion if g has no fixed point but g? does), and hyperbolic. A hyperbolic
isometry has an axis, which is metrically isomorphic to a convex subset of A, on which it
acts as a translation. If g is a hyperbolic isometry, £(g) is defined to be the amplitude of
the translation on its axis, and if g is elliptic or an inversion, ¢(g) is defined to be 0. Thus
¢(g) € A, and is called the hyperbolic length of g. (See [3, Chapter 3].)

Actions of groups on A-trees will be by isometries. Thus a group G acts freely and
without inversions on a A-tree if and only if every g € G\ {1} acts as a hyperbolic isometry,
equivalently, £(g) > O forall g € G, g # 1. If Ais divisible, any action is necessarily without
inversions (see criterion (iv) in Lemma 1.2, Chapter 3 in [3]).

The following is now an easy consequence of results in [6].

Theorem 3.8. Suppose a group G acts freely on an R"-tree, where R" has the lexicographic
order. Then G is right orderable.

Proof. Since a group is right orderable if and only if every finitely generated subgroup
is right orderable, it suffices to show this under the extra hypothesis that G is finitely
generated, and this will be done by induction on n. For n = 1, all groups acting freely on R-
trees are (two-sided) orderable. See Proposition 5.13, Chapter 5, and the remarks following
it in [3]. Now assume it is true for (n — 1), and let G be a finitely generated group acting
freely on an R"-tree. By Grushko’s Theorem, G is a free product of (finitely many) finitely
generated freely indecomposable groups, and a free product of right orderable groups is
right orderable; this is well-known and a special case of Corollary 3.6 (cf [1, Corollary
5.11]). Thus it can be assumed that G is freely indecomposable. By [6, Theorem 7.1], G
is the fundamental group of a finite graph of groups with cyclic edge groups, where each
vertex group is finitely generated and has a free action on an R"~!-tree. By induction the
vertex groups are right orderable, so by Corollary 3.6, G is right orderable. 0

Remark. In Theorem 3.8, there is no need to specify the left or right lexicographic order
on R" as these give isomorphic ordered abelian groups.

Corollary 3.9. Suppose a group G acts freely and without inversions on a A-tree, where A
has only finitely many convex subgroups. Then G is right orderable.

Proof. Since A has finitely many convex subgroups, it is isomorphic, as ordered abelian
group, to A; & ...$ A, with the lexicographic order, where each A; is a subgroup of R.
See, for example, Theorem 1.2 and the proof of Lemma 1.6 in [3, Chapter 1]. Thus A can
be assumed to be a subgroup of R”".

Now /(g) > 0 for all g € G with g # 1, where £(g) is the hyperbolic length of g. By [3,
Lemma 2.1, Chapter 3], G acts freely on the R"-tree R” ® X, so G is right orderable by
Theorem 3.8. 0
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The corollary applies when A is a finitely generated ordered abelian group (see the re-
marks preceding Lemma 1.6 in [3]). A special case is when A = Z" with the lexicographic
order. For a discussion of groups acting freely and without inversions on a Z"-tree, see [7];
in particular, §3 contains examples of such groups when n = 2.

This can be extended a little further. Recall that, if {A;|i € I} is a family of (totally)
ordered abelian groups and [ is linearly ordered, then @;c; A; is an ordered abelian group
via the right lexicographic order. Thus a = (a;)ic; > 0 if a;, > 0, where iy is the greatest
element of {i € I | a; # 0}. This applies to the additive group of the polynomial ring Rt
in one variable, which is @;-¢A;, where A; = Rt =~ R, a direct sum of countably many
copies of R. Note that R”, with the right lexicographic order, may be viewed as a convex
subgroup (the set of polynomials of degree at most n— 1) and R[t] = [, R", an ascending
union.

Corollary 3.10. If G acts freely on an Rt]-tree, then G is right orderable.

Proof. Tt suffices to show this when G is finitely generated. Let (X,d) be an R[f|-tree on
which G acts freely, let xo € X and let g1,..., g, be a finite generating set for G. If g € G,
then g :gfl‘ ...gz:’ for somem > 1, where e; = =1 and i; € {1,...,k} for 1 < j <m. Then
by the triangle inequality
d(x0,8x0) < d(x0,8;'x0) +d(gj'x0, 87! g72x0) + ... +d (g5 .. g;"
= d(x0,8;, x0) +d(x0,8;;%0) + .. +d(x0,8;"x0)

= d(x0, gi,%0) +d(x0,8i,X0) + ...+ d(x0,8i,%0)-

", X0,8%0)

There exists n such that d(xop, g1x0), .. .,d(x0, gkxo) all belong to R”. Since R”" is a convex
subgroup, it follows that d(xp,gxo) € R”", hence d(xgp,y) € R" for all y in the segment
[x0,8x0], and all g € G.

The subtree Y spanned by the G-orbit of xq is UgGG[x07 gxo| (see the definition preceding
Lemma 1.8, Chapter 2 in [3]), and is G-invariant. If y, z € Y then d(y,z) < d(xo,y) +
d(x0,z), hence d(y,z) € R". Thus Y is an R"-tree on which G acts freely, so G is right
orderable by Theorem 3.8. 0J
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