Modeling the migration of foraging animals: A short review

Friedrich Lenz^{1,2} Thomas Ings³ Aleksei V. Chechkin⁴ Holger Kantz¹ Lars Chittka³ Rainer Klages²

¹Max Planck Institute for the Physics of Complex Systems, Dresden ²Queen Mary University of London, School of Mathematical Sciences ³Queen Mary University of London, Biological and Chemical Sciences

⁴Institute for Theoretical Physics NSC KIPT, Kharkov, Ukraine

Outline

Purpose of this talk

motivate the following two talks by relating them to the first one:

- I problem of modeling the migration and the search strategies of foraging animals → now
- In the provided statistically analyze the dynamics of foraging bumblebees in Tom's experiment → F.Lenz
- Stheoretical framework: hypothesis of Lévy flights as an optimal foraging strategy → A.V.Chechkin

Animal	migration	and L	.évy	flights	
000					

Lévy flight search patterns of wandering albatrosses

Viswanathan et al., Nature **381**, 413 (1996):

- flight times of albatrosses foraging in the South Atlantic recorded
- distribution of flight times fitted with a Lévy flight model (power law):

Lévy flights in a nutshell

Lévy flights have well-defined mathematical properties: stochastic process

- with probability distribution function of flight lengths $\rho(\ell) \sim \ell^{-\alpha}$ with 1 < α < 3 (power law),
- it is scale invariant,
- satisfies a generalized central limit theorem and
- has infinite variance
- see \rightarrow Chechkin for a short introduction

(also outline by Shlesinger at al., Nature 363, 31 (1993))

Animal migration and Lévy flights ○○●	Lévy or not Lévy?	Summa o

Optimizing the success of random searches

Viswanathan et al., Nature **401**, 911 (1999):

- question posed about "best statistical strategy to adapt in order to search efficiently for randomly located objects"
- (computer) model proposed which predicts that Lèvy flights are optimal for sparse and revisitable targets

Brownian motion (left), Lévy flights (right)

 theory applied to bumblebee, deer and albatross data: argued that all perform Lévy flights under above conditions Animal migration and Lévy flights Lévy or not Lévy?

Revisiting Lévy flight search patterns

Edwards et al., Nature 449, 1044 (2007):

• Viswanathan et al. results revisited by correcting the old

- Lévy flight behavior clearly ruled out. On the basis of new, more precise data some other (gamma distributed) stochastic process revealed
- refined data analysis yields no evidence for Lévy flights in bumblebee and deer data either

Summary

Animal migration and Lévy flights

Lévy or not Lévy?

Summary

Lévy or not Lévy?

Lévy paradigm studied in series of research:

 Sims et al., Nature 451, 1098 (2008): many marine predators are Lévy; prey distributions also display Lévy-like patterns: preditor-prey interaction studied

 Reynolds, Behav.Ecol.Sociobiol., in press: model proposed for bumblebee foraging in a patch of flowers; numerical analysis predicts Lévy flights

 Reynolds, Behav.Ecol.Sociobiol., in press: model proposed for bumblebee foraging in a patch of flowers; numerical analysis predicts Lévy flights

 Dieterich et al., PNAS 105, 459 (2008): migrating biological cells are not Lévy; more complicated "intermittent" motion observed

etc. ...

Animal migration and Lévy flights Lévy or not Lévy? Summary oco-

Bénichou et al., Phys. Rev. E 74, 020102(R) (2006):

 for non-revisitable targets intermittent search strategies minimize the search time, which are not necessarily Lévy

Animal migration and Lévy flights Lévy or not Lévy? Summary oco-

Bénichou et al., Phys. Rev. E **74**, 020102(R) (2006):

 for non-revisitable targets *intermittent* search strategies minimize the search time, which are not necessarily Lévy

- popular account of this work in Shlesinger, Nature 443, 281 (2006): "How to hunt a submarine?"
- approach extended by Lomholt et al., PNAS 105, 11055 (2008) to intermittent search with Lévy relocations for rare revisitable targets

Summary

Summary and open questions

Understanding the migration of foraging animals:

- new analytical tools and better/larger data sets needed to critically check the Lévy flight paradigm
- study the relation between the type of foraging and biological conditions like
 - food source distribution
 - memory of animals
 - sensory mechanisms of animals
 - "individual personalities" of different animals

interplay between *statistical analysis* and *biological interpretation* of the results

 \Rightarrow