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What is Calculus?

Calculus may be considered as “advanced algebra and geometry”, with the goal to set up
mathematics as a formal language. Fundamental for Calculus are the real numbers. They
enable the study of functions of real variables:

• for one real variable see Calculus I

• for many variables see Calculus II

The geometric view of Calculus concerns the graph of a function covering aspects like

• continuity properties

• slope ↔ derivative

• area ↔ integral

You will learn many techniques, based on algebraic manipulations with many applications
in all branches of modern society. The next level of mathematical abstraction is called
analysis.

Real numbers and the real line

Think of the real numbers, e.g., as all decimals.

examples: −3

4
= −0.7500 . . . ; 1

3
= 0.333 . . . ;

√
2 = 1.4142 . . .

The real numbers R can be represented as points on the real line:

-3 -2 -1 0 1 2 3 4-3/4 1/3 π2
Real numbers are characterized by three fundamental properties:

• algebraic means formalisations of the rules of calculation (addition, subtraction, mul-
tiplication, division).
example: 2(3 + 5) = 2 · 3 + 2 · 5 = 6 + 10 = 16

• order denotes inequalities (for a geometric picture see the real line).
example: −3

4
< 1

3
⇒ −1

3
< 3

4

• completeness implies that there are “no gaps” on the real line

1. Algebraic properties of the reals for addition (a, b, c ∈ R) are:

(A1) a + (b + c) = (a + b) + c associativity
(A2) a + b = b + a commutativity
(A3) There is a 0 such that a + 0 = a. identity
(A4) There is an x such that a + x = 0. inverse

Why these rules? They define an algebraic structure (commutative group).
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Now define analogous algebraic properties for multiplication:

(M1) a(bc) = (ab)c
(M2) ab = ba

(M3) There is a 1 such that a 1 = a.
(M4) There is an x such that a x = 1 (for a 6= 0).

Finally, connect multiplication with addition:

(D) a(b + c) = ab + ac distributivity

These 9 rules define an algebraic structure called a field.

2. Order properties of the reals are:

(O1) for any a, b ∈ R, a ≤ b or b ≤ a totality of ordering I
(O2) if a ≤ b and b ≤ a then a = b totality of ordering II
(O3) if a ≤ b and b ≤ c then a ≤ c transitivity
(O4) if a ≤ b then a + c ≤ b + c order under addition
(O5) if a ≤ b and 0 ≤ c then a c ≤ b c order under multiplication

Some useful rules for calculations with inequalities (practise in exercises) are:

These rules can all be proved by using (O1) to (O5): 1. to 3. follow straightforwardly, 4. to
6. are more tricky.

3. The completeness property can be understood by the following construction of the
real numbers: (using set notation!)
Start with “counting numbers” 1, 2, 3, . . .

• N = {1, 2, 3, 4, . . .} natural numbers → Can we solve a + x = b for x?
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• Z = {. . . ,−2,−1, 0, 1, 2, . . .} integers → Can we solve ax = b for x?

• Q = {p

q
|p, q ∈ Z, q 6= 0} rational numbers → Can we solve x2 = 2 for x?

• R real numbers
example: The positive solution to the equation x2 = 2 is

√
2. This is an irrational

number whose decimal representation is not eventually repeating:
√

2 = 1.414 . . . An-
other example is π = 3.141 . . .

⇒ N ⊂ Z ⊂ Q ⊂ R

In fact, one has to ”prove” this:

Theorem 1 x2 = 2 has no solution x ∈ Q.

Proof: Assume there is an x ∈ Q with x2 = 2.
This must be of the form x = p

q
, p, q ∈ Z, q 6= 0, and we can assume that p and q have

no common factors (otherwise cancel them).

x2 = 2 then implies that (p

q
)2 = 2, or p2 = 2q2 , so p2 is even.

However, p2 even implies that p is even (...requires proof...).

Write p = 2p1, so that p2 = (2p1)
2, or 4p2

1
= 2q2, or 2p2

1
= q2 .

This implies that q2 is even, so q is even as well.
We have now shown that both p and q must be even, so they share a common factor 2.
This is a contradiction! Therefore the assumption must be wrong. q.e.d.

In summary, the real numbers R are complete in the sense that they correspond to all points
on the real line, i.e., there are no “holes” or “gaps”, whereas the rationals have ”holes”
(namely the irrationals).
See your textbook Appendix 4 for details. The ”proof”of completeness of R is covered in
MTH5104 Convergence and Continuity, a 2nd year ”analysis” module.

University mathematics is built upon

• basic properties (Definitions, Axioms)

• statements deduced from these (Lemma, Proposition, Theorem, Corollary, . . .) in form
of proofs!

example: The technique in the previous proof is called Proof by Contradiction.

Many different ones to come! For details about the logic behind proofs see MTH5117,
Mathematical Writing.
This formal framework is illustrated in Calculus 1 by many examples, exercises, applications.

Intervals

Definition 1 A subset of the real line is called an interval if it contains at least two numbers
and all the real numbers between any two of its elements.
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examples:

• x > −2 defines an infinite interval. Geometrically, it corresponds to a ray on the real
line

• 3 ≤ x ≤ 6 defines a finite interval. Geometrically, it corresponds to a line segment on
the real line

So we can distinguish between two basic types of intervals – let’s further classify:

Solve inequalities to find intervals of x ∈ R.

examples:

(a) 2x − 1 < x + 3

2x < x + 4

x < 4

(b) − x

3
< 2x + 1

−x < 6x + 3

−3

7
< x

(c) 6

x−1
≥ 5 : must hold x > 1!

6 ≥ 5x − 5
11

5
≥ x

solution sets on the real line:
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Absolute value

Definition 2 The absolute value (or modulus) of a real number x is

|x| =

{

x x ≥ 0
−x x < 0 .

Geometrically, |x| is the distance between x and 0.

example:

|x − y| is the distance between x and y.

example:

An alternative definition of |x| is

|x| =
√

x2 ,

since taking the square root always gives a non-negative result!
|x| in an inequality:

|x| < a ⇔ −a < x < a (why?)

The distance from x to 0 is less than a > 0 ⇔ x must lie between a and −a.

Absolute value properties are:

1. | − a| = |a|

2. |ab| = |a| |b|

3. |a
b
| = |a|

|b|
for b 6= 0

4. |a + b| ≤ |a| + |b|, the triangle inequality

Prove these statements! Key idea: use |x| =
√

x2.

1. Proof of | − a| = |a|: | − a| =
√

(−a)2 =
√

a2 = |a|
We have used a direct proof: We started on the left hand side of the equation and
transformed it step by step until we have arrived at the right hand side.
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2. Proof of |ab| = |a| |b|: |ab| =
√

(ab)2 =
√

a2b2 =
√

a2
√

b2 = |a| |b|

3. Proof of |a
b
| = |a|

|b|
for b 6= 0: exercise!

4. Proof of the triangle inequality |a + b| ≤ |a| + |b|:
Use a little trick and prove instead: |a + b|2 ≤ (|a| + |b|)2

|a + b|2 =
(

√

(a + b)2

)2

(with |x| =
√

x2)

= (a + b)2

= a2 + 2ab + b2

≤ a2 + 2|a| |b| + b2 (because ab ≤ |ab| = |a||b|)
= |a|2 + 2|a| |b| + |b|2 (see above)

= (|a| + |b|)2

Now take the square root and observe that the arguments of both roots are positive – we
are done.

note: “if and only if” is often abbreviated by the sign “⇔”

examples

(a) |2x − 3| ≤ 1

(b) |2x − 3| ≥ 1

Reading Assignment: read

Thomas’ Calculus, Chapter 1.2:

Lines, Circles, and Parabolas


