MTH4100
Exercise sheet 8

Calculus 1, Autumn 2009
Rainer Klages

1. L'Hôpital or not L'Hôpital?

Find the following limits:
a. $\lim _{x \rightarrow 2} \frac{\sqrt{x^{2}+12}-4}{x-2}$
(*)b. $\lim _{x \rightarrow 0} \frac{1-\cos (6 x)}{36 x^{2}}$
[2007 exam question]
c. $\lim _{x \rightarrow \infty} \frac{\sqrt{x+5}}{\sqrt{x}+5}$

2. Estimating with finite sums.

Graph the function $f(x)=x^{2}-1$ over the interval [0,2]. Partition the interval into four subintervals of equal length. Then add to your sketch the rectangles associated with the (Riemann) sum $\sum_{k=1}^{4} f\left(c_{k}\right) \Delta x_{k}$, given that c_{k} is the (a) left-hand endpoint, (b) right-hand endpoint, (c) midpoint of the k th subinterval. Make a separate sketch for each set of rectangles.

3. Finite sums.

Which formula is not equivalent to the other two?

$$
\begin{array}{lll}
\text { (a) } \sum_{j=2}^{4} \frac{(-1)^{j-1}}{j-1} & \text { (b) } \sum_{k=0}^{2} \frac{(-1)^{k}}{k+1} & \text { (c) } \sum_{l=-1}^{1} \frac{(-1)^{l}}{l+2}
\end{array}
$$

${ }^{(*)} 4$. Limit of upper sums.

For the function $f(x)=1-x^{2}$ over the interval $[0,1]$, find a formula for the upper sum obtained by dividing the interval $[a, b]$ into n equal subintervals. Then take the limit of this sum as $n \rightarrow \infty$ to calculate the area under the curve over $[a, b]$.

Extra: Let $f(x), g(x)$ be two continuously differentiable functions satisfying the relationships $f^{\prime}(x)=g(x)$ and $f^{\prime \prime}(x)=-f(x)$. Let $h(x)=f^{2}(x)+g^{2}(x)$. If $h(0)=5$, find $h(10)$.

