MTH4100
Exercise sheet 6

Calculus 1, Autumn 2009
Rainer Klages

## 1. Parametric equations

Identify the particle's path for the given parametric equation by finding a Cartesian equation for it. Graph this equation, indicate the portion of the graph traced by the particle and the direction of motion.

$$
\text { (a) } x=\cos 2 t, y=\sin 2 t, 0 \leq t \leq \pi \quad \text { (b) } x=-\sqrt{t}, y=t, t \geq 0
$$

2. Implicit differentiation.
[2008 exam question]
If

$$
x^{3}+y^{3}=56
$$

find the values of $d y / d x$ and $d^{2} y / d x^{2}$ at the point $(-2,4)$.

## 3. Linearisation of trigonometric functions.

Find the linearisation of $f(x)=\cos x$ at $x=\pi / 2$.
(*)4. Critical points.
[2008 exam question]
Consider the family of curves given by

$$
f_{a}(x)=2 x^{3}+a x^{2}+1, \quad a, x \in \mathbb{R} .
$$

(a) For fixed $a$, compute the critical point(s) of each curve.
(b) When varying $a$, the set of all $a$-dependent critical points lie on a new curve. Compute the equation of that curve.
5. The Extreme Value Theorem.

Give an example of a function that violates both the assumption of continuity in the Extreme Value Theorem and its conclusions.

Extra: We know how to find the extreme values of a continuous function $f(x)$ by investigating its values at critical points and endpoints. But what if there are no critical points or endpoints? What happens then? Do such functions really exist? Give reasons for your answers.

